
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

IMAGE-SCENARIZATION:
A COMPUTER-AIDED APPROACH FOR AGENT-BASED ANALYSIS AND DESIGN

Michel Lizotte François Rioux

Defence R&D Canada LTI Software and Engineering
2459, Pie-XI Blvd North, 825 Boul. Lebourgneuf, Bureau 204,

Québec (Québec) G3J 1X5 CANADA Québec (Québec) G2J 0B9 CANADA

ABSTRACT

Agent-based modeling has been of interest to researchers for some time now. Some research has focused
on the analysis and design of such software, but none has truly addressed the need for automated assis-
tance in creating agent-based simulators from initial problem comprehension. This paper proposes an ap-
proach addressing the gap and supporting the spiral process of generating an agent-based simulator. In
particular, this approach enables the incremental and iterative representation of a problem and its transla-
tion into an executable model. Initially using an unconstrained ontology, the designer draws conceptual
graphs representing the problem. Progressively, graph elements are linked hierarchically under concepts
that are part of a predefined generic Scenarization Vocabulary (i.e., agent, patient, behaviour, attribute,
parameter, variable �). This Scenarization semantic defines roles in the simulation. This approach is part
of a broader research effort known as IMAGE that develops a toolset concept supporting collaborative
understanding of complex situations.

1 INTRODUCTION

A simulation based on current beliefs about a situation is either a mental act or an actual exercise per-
formed by a human to better approach the future. For instance, to increase their grasp of a situation, the
military use war-games to fake dynamics between friendly and enemy forces. The use of an executable
model based on the current comprehension of a situation is a way to facilitate this action and better appre-
ciate future possibilities.

A huge community of research is investigating agent-based modeling. Work by Macal and North
(2006) discusses the analysis and design of such software. However, no study seems to truly address the
need for automated assistance in creating agent-based simulators from initial problem comprehension.
This paper proposes an approach addressing the gap, focusing on the lack of formalism and procedural
maturity stressed by Macal and North (2006).

The work presented in this paper is performed under the IMAGE concept (Lizotte et al. 2008) that
targets the collaboration of experts trying to reach a common understanding of a complex situation. The
principles underlying the concept include: (1) Iterative understanding: a common understanding is
reached through revision and sharing of successive representations of the situation; (2) Synergy of tech-
nologies: the common understanding is assisted by the synergy of tools for representation, scenarization,
simulation and exploration; and (3) Humans in the loop: the common understanding is above all a human
task supported by tools helping ������	
�� comprehension method. This paper is about the 2nd principle.
In particular, it focuses on the IMAGE-Scenarization approach (IMAGE-SCE).

Section 2 introduces the graphical notation used to define and scope the problem. The next two sec-
tions summarize the generic Scenarization Vocabulary and the Specification Schemas graphs used, as de-

837978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Lizotte and Rioux

scribed in Section 5, to transform problem comprehension into an executable agent-based model. Using
�
����
����������	
����	������������������	�����	����	�����������������
������������������
ulation.

2 GRAPHICAL NOTATION: REPRESENTING THE PROBLEM

The famous quote by Charles F. Kettering, a US electrical engineer and inventor (1876 - 1958), states: "A
problem well stated is a problem half solved." This saying summarizes the intent of this part of the ap-
proach where the designer is assisted in posing the problem at hand.
 A priori knowledge and gathering information from various sources is used to express a problem
definition. This problem definition consists in drawing a set of conceptual graphs and, potentially, a cus-
tom vocabulary. Together, these graphs and this Comprehension Vocabulary constitute the comprehen-
sion model of the problem.

2.1 Comprehension Graphs

Figure 1 provides an example of the graphical notation of conceptual graph formalism (Sowa 1984) varia-
tion used in the approach. This example was produced using the CoGUI-IMAGE tool based on the
CoGUI tool. The latter software is founded on the conceptual graph research efforts of Chein and
Mugnier (2008) as well as on work by Genest (2010). Rectangles are concepts, while ellipses are concep-
tual relations. A concept has two parts, a type label before the colon and a marker after the colon. The
type label represents the type of entity the concept refers to, while the marker refers either to the generic

����������	�� identifies actual individuals, also called referents. Arcs pointing toward or away from an
ellipse mark arguments of the relation. The arrow orientation is devoid of semantics and serves only to
ease graph reading. A concept can also be detailed using a nested graph as shown in Figure 1, where the
�	
�������!#�!��
�$��� ������������%����������������!D:*��Explode:*'� �!#�
��
����
��	������!���o-
sive Device'�

 In the original conceptual graph notation, an arc pointing towards an ellipse marks the first argument
of the relation, while one pointing away from an ellipse marks the last argument. If a relation has only one
argument, the arrowhead is omitted. If a relation has more than two arguments, the arrowheads are re-
placed by integers 1,...,n. The original conceptual graph notation is described in Van Harmelen, Lifschitz,
and Porter (2008). Conceptual Graphs are a system of logic based on the existential graphs of Charles
Sanders Peirce and the semantic networks of artificial intelligence. They express meaning in a form that is

Figure 1: Graphs of a comprehension model

838

Lizotte and Rioux

logically precise, humanly readable and computationally tractable. They can be used as an intermediate
language for translating computer-oriented formalisms to and from natural languages. They serve as a
readable, but formal, design and specification language. They have been implemented in a variety of pro-
jects for information retrieval, database design, expert systems and natural language processing.
 As the IMAGE-SCE was progressing, needs for lightening conceptual graphs were identified. As a
consequence, the graph notation was extended to reduce the quantity of shapes and lines. For instance, the
following extensions are used:

� A �Concept Group� is a rectangle including a set of N concepts (no relations) used to elimi-
nate repetition of the same relation symbol (and arc). An arc between this rectangle and a re-
lation actually means N relations (and arcs), one for each concept in the set.

� A �Set of referents� is a curly-bracket set expression used as a marker to reduce the number
of concept symbols of the same type. Such a set composed of N members means N concepts.
+	���
���
�����/	������
�
�$�<=�#�!>�����?�����
��
��/	������
�
�$�=�����Road Segment:
#������
���Road Segment: E'� A relation with such a symbol actually means N relations, as
above.

� A �Vector of referents� is a label and interval bracket expression used as a marker to reduce
the number of concept symbols of the same type. Such an interval from 1 to N means N con-
cepts. For instance, �IED: x[1-3]� means �IED: x[1]�� �IED: x[2]� and �IED: x[3]� .

� An �Array of referents� is a label and a dimension declaration in brackets used to reduce the
number of concept symbols. Such an array means as many concepts as there are coordinates
in the array. For instance, �Population: p[2 X 2]� means �Population: [1,1]�� �Population:
[1,2]�� �@	�?����	
$�OY�Z\�� and �@	�?����	
$�OY�Y\� .

2.2 Comprehension Vocabulary

In the context of IMAGE, which essentially uses the definitions of Chein and Mugnier (2008), a vocabu-
lary is a simple ontology composed of a concept type set and a relation type set, also called hierarchies.
=	����������������������	�������^�����-���_��	%
�����
����	%`�������	
s. In addition, a relation type has a
signature specifying the arity of the relation and �����
���
����(hierarchically highest permitted) concept
type of each argument. Using both, a textual tree and a graph layout, Figure 3 of the next section presents
the concept types and the relation types of a vocabulary.

The comprehension vocabulary explicitly structures and labels concept types and relation terms used
in the comprehension graphs. The creation of a this vocabulary is optional for the problem representation
activity of the IMAGE-SCE approach. It is up to the designer to decide whether or not such vocabulary is
needed. On the other hand, the Scenarization Vocabulary introduced in the following section is manda-
tory. Any concept or relation playing a role in the simulation will eventually have to be linked under the
generic Scenarization Vocabulary.

3 SCENARIZATION VOCABULARY: IDENTIFYING SIMULATION OBJECTS

Starting from comprehension concepts and relations introduced above, the designer has to identify simu-
lation objects. While the comprehension model leaves the user free to express any knowledge of interest,
the Scenarization Model requires that all objects essential to simulate the situation be consistent and de-
fined at the correct level of detail. This is accomplished using both the Scenarization Vocabulary (intro-
duced in the current section) and the Specification Schemas (presented in the next section). As for the
comprehension model, a set of graphs and the Scenarization Vocabulary constitute the Scenarization
Model. The main scenarization concept types are:

� Agent: a Simulation Object Entity (or Actor) who voluntarily, under some Motivations Rules,
performs Actions trying to modify the situation and, whose /�����	
��� ?
���� �	
�� �/������
Rules�� modify the situation.

839

Lizotte and Rioux

� Patient: a Simulation Object Entity (or Actor) who never acts under Motivations Rules but whose

/�����	
���?
�����	
���/������/?����� modify the situation.
� Decor: a Simulation Object Entity part of the environment (not Actor) that is used by the Actor

but never modified.
� Action: a Simulation Object Behaviour triggered by an Agent.
� Reaction: a Simulation Object Behaviour triggered by an Actor (Agent or Patient).
� Variable: a Simulation Object Attribute changed by the simulation execution, also called a dy-

namic property.
� Parameter: a Simulation Object Attribute that is not changed by the simulation execution but can

be changed by the designer, also called a static property.
� Predicate: a Simulation Object Proposition constructed with a Simulation Object Entity, a relation

and either an Object Attribute or a Simulation Object Behaviour.
Although closely related to these concepts, the main relation types will be presented in the next section,
since they are not relevant to the current activity of identifying simulation objects.

Although they serve different purposes, the Comprehension Model and the Scenarization Model are
closely related. Any meaningful simulation object part of the Scenarization Model implements a compre-
hension concept. Some comprehension elements will not be part of the Scenarization Model, either be-
cause they are not relevant to the simulation or they are not mature enough to be integrated at the current
stage of the spiral process. Conversely, some elements will be introduced in the Scenarization Model to
add details required for the actual execution of the simulation. In other words, the designer needs to iso-
late comprehension concepts and relations that are relevant for simulation and add concepts and relations
required for simulation purposes. Figure 2 shows comprehension graph concepts linked under the generic
Scenarization Vocabulary. For each comprehension graph element, the designer must determine whether
or not this element will be part of the simulation and how it will fit into the generic Scenarization Vo-
cabulary. Figure 3 shows a vocabulary resulting from this activity. The generic Scenarization Vocabulary
builds on previous work on planning systems e.g., STRIPS in Nilsson (1980) and SAIRVO in Lizotte
(1989).

Figure 2: Linking comprehension concepts with the generic Scenarization Vocabulary

840

Lizotte and Rioux

Figure 3: Specialization of the generic Scenarization Vocabulary

4 SCHEMAS: WORKING OUT THE SCENARIO MISE-EN-SCÈNE

After a key simulation concept (such as an agent or an action) is identified, the designer can start describ-
ing it using a specification schema. Specification schemas (also called prototypics) are associated with the
following scenarization concept types: Agent, Patient, Decor, Behaviour and Scenario. The schema no-
tion is defined in Chein and Mugnier (2008). In addition to specification schemas, construct schemas
(also called patterns) facilitate the designe����%	��'�|	
���?�������
�������
	���^	?������
��������	
��%����
other concepts to a specific concept type, but rather about a nested graph pattern that can be used to detail
a concept. For instance, a precondition to a behaviour can be detailed using the attribute predicate schema
���
?����	
�}^~���$��attribute�Object Attribute'�

+��?�������	%���
����
����	���?�����������������		�����������
��
����
?����	
����
�
����	��	%������
Scenario schema. It identifies agents, patients and a decor that are part of the scenario E, and specifies the
different cycle step behaviours of the main cycle. A cycle can also include subcycles through its cycle
�����'�|����� �������	�
�� �	� �� �?^������ ���	?��� ���� ��������� ������	
� ���� ��
�� %��� ���� ���
���	� �	
�����
points to the main cycle.

Within a cycle, the steps are executed according to their markers, e.g. main OZ\��
��
�OY\���, main[n].
In addition to this static scheduling mode requiring a predefined sequence, a dynamic scheduling mode
using stimulation (motivation and reflex) rules is available. The stimulation rules described below are as-
sociated with agents and patients. Reflex rules are triggered by a dynamic property change or actor addi-
tion/removal, whereas motivation rules are triggered according to their priority when the associated con-
dition is satisfied.

841

Lizotte and Rioux

Figure 4: Specification of a Scenario

 Figure 5 presents how to use an agent schema along with the resulting graph specifying the agent
IED. In this schema and the following ones, many relations are utilized. Following are the main relations
utilized by the entity schemas (Agent, Patient and Decor):

� s-property: associates a Parameter to a Simulation Object
� d-property: associates a Variable to a Simulation Object
� capability: associates a Behaviour to an Actor
� reflex rule: associates a triggering condition, to be verified if the situation changes, to a Reaction
� motivation rule: associates a triggering condition, to be verified at each simulation cycle, to an

Action
Three additional relations meant to associate current beliefs, goals and plans to an Agent were imag-

ined, but not experimented until now.

Figure 5: Specification of an Agent

 A Behaviour Schema works in the same way, but uses different relations:
� precondition: associates a Proposition (e.g. Predicate), that must be true, with a Behaviour for the

Behaviour to be feasible and actually begin.
� b-effect: associates a situation change to a Behaviour when the Behaviour begins.
� co-condition: associates a Proposition to a Behaviour, that must be true, during execution of the

Behaviour. It must be verified at each simulation cycle between the beginning and the end of the
Behaviour.

842

Lizotte and Rioux

� e-effect: associates a situation change to a Behaviour when the Behaviour ends.

 A sub-behaviour relation was imagined but not experimented until now. The idea was to decompose
����=�����	?���
�	������
����	
�����
���������?��
���^��	�����
���%������relations. However, this need is
partially addressed using a stimulation rule including a set of behaviours ordered %���������^��	�����ela-
tion.

5 JAVA SIMULATION FRAMEWORK: COMPLETING THE IMPLEMENTATION OF
THE SIMULATION DYNAMICS

The IMAGE-SCE approach would not be complete without its agent-based simulator framework. Use of
this Java framework is the last activity a designer must complete before actually running a simulation.
From a root graph scenario (see previous section), the designer triggers the creation of the basic simulator
software package. This transformation process uses the conceptual graphs (reachable from the root graph
scenario) as input and produces implementation source code files specific to the problem. Added to the
other files part of the framework, they constitute the basic simulator software package. The simulation
engine of the framework is an adaptation of an interactive simulation software known as Multichronia
(Rioux, Bernier, and Laurendeau 2008).
 Most of the generated code is complete and does not need any additional work by the designer,
though some does. The designer will find in this package a set of implementation classes, including
method stubs, used mainly to detail relevant simulation dynamics. These are behaviour, stimulation and
simulation cycle classes. Although there are plans to improve graph notation and minimize code writing
by the designer, this stub approach was chosen deliberately for two main reasons. It allows a maximum of
flexibility enabling any code insertion of interest to the designer. In addition, the graph notation exists to
ease the designer�� work and, in many cases, a behaviour is more easily expressed with a programming
language rather than a graph notation.

5.1 Simulation Cycle Classes
An implementation class is generated for each Simulation Cycle declared in the Scenario graph. A cycle
includes a set of iterations. Each iteration either triggers a set of cycle steps (in a static scheduling mode)
or a set of stimulation rules (in a dynamic scheduling mode). As presented in Table 1, four method stubs
are available to the designer.

Table 1: Cycle Method Stubs

Method Name Description

beforeCycle Can be used to perform initialisation before a Cycle starts

cycleFinished Used to implement a condition to stop the cycle

beforeIteration Can be used to execute code before an iteration

afterIteration Can be used to execute code after an iteration

5.2 Entity (Actor, Patient and Decor) Classes

An implementation class is generated for every simulation entity type declared in the scenario graph. Ta-
ble 2 lists the available methods.

5.3 Stimulation (Motivation and Reflex) Classes

An implementation class is generated for every stimulation declared in the scenario graph. Table 3 shows
the available method stub.

843

Lizotte and Rioux

Table 2: Entity Methods

Method Name Description

new<EntityType>() A single static method creating an Actor

get<ParameterName>() Getter methods for each A��	����parameter

get<VariableName>()
set<VarableName>() Getter and Setter methods for each A��	����variable

get<BehaviourName>() A getter method for each A��	����behaviour

get<StimulationName>() A getter method for each A��	����stimulation

getID() A getter method for the A��	����ID

get(<Entity ID>) Static method returning an entity identified by <Entity ID>

GetList() Static method returning the collection of created Actors

Table 3: Stimulation Method Stub

Method Name Description

stimulationIsTrue Current situation stimulates the Actor to perform the associ-
ated behaviour

 This stimulation system allows Actors minimal autonomy, but further work in the framework is re-
quired in order to remove the need to declare stimulations in the scenario graph. However, the implemen-
tation already generates adequate code for stimulation (motivation and reflex) rules using basic compari-
son operators (if, if not, ==, !=, <, <=, >, >=) and the designer may always overwrite the method.

5.4 Behavioural Classes

An implementation class is generated for every simulation entity type declared in the scenario graph. Ta-
ble 2 lists available method stubs for use by the designer. The framework allows a behaviour to begin and
end in a single simulation time step or span many steps.

Table 4: Behaviour Method Stubs

Method Name Description Execution

Init Performs initialisations e.g. setting parameters On the Behaviour creation

Si
ng

le
 a

nd

m
ul

ti-
st

ep
s preconditionsAreTrue Current situation allows to begin execution Situation satisfies a motivation or a re-

flex condition

beginExecution Performs effects resulting from the execution start If preconditions are satisfied

applyEffects Performs effects resulting from a successful execution If execution is finished

M
ul

ti
st

ep
 o

nl
y

executionFinished Current situation required to successfully stop the execution On a new cycle

coconditionsAreTrue Current situation allows to pursue execution If execution is not finished

continueExecution Performs recurrent effects for the current cycle If coconditions are satisfied

abortExecution Performs effects resulting from an interrupted execution
(e.g. undo effects performed at the execution start) If coconditions are not satisfied

6 THE SPIRAL PROCESS: RUNNING AND REVISITING THE SIMULATION

The previous sections presented the different activities a designer must accomplish in order to build a
functional agent-based simulator. This last section, describing the methodology, presents how these ac-

844

Lizotte and Rioux

tivities are used to actually reach a validated simulation. Table 5 is an attempt to show how the IMAGE-
SCE approach supports tasks and steps identified by Macal and North (2006):

Tasks
(a) Identification of agents and a behaviour theory
(b) Identification of agent relationships and an interaction theory
(c) Collection of agent-related data
(d) Validation of the models

Steps
(1) Agent Identification (agent types and other objects along with their attributes)
(2) Environment Definition
(3) Agent Methods Specification (agent attributes updates in response to interactions)
(4) Agent Interactions Control (which agents interact, when, and how)
(5) Software Implementation

Table 5: IMAGE-SCE vs. Macal and North (2006) tasks and steps

IMAGE-SCE
Component

IMAGE-SCE
Tool Task Steps

 (1) (2) (3) (4) (5)

Representing the problem Graph
Notation

(a)
(b)

Identifying simulation objects Vocabulary (a) Agent,
Patient,
Object
Attribute
�

Decor,
Object
Attribute
�

Working out the mise-en-
scène Schemas

 Agent,
Patient,
Behaviour
schemas
and Java
code �

Scenario,
Cycle Step,
Motivation
Rule, Reflex
/?����

Implementing the dynamic Java
Framework

 Behaviour Java
code, BeforeCycle,
Be�	���������	
��� Running & Revisiting the

simulation Spiral Process (d)

Figure 6 provides an example of an insurgency simulator evolution during a spiral process.

Figure 6(a): Increment 1 and 2 of the insurgency scenario

1 2

845

Lizotte and Rioux

Figure 6(b): Increment 3 of the same insurgency scenario

�
------------- 4 - END OF ITERATION ------------
END OF CYCLE ?
-< Main > - < cycleFinished >-
 Cumulated Cargo < Required Cargo
---------- 5 - BEGINING OF ITERATION ----------
-< Main > - < beforeIteration >-
 Blue Carried Cargo = 0.0
 Blue Selected Convoy Type =
 Blue Selected Road =
 Red Resource Gain = 0.0
 School Project New Cargo = 0.0
ACTOR 'Blue(b)' DOING 'PlanConvoy'
-< PlanConvoy > - < preconditionsAreTrue >-{YES}
-< PlanConvoy > - < beginExecution >-
-< PlanConvoy > - < coconditionsAreTrue >-
-< PlanConvoy > - < endExecution >-
-< PlanConvoy > - < applyEffects >-
 Selected Convoy Type = TLAV Convoy
 Carried Cargo = 2.0
 Selected Road = 3
ACTOR 'Red(r)' DOING 'PlaceIEDs'
-< PlaceIEDs > - < preconditionsAreTrue >- {YES}
-< PlaceIEDs > - < beginExecution >-
-< PlaceIEDs > - < coconditionsAreTrue >-
-< PlaceIEDs > - < endExecution >-
-< PlaceIEDs > - < applyEffects >-

 RoadID = 1
 Strength = 0.11374688
ACTOR 'IED(The IED)' DOING 'Explode'
-< Explode > - < preconditionsAreTrue >- {NO}
ACTOR 'Blue(b)' DOING 'DeliverCargo'
-< DeliverCargo > - < preconditionsAreTrue >- {YES}
-< DeliverCargo > - < beginExecution >-
-< DeliverCargo > - < coconditionsAreTrue >-
-< DeliverCargo > - < endExecution >-
-< DeliverCargo > - < applyEffects >-
 School Project New Cargo = 2.0
ACTOR 'School Project(sp)' DOING 'IsProgressing'
-< IsProgressing > - < coconditionsAreTrue >- {YES}
-< IsProgressing > - < continueExecution >-
 School Project Cumulated Cargo = 11.0
ACTOR 'Population(p)' DOING 'RevisitAllegiance'
-< RevisitAllegiance > - < preconditionsAreTrue >-{YES}
-< RevisitAllegiance > - < beginExecution >-
 Population Allegiance To Blue = 9.0
-< RevisitAllegiance > - < coconditionsAreTrue >-
-< RevisitAllegiance > - < endExecution >-
-< RevisitAllegiance > - < applyEffects >-
-< Main > - < afterIteration >-
------------- 5 - END OF ITERATION ------------
END OF CYCLE ?
-< Main > - < cycleFinished >-
 Cumulated Cargo >= Required Cargo

-< Main > - < afterCycle >-

Figure 7: A simulator execution trace

7 CONCLUSION

The paper introduces a computer-assisted approach to develop an agent-based simulator from the initial
problem definition. This approach includes five (5) components:

(1) A graphical notation, extending the conceptual graph formalism, to conceptually represent the
problem of interest without any predefined ontology, i.e., using any concepts and relations
deemed necessary by the designer.

3

846

Lizotte and Rioux

(2) A predefined generic scenarization vocabulary describing the various roles that a concept or rela-

tion can play in the agent-based simulation.
(3) A predefined set of specification schemas enabling the description and linking of simulation

elements.
(4) An agent-based simulator Java framework allowing the designer to complete the implementation

of the simulation dynamics.
(5) A spiral process using the elements above to iteratively and incrementally build and validate the

simulator.
 For many problems, such an approach will most likely decrease the effort required to build an agent-
based simulator. Moreover, integrated in the overall IMAGE concept, it enables a team of experts to col-
laboratively work out a valid simulator. The IMAGE context (Lizotte et al. 2008) and Scenarization ap-
proach is summarized in Figure 8. The IMAGE concept, which includes a Scenarization part, targets the
collaboration of experts trying to reach a shared understanding of a complex situation. The IMAGE-
Scenarization approach (IMAGE-SCE) uses Comprehension graphs and a generic Scenarization Vocabu-
lary to produce a Scenarization Model and a Java Simulator.

 Like the whole IMAGE concept, this Scenarization approach will likely be refined in coming years
through prototyping and fine-tuning to specific use priorities. Enhanced usability and automation through
graph notation (~visual programming) will certainly be considered, along with better support of proposi-
tion nested graphs.

REFERENCES

Chein, M., and M.L. Mugnier. 2008. Graph-based knowledge representation: computational foundations
of conceptual graphs. Springer.

Genest, D. 2010. Cogitant Reference Manual version 5.2.3, Available via
<https://cogitant.source.forge.net/files/cogitant.pdf> [accessed April 12,
2010].

Lizotte, M., and B. Moulin. 1989. SAIRVO: A planning System which implement the Actem concept.
Knowledge-Based Systems Journal 2(4):210-218.

Lizotte, M., D. Poussart, F. Bernier, M. Mokhtari, E. Boivin, and M. DuCharme. 2008. IMAGE: simula-
tion for understanding complex situations and increasing future force agility models. In Proceedings
of the Army Science Conference 2008, Orlando, Florida.

Figure 8: IMAGE-Scenarization approach

847

Lizotte and Rioux

Macal, C., and M. North. 2006. Tutorial on agent-based modeling and simulation part 2: how to model
with agents. In Proceedings of the 2006 Winter Simulation Conference, eds. L. R. Perrone, F. P. Wie-
land, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 73-83. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers, Inc.

Nilsson, N.J. 1980. Principles of artificial intelligence. Palo Alto, California: Tioga Pub. Co.
Rioux, F., F. Bernier, and D. Laurendeau. 2008. Multichronia � a generic parameter, simulation, data, and

visual space exploration framework, Interservice/Industry Training, Simulation & Education Confer-
ence, Orlando, Florida.

Sowa, J., 1984. Conceptual structures: information processing in mind and machine, Addison Wesley,
Reading Mass.

Van Harmelen, F., V. Lifschitz, and B. Porter. 2008. Handbook of knowledge representation, Elsevier.

AUTHOR BIOGRAPHIES

MICHEL LIZOTTE has been working at Defence Research and Development (DRDC) � Valcartier
since 1999. He is currently the Group Leader of the Simulation and Comprehension of Complex Situa-
tions group. Previously, he was an information technology (IT) consultant for almost 11 years including
eight at DMR. During this period, the vast majority of his assignments were carried out for research es-
tablishments such as the National Research Council (NRC). He obtained ����=�����	����Degree in Com-
puter Science (1984) and his Mast����� Degree in Artificial Intelligence (1988) from Université Laval
(Québec). His current interests and recent work encompass approaches to understanding complex situa-
tions and software-intensive system architecture, software and military capability engineering, and soft-
ware and system architecture. His email address is <Michel.Lizotte@drdc-rddc.gc.ca>.

FRANÇOIS RIOUX received a B.Eng. Degree in Electrical Engineering from Laval University in 2003.
He received a M.Eng. Degree from McGill University in 2005. He received his Ph.D. in Electrical Engi-
neering from Laval University in 2009. He now works as a consultant for the LTI Software and Engineer-
ing firm. He performs research in collaboration with Defence R&D Canada � Valcartier on the topics of
interactive simulation and visualization applied at better understanding complex systems. His email ad-
dress is <frioux@ltinfo.ca>.

848

