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ABSTRACT 

No concrete, causal, mechanistic theory is available to explain how different hepatic zonation patterns of 

P450 isozyme levels and hepatotoxicity emerge following dosing with different compounds.  We used the 

synthetic method of modeling and simulation to discover, explore, and experimentally challenge a con-

crete mechanism that shows how and why biomimetic zonation patterns emerge and change within agent-

based analogues.  We hypothesized that those mechanisms have counterparts in rats.  Mobile objects map 

to compounds.  One analogue is comprised of a linear sequence of 20 identical, quasi-autonomous func-

tional units called sinusoidal segments (SSs).  SSs detect and respond to compound-generated response 

signals and the local level of a gradient.  Each SS adapts to new information with the objective of improv-

ing efficiency (lowering costs).  Upon compound exposure, analogues developed a variety of patterns that 

were strikingly similar to those reported in the literature.   

1 INTRODUCTION 

Hepatic zonation is conspicuous periportal (near where blood enters a lobule) to perivenous (near where 

blood exits through central vein) attribute gradients within lobules.  Our interest has been in discovering 

plausible mechanistic explanations for the different types of dynamic, adaptive hepatic zonation pheno-

mena that emerge following dosing with different compounds and xenobiotics (Gebhardt, 1992; Junger-

mann, 1995), especially zonal differences in the metabolic clearance of xenobiotics.  

Here we focus on differential sensitivity to the induction of cytochrome P450 isozymes (Oinonen and 

Lindros, 1998) caused by dosing rats with different xenobiotics.  The P450 (also called CYP) isozymes 

are primarily responsible for the metabolic clearance of xenobiotics.  Zonation phenomena are most often 

ascribed to having a multifactorial basis, in which oxygen gradients and other blood-borne signals may 

play prominent roles (Lindros, 1997; Christoffels et al., 1999; Jungermann and Kietzmann, 2000; Benha-

mouche et al., 2006; Hailfinger et al., 2006; Sekine et al., 2006; Camp and Capitano, 2007; Burke et al., 

2009).  Recent evidence supports the hypothesis that components of the Wnt-β-catenin pathway may play 

an important role.  Braeuning (2009) reviews the role of several pathways including Ras-Raf-MAPK (mi-

togen-activated, protein kinase) and Wnt-β-catenin.  However, no concrete, causal, mechanistic theory 

has yet been offered for how different types of hepatic zonation phenomena emerge following dosing 

with different compounds.  Christoffels et al. (1999) hypothesized that interaction between two or more, 

different signal gradients is necessary to enable development of periportal-to-perivenous (P-to-P) gene 

expression patterns.  Hailfinger et al. (2006) went further and hypothesized that control of dynamic, adap-

tive zonation patterns requires two opposing signals, one corresponding to a stable gradient of one or 

more blood-borne molecules and the other arising from responding cells within the liver, such as collo-

cated endothelial cells.   
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We used the synthetic method of modeling and simulating biological systems (Hunt et al., 2009) to 

construct, explore, and experimentally challenge concrete mechanisms that show how and why biomimet-

ic zonation patterns emerge and change within an agent-based analogue of a hepatic lobule in response to 

compound dosing.  The modeling and simulation (M&S) approach used (Fig. 1A) was developed to ena-

ble construction of concrete biomimetic mechanisms that were strictly defined.  The models were used to 

mimic wet-lab phenomena obtained under conditions that are less supportive of inductive modeling methods 

(Fig. 1B).  The abstract mechanisms and their spatial context were flexible instantiations of mechanistic hy-

potheses.  Their plausibility was tested experimentally.   

Following cycles of model construction, evaluation and selection, and refinement, we arrived at a dis-

crete event, discrete time device, a zonally responsive lobular analogue (ZoRLA), that maps to linear 

segment of hepatic lobule having P-to-P flow and a connection to extrahepatic tissue.  It was comprised of 

20 identical, quasi-autonomous units (agents) called sinusoidal segments (SSs).  Each SS maps to a small 

portion of a sinusoid (Fig. 2).  Each SS detected and used a local gradient signal.  Mobile objects that 

mapped to administered compounds moved through the ZoRLA.  If detected by an SS, there were two 

consequences.  The compound could be cleared, and it could cause a response: release of mobile objects 

that function as potency-dependent response signals.  The gradient and response signals mapped to the 

two signals specified by Hailfinger et al. (2006).  An SS used signal information and a learning algorithm 

to adapt to changing conditions and update its clearance effort, which is the probability of compound 

clearance following detection within a simulation step.   

Upon compound exposure, the ZoRLA developed a variety of periportal-to-perivenous (P-to-P) clear-

ance effort gradients.  Several gradient patterns were strikingly similar to those reported in the literature 

(above citations) for P450 isozymes following xenobiotic dosing (for convenience, examples are provided 

in Supplementary Fig. S10).  Zonal patterns of clearance effort changed depending on compound potency 

and dose.  The in silico mechanism may have counterparts in rats.   

2 METHODS 

To distinguish clearly in silico components and processes from corresponding rat counterparts, we use 

SMALL CAPS when referring to the former.  Parameter names are italicized.  

 

 
 

Figure 1:  Features of the synthetic method of M&S. 

 

 A: Shown are relationships between observations made on rat liver lobules following xenobiotic 

treatments and the ZoRLA in Fig. 2 during treatments with XENOBIOTICS.  Left: the referent systems are 

experimental observations made on rat livers following various xenobiotic treatments.  During experi-

ments, lobular components interact with administered xenobiotics.  Localized mechanistic events cause 
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systemic effects, which are reflected in the recorded data.  Right: Concretizable mappings (1) exist be-

tween ZoRLA components and how they plug together, and lobular physiological and functional detail at 

the level of a sinusoid, as illustrated in Fig. 2.  Execution gives rise to a working analogue; measures of 

events provide results.  Measures of dynamics—patterns of zonation, in this case—provide data that may 

or may not mimic wet-lab counterparts.  Achieving measurable similarities makes mappings 3 quantita-

tive.  B: Sketched are conditions supportive of both the synthetic method of M&S along with the familiar 

inductive method of M&S.  Conditions toward the far right side are common for non-biological, engi-

neered systems.  They favor developing inductive models that are increasingly precise and predictive.  

However, as discussed in (Hunt et al., 2009), absent detailed knowledge of the causes of hepatic zonation, 

we are on the left side, where frequent abduction is needed and synthetic M&S methods can be most use-

ful.   

 

 
 

Figure 2:  Referent and analogue. 

 

 A: An illustration of a cross-section through a hepatic lobule showing sinusoidal flow paths from por-

tal vein tracts to the central vein (CV) and a P-to-P zonation pattern.  B: A Sinusoidal Segment (SS) is a 

quasi-autonomous agent.  As illustrated here, it maps to small portion of a lobule that includes portions of 

the sinusoidal blood flow and space of Disse, along with one or more endothelial cells and hepatocytes.  

C: A ZoRLA is a connected sequence SS.  To reach the CV, a COMPOUND must pass through all SS and 

escape being cleared.  D: An SS can detect and act on mobile objects that enter.  Two object types are 

used: COMPOUND (red) and RESPONSE SIGNALS (R-SIGNALS).  Upon detection (asterisk) a COMPOUND will 

be cleared with probability pi,t (simulation step t).  It may also initiate a response: create one or more mo-

bile R-SIGNALS; the number generated is proportional to potency, kt.  E: The CLEARANCE Management 

Module within each SS uses algorithms as placeholders for more fine-grained intracellular mechanisms.  

The local value of the gradient is g.  If a COMPOUND is undetected, it exits (bypass).  When a COMPOUND 

is CLEARED, there is a cost, kc.  R-SIGNALS that arrive from upstream are detected.  The cost of each detec-

tion event is ka.  The value of Q used by SSi during simulation step t is an estimate of its long-term, dis-

counted cost of continuing to use its current CLEARANCE effort, pt; it is updated as specified each step us-

ing that location’s g value along with Qi,t .  Qi,(t+1) is the value to be used during the next step.  h and α are 

defined in the text.  Q is updated whether or not a COMPOUND and/or R-SIGNAL is detected. 
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2.1 The Attributes Targeted 

The first consideration in any modeling effort is to determine why the models are being created, and iden-

tify situations in which they will be used.  For this project, we sought spatially organized, biomimetic me-

chanisms that could produce phenomena similar to attributes listed in Section 2.2.  Unlisted hepatic phe-

nomena are, for the time being, outside the scope of this project.  However, a requirement was that the 

models and their components be sufficiently flexible so that during a future extension of this project, or 

when other investigators use the models, they could be easily modified to account for an expanding list of 

attributes.  Clear statements about use and targeted attributes facilitate selecting specifications.  Clear spe-

cifications guide model design and development and help one avoid potentially unproductive tangents.  

Each attribute achieved provides a degree of validation. 

To achieve targeted attributes, we followed an iterative construction and refinement protocol similar 

to that detailed most recently in (Hunt et al., 2009) and (Lam and Hunt, 2009).  The objective was to dis-

cover CELL level mechanisms that would make ZoRLA patterns of CLEARANCE effort (defined below) 

following COMPOUND dosing, increasingly biomimetic, while adhering to a strong parsimony guideline.  

The iterative refinement protocol cycles through the following eight steps.  

1) Choose an initial, small subset of attributes to target.   

2) Select a granularity level that will enable comparing measures of simulated and targeted attributes.  We 

selected the level illustrated in Fig. 2.   

3) For each attribute targeted, specify a desired level of phenomenal similarity (e.g., within ± 25% or ex-

hibit the same P-to-P gradient trend).  Approach in stages: begin with relaxed similarity measures.  

4) Posit coarse-grained, discrete mechanisms that may generate analogous phenomena while requiring as 

few components as is reasonable. 

5) Create logic for each component.  Instantiate components and mechanisms.  Update specifications. 

6) Conduct many, simulation experiments.  Measure a variety of phenomena to establish in silico to wet-

lab similarity and lack thereof.   

7) Tune (parameterize) to achieve analogue similarity specified at step 3.  When the effort fails, return to 

step 4.  When successful, return to step 3 and increase the stringency of the similarity measure.   

8) Add one or more new attributes until the current analogue is falsified.  Return to step 2.  Strive to 

achieve the expanded attribute list with as little component reengineering as possible.   

2.2 Targeted Attributes and Specifications 

• A (attribute): Lobules are comprised of cells, which are typically autonomous functional units.  S 

(specification): Each ZoRLA is comprised of autonomous functional units called sinusoidal segments 

(SS) that map to a portion of a sinusoid containing one or more hepatocytes (Fig. 2).   

• A: Hepatocyte function is location dependent.  Cells respond based only on local information.  S: An 

SS does the same.  

• A: Compounds have different potencies and affinities for hepatic functions.  S: A COMPOUND is a 

reactive mobile objects carrying identification information.  It maps to small fractions of a xenobiotic 

dose.  When a COMPOUND generates a response, there is a ZoRLA counterpart to potency.  

• A: A standard measure hepatic removal of a xenobiotic is intrinsic clearance (CLint), the clearance 

rate absent blood flow.  It depends in part on the relative amounts of enzymes and transporters ex-

pressed by each hepatocyte.  S: The ZoRLA counterpart to CLint is CLEARANCE effort.  Each SS can 

change its CLEARANCE effort upon exposure to COMPOUNDS.  

• A: Hepatocytes often exhibit location dependent expression of enzymes and transporters.  S: SSs can 

exhibit location dependent CLEARANCE effort.  

• A: Zonation of metabolic clearance occurs at both the cell and lobule level, implicating cell-cell co-

operation at some level.  It changes adaptively.  S: Individual SSs can improve efficiency by adapting 

their CLEARANCE effort to changing COMPOUND exposures and to actions of other SS.  
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• A: Xenobiotic dosing typically first induces pericentral P450 isozymes.  With increasing dose there is 

increasing induction in the periportal direction.  S: A ZoRLA should be capable of producing patterns 

of CLEARANCE effort that mimic those observed in vivo over variety of experimental conditions.  

• A: Compound dosing can cause zonal patterns of cell damage.  S: It is straightforward to implement a 

ZoRLA counterpart of cell damage.  When implemented it exhibits different zonal patterns.  

2.3 The Synthetic Method of Modeling and Simulation 

The method used is a relatively new experimental approach to discover and challenge plausible, biomi-

metic mechanisms.  To gain insight into plausible generative mechanisms that may be responsible for zo-

nation phenomena when uncertainty is large and detailed data are limited, the method involves building 

extant working mechanisms that exhibit some of those same phenomena, and thus may be biomimetic.  

The approach is based on the scientific principle (Darden, 2002) illustrated in Fig. 1A.  When two sys-

tems, hepatic lobules of laboratory rats and a ZoRLA are composed of interacting components for which 

similarities can be established at some level of abstraction (mappings 1 in Fig. 1A), and the two systems 

exhibit several measurable, phenotypic attributes (mappings 3), for which some degree of similarity ex-

ists, then there may also be similarities in the generative mechanisms responsible for those attributes 

(mappings 2).  We cannot yet build hierarchical mechanisms out of biochemicals.  However, as described 

herein and recently reviewed (An et al., 2009; Fisher and Henzinger, 2007; Grimm et al., 2005; Hunt et 

al., 2009), we can build extant biomimetic mechanisms using object and agent-oriented software tools.  In 

so doing, as Fig. 1 illustrates, we are not following the traditional, inductive approach of modeling the da-

ta.  Nor are we describing mathematically the behaviors of a hypothetical, conceptual mechanism.  Be-

cause the MECHANISMS are intended to be analogous to referent biological mechanisms, we refer to the in 

silico system as an analogue.  To emphasize their concrete, constructive nature, we call them synthetic 

analogues.  The approach provides an important, scientific and experimental means to explore and test in 

silico plausible, biomimetic mechanistic hypotheses, when it would be too difficult, too expensive, infeasi-

ble, or unethical to do so in animals or in vitro.   

2.4 ZoRLA Design Considerations 

In related work, we built liver analogues to challenge mechanistic hypotheses and improve insight into 

plausible micro-mechanistic details of xenobiotic clearance (Hunt et al., 2006; Yan et al., 2008a,b), drug 

interactions (Lam and Hunt, 2009), diseased-caused differences in spatiotemporal micro-mechanisms in-

fluencing hepatic drug disposition (Park et al., 2009), and heterogeneities in intralobular enzyme induc-

tion (Ropella et al., 2008).  At the start of this project, we drew on these methods and their validated com-

ponents to instantiate and experiment on lobular analogues targeting subsets of the above attributes.   

All ZoRLA system components and processes are discrete.  Time advances discretely by simulation 

steps.  Each simulation step, every component updates its state based on changes since the last update op-

portunity.  Each SS is an agent.  SSs can be connected together in different ways.  Within a simulation 

step, SS components interact with mobile COMPOUNDS percolating through a sequence of 20 SS.  The 

process maps to absorbed xenobiotics percolating through sinusoids and interacting (or not) with spaces 

and cells as described in (Park et al., 2009; Yan et al., 2008a).  Most events are stochastic.  During a si-

mulation step, when an event opportunity for a given component occurs, there is a parameter-specified 

probability for each, prespecified outcome.   

A specific ZoRLA instantiates a mechanistic hypothesis (Fisher and Henzinger, 2007; Hunt et al., 

2009): this component arrangement and operating principles will, upon execution, produce phenomena 

similar to targeted attributes.  Execution followed by comparison of results to referent data tests the hypo-

thesis.  The process is directly analogous to constructing and then experimenting on a wet-lab model to 

test hypotheses.  We adhered to a parsimony guideline and strove to keep ZoRLA components as simple 

as feasible, while achieving the targeted attributes.   
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2.5 SS Intrinsic Clearance 

Primary targeted attributes include intralobular changes in compound clearance and levels of P450 iso-

zymes (or their mRNA) responsible for that clearance.  We needed an SS counterpart to intrinsic clear-

ance.  We can see from Fig. 2B that some of the compound entering an SS can exit without entering hepa-

tocytes.  A COMPOUND that is detected by an SS maps to compound entering hepatocytes.  A COMPOUND 

that was undetected bypassed that SS.  We specified a bypass probability (pBypass) for each SS that could 

be adjusted for each COMPOUND.  A COMPOUND maps to a small fraction of the xenobiotic dose used in a 

wet-lab experiment.  A COMPOUND that does not bypass is detected; that maps to compound entering 

cells.  We specified that if detected, the COMPOUND would be cleared with probability p; that maps to the 

intrinsic clearance by hepatocytes within a corresponding sinusoidal segment for the time interval to which a 

simulation step maps.  We define pi,t to be the CLEARANCE effort of SSi (i = 1, 2, …, 20) during simulation 

step t.  Within hepatocytes, an increase in intrinsic clearance typically correlates with an increase in P450 

isozymes.  For this report, we limit attention to those cases.  That increase comes at a cost to the cell.  In SS, 

the cost of a COMPOUND clearance event is kc.  Given the many functions carried out by hepatocytes, we as-

sumed that hepatocytes have an evolution imposed, genetic mandate to avoid unnecessary costs.   

2.6 The Linear ZoRLA System 

The ZoRLA in Fig. 2C is composed of 20 SS embedded within an extrahepatic space.  The system maps 

abstractly to a portion of a hepatic lobule.  SS mechanisms are described below.  An SS has no knowledge 

of any other SS.  There are two types of mobile objects: XENOBIOTICS and RESPONSE SIGNALS (R-

SIGNALS).  A source container (not shown) for each is located just prior to SS1.  Dosing can be delayed.   

Figure 2D and E provide a view of the abstract mechanism within each SS agent.  In a rat lobule, a 

compound entering a sinusoid segment can exit into the next segment without encountering hepatocytes.  

The same is true for an SS: a XENOBIOTIC that enters an SS can exit without being detected by (seen by) 

its CLEARANCE mechanism.  The probability of bypassing an SS is specified by the parameter pBypass.  A 

XENOBIOTIC will be detected with a probability of 1 – pBypass.  Once detected, two events occur.  First, 

the XENOBIOTIC either is or is not CLEARED.  The primary requirement of the abstract SS CLEARANCE 

mechanism is that it be consistent with known hepatocyte details.  The SSi counterpart to intrinsic clear-

ance is the probability pi that a detected XENOBIOTIC will be CLEARED, and that value is under SSi control.  

Because each SS is quasi-autonomous, each can act independently.  Increasing pi can map to induction of 

metabolizing enzymes and/or induction of uptake or efflux (to bile) transporters.   

The second event is generation of a R-SIGNAL.  The R-SIGNAL then exits that SS and enters each sub-

sequent SS; in each it is detected (Fig. 2E).  A fraction (in this study, 90%) of R-SIGNALS that exits the 

ZoRLA is destroyed in the extrahepatic space.  Those not destroyed return to the ZoRLA (maps to factors 

contained in returning portal vein blood) where they can again be detected.  The XENOBIOTIC is a TOXIN if 

potency (kt) ≥ 1.  Potency specifies the number of R-SIGNAL released by each SS that detects the TOXIN.  

For each R-SIGNAL detected, there is a cost, ka (Fig. 2E) 

2.7 Signals and Methods Needed and Used by SS 

Gebhardt argued that two classes of signals are necessary and essential for creating zonation (Gebhardt, 

1992).  We specified that R-SIGNALS be connected to COMPOUND, dose, and potency.  We identified three 

options: 1) a COMPOUND or its METABOLITE is the R-SIGNAL; 2) a COMPOUND or its METABOLITE initiates 

a response within an SS and that response (or an object generated by that response) functions as a R-

SIGNAL that is also detectable subsequently by other SS; and 3) a COMPOUND or its METABOLITE that es-

capes HEPATIC clearance initiates an EXTRAHEPATIC response, and that response (or an object generated 

by that response) is an R-SIGNAL that is SS detectable.  In this work, we focused on option two.  Option 

two may map to a xenobiotic that causes hepatic tissue toxicity.  The algorithm in Fig. 2E can be mod-

ified to give similar CLEARANCE effort changes for the third option, as well.  For simplicity, we specified 

that a blood-born SIGNAL gradient, which is unrelated to xenobiotic, map to something external that is 
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carried to the liver by blood.  It could, for example, map to O2 levels.  Again, for simplicity, we specified 

that its input rate be constant, and we specified that a fixed linear P-to-P SIGNAL gradient exists, decreas-

ing with increasing i, and that the value gi at each SSi is constant for the duration of the simulation expe-

riment.  

2.8 Enabling SS to Adapt CLEARANCE Effort in Response to Dosing with Different COMPOUNDS 

Christoffels et al. (1999) and others have posited that zonation is linked to the adaptive ability of the liver 

and hepatocytes specifically.  The SS in Fig. 2E are very simple agents.  Each SS has three actions: detect 

gradient SIGNALS, detect R-SIGNALS, and clear COMPOUNDS.  We conjectured that if a cost were asso-

ciated with each action, then when given a simple learning algorithm, an SS could use it to avoid increas-

ing costs, and that would result in location dependent CLEARANCE effort.  Consequently, a mandate of 

each SS was to alter CLEARANCE effort to avoid rising costs.  We specified that the cost of clearing one 

COMPOUND is kc.  We conjectured that if a xenobiotic disrupts hepatocyte function or causes hepatocyte 

damage, the consequences of such an event could cause hepatocytes to alter their behaviors, and so doing 

would come at a cost to the hepatocytes.  Generating and detecting R-SIGNALS maps to those events.  We 

specified that the cost of detecting one R-SIGNAL is ka.  Increasing p increases costs.  Costs are lowest 

when an SS chooses p = 0.  However, for the case where kt ≥ 1 and p = 0, TOXINS could be detected by 

each SS causing release of many R-SIGNALS and that would be costly to each SS.  With a direct relation 

between TOXIN potency and the number of R-SIGNALS produced and detected, it is clear that P-to-P pat-

terns of CLEARANCE effort would change as COMPOUND dose and potency were changed.  We explored 

those changes.  Based on recent observations about simulated hepatocyte learning (Sheikh-Bahaei et al., 

2009), we anticipated that, given a simple learning mechanism (an algorithm in this case), an SS at the 

end of simulation step t – 1 could find a new pt that would be expected to lower costs during subsequent 

simulation steps.   

The SS mechanism in Fig. 2E provides the above capabilities and is simple enough so that there may 

be one or more yet to be identified hepatocyte counterparts.  The figure shows an SS with a quasi-

autonomous subsystem, the CLEARANCE Management Module.  It maps to all hepatocyte resources and 

subsystems associated with xenobiotic clearance.  The CLEARANCE Management Module has one 

mandate: adjust p up or down or keep it the same to lower future costs.  A function in form of a 

Boltzmann distribution is provided that adjusts pi,t .   

 

pi,t = 1/(1 + exp[(gi – Qi,t)/h]) (1) 

 

Qi,t is based on the well-known Q-learning algorithm (Watkins and Dayan, 1992).  The value of Q used 

by SSi during simulation step t is an estimate of its long-term, discounted cost of continuing to use its cur-

rent CLEARANCE effort, pt.  At the start of each simulation step, pt is calculated using the Qt  value carried-

forward from the previous (t – 1) step (Eq. 1).  At the end of the current step, Qi,t is updated using Eq. 2.  

Qt+1 is then carried forward for use in the next step.  h is a constant that modulates the g – Q difference.  

When h is very large, pi,t is constant at 0.5 independent of Q and g.  When h is very small, pi,t essentially 

takes one of two location dependent values.   

 

Qi,t+1 = (1– α)Qi,t – α(ka + kc) (2)  

 

α is a constant in [0, 1] that controls the CLEARANCE Management Module’s learning rate.  When a 

COMPOUND has been cleared, there is a cost to that SS: kc = 1, else kc = 0.  When an R-SIGNAL is detected, 

there is also a cost to that SS: ka = 1, else ka = 0.  The term (ka + kc) represents the cost to each SS for the 

actions taken during a simulation step.  At the end of each step, each SS updated its Q value.  As stated 

above, gi is the value of the P-to-P SIGNAL gradient used by SSi; for agent i in this study, gi = γ(21– i)/20.   
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3 RESULTS 

3.1 Three Factors were Important in Determining Zonation Patterns During ZoRLA 

Experiments 

The first factor was potency.  Operation of the Fig. 2E learning mechanism led to biomimetic patterns of 

functional zonation when used by 20 SSs connected in series (Fig. 2C).  The R-SIGNAL generation and de-

tection mechanism was as illustrated in Fig. 2D. When the duration of repetitive exposure to the same 

COMPOUND was long enough, the patterns produced always stabilized.  The four sets of results in Fig. 3 

used the same parameterization, but the three COMPOUNDS had different potencies (kt  values).  Prior to 

dosing, each SS’s Q value was initialized to zero.  There are two measures of zonation.  One is the value 

of pAVG (it maps to intrinsic clearance), which is the probability that an SS will clear a COMPOUND if it is 

detected, averaged over the past Navg simulation steps; for these studies, we used Navg = 100.  The second 

is COMPOUND Elimination Count; it is the number of COMPOUNDS CLEARED by an SS.  COMPOUND Eli-

mination Count maps to hepatocyte exposure.  When kt = 0 (and pBypass is large—0.99 in Fig. 3), only 

perivenous SSs expended CLEARANCE effort.  As kt increased, pAVG increased in the periportal direction.  

Note that when potency changed, each SS’s Q value also changed, and that caused its pAVG and 

COMPOUND Elimination Count to change.  We can reasonably infer that hepatocyte exposure is directly 

correlated with total amount of compound cleared by that hepatocyte.  Consequently, if the COMPOUND is 

HEPATOTOXIC, then we can expect measures of HEPATOTOXICITY to correlate with COMPOUND Elimina-

tion Count.  For the experiments in Fig. 3, the change in COMPOUND Elimination Count with increasing 

dose followed a trend similar to that for pAVG. 

The second factor was pBypass.  Having pBypass = 0.99 can map to compound that is highly bound 

to one or more blood components or to a compound with a small partition coefficient.  For the results in 

Fig. 4, we decreased pBypass to 0.9, while keeping all other ZoRLA parameter values unchanged.  The 

pAVG pattern as kt increased was similar to that in Fig. 3.  However, unlike the trend in Fig. 3, the peak 

COMPOUND Elimination Count moved toward the periportal region with increasing potency.   

The third factor was dose.  Figure 5 shows consequences of simulated dose changes for the 

COMPOUND in Figure 3 having kt = 1.  Increased simulated dose produced changes in pAVG and COMPOUND 

Elimination Count that exhibit trends similar those in Fig. 3 where potency increased: a large dose of a 

low potency COMPOUND produced results similar to those from a small dose of a high potency compound, 

a result that is biomimetic.   

 

 Shown in Figure 3 are zonation patterns across 20 SSs following constant input (2,000 simulation 

steps) of each of four COMPOUNDS having different potencies.  Each SS used the learning-enabled, clear-

ance mechanism in Fig. 2E.  Left: the average CLEARANCE efforts, pAVG (blue bars), as well as 

COMPOUND Elimination Count (red bars) for each SS are shown.  pAVG is the probability that an SS will 

clear a COMPOUND if it is detected, averaged over the past Navg = 100 simulation steps.  COMPOUND Eli-

mination Count is the number of COMPOUNDS cleared by SSi.  Toxicity, including cell damage, is ex-

pected to correlate directly with that value.  Right: corresponding g (gradient value at each SS) and Q 

values are also shown for each potency.  Nagents: number of SS; Nstep: maximum number of simulation 

steps; pr-bypass: probability that a R-SIGNAL bypasses an SS (= 0 in these studies); pr-remove: probability that a 

R-SIGNAL object is removed by an encountered SS (= 0 in these studies); kt : number of R-SIGNAL objects 

generated by each SS upon TOXIN detection; tox_speed_ratio: the ratio R-SIGNAL/TOXIN speed; 

a_recycle_fract: fraction of R-SIGNALS that first exit and then reenter a ZoRLA in a subsequent step.   
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Figure 3: Examples of ZoRLA generated patterns. 

 

 Shown in Figure 4 are zonation patterns across 20 SSs following constant input (2,000 simulation 

steps) of each of four COMPOUNDS having different potencies.  The experiment is the same as that in Fig. 

3, except that pBypass was decreased from 0.99 to 0.9.  So doing caused peak COMPOUND Elimination 

Count values to shift from perivenous to periportal as potency increases.   
 

 
 

Figure 4: Examples of ZoRLA generated patterns. 
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4 DISCUSSION 

4.1 Plausible Mappings of SS Mechanisms to Hepatic Counterparts 

When designing a synthetic analogue, there is a strong inclination to insert counterparts to specific biolog-

ical features, such as including a component that maps directly to the factors within signaling pathways, 

simply because current evidence indicates that the component plays some role in generating the targeted 

phenomena.  Doing so prematurely is a mistake when we are not yet confident of the component’s puta-

tive role in causing the phenomena.  So doing forces establishing groundings to other components at a 

specific level of granularity that may or may not be warranted for the attributes targeted coupled with the 

current levels of knowledge, ignorance, and uncertainty.  The components in Figs. 2 are more abstract and 

coarse-grained than signaling pathways.  They were made only as complicated and specific as needed to 

achieve the patterns and attributes targeted.  They can be made more fine-grained and specific iteratively, 

as the set of attributes targeted expands.  Once a degree of validation has been achieved for coarse-

grained components, their behaviors during simulation can be used for cross-model validation during re-

finement to more fine-grained (greater mechanistic detail) counterparts.   

 

 
 

Figure 5: Examples of ZoRLA generated patterns. 

 

 The ZoRLA is the same as specified in Fig. 3.  Shown are zonation patterns across 20 SSs following 

constant input of different simulated doses of the COMPOUND in Fig. 3 having potency, kt = 1.  So doing 

caused COMPOUND Elimination Count values to increase in the periportal direction as dose increased. 

4.2 Inverse Maps from Phenomena to Generators 

The exploration of an inverse map from phenomena (patterns of zonation) to generators requires one to 

hypothesize and then build generators that may cause indistinguishable phenomena.  The question posed 

is this: given phenomena such as intralobular zonation, what plausible generators might cause their emer-
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gence over time?  However, a generator–phenomenon map is not one-to-one.  Many generator composi-

tions (mechanisms) can produce phenomena, which when measured are indistinguishable.  Nevertheless, 

the first step is to find and validate one, which is what we have done here.  So doing opens the door to 

discovering others.  When we find a hypothetical generator in the form of an extant biomimetic mechan-

ism, we do not yet have new biological knowledge, but we do have a concrete instance of a strictly de-

fined, plausible and observable mechanism within a system suitable for experimentation, as called for by 

Christoffels et al. (1999), whereas before we only had unchallenged concepts.  In the absence of other 

concrete, competing theories, that system and its mechanism can stand as a plausible explanation of the 

phenomena’s cause until falsified by evidence.  A systematic, scientific study of any inverse map (phe-

nomenon-to-generator) can only be done with concretizable hypotheses, either biological or in silico.  It 

cannot be done with hypotheses that remain conceptual (Hunt et al., 2009).   

As this M&S method matures, we anticipate that the preferred approach will be to identify several 

somewhat different yet still plausible generator models and refine them in parallel against an expanding 

set of targeted attributes.  We can expect that modest, selective expansions in the set of targeted attributes 

will eliminate some generator concepts but allow others to advance following refinement.   

4.3 Objective Achieved 

In Methods, we specified that R-SIGNALS are COMPOUND dependent, and listed three mechanistic options: 

1) a COMPOUND or its METABOLITE functions as a R-SIGNAL; 2) a COMPOUND or its METABOLITE initiates 

a response within an SS and that response (or an object generated by that response) functions as a R-

SIGNAL that is also detectable subsequently by other SS; and 3) a COMPOUND or its METABOLITE that es-

capes clearance initiates an EXTRAHEPATIC response, and that response (or an object generated by that re-

sponse) is an R-SIGNAL that is SS detectable.  Exploration of the third option is needed.  Exploratory si-

mulations (not presented) showed that zonation does occur when using COMPOUNDS as R-SIGNALS for 

single-pass dosing experiments.  However, further exploration demonstrated that the first option could not 

achieve the attribute targeting adaptability because the R-SIGNALS generated stay within each SS and so 

cannot influence other SSs.  It seems likely that there are several mechanisms by which zonation of hepat-

ic cellular properties could occur.  The approach used herein can be extended to discover and investigate 

those options.   

Based on the evidence presented, we suggest that hepatic counterparts to the abstract ZoRLA me-

chanism, along with the zonation patterns produced, exist in rats when treated with some xenobiotics.  

The implication of these ZoRLA experiments is that hepatocytes do learn from experience and can coope-

rate to remove xenobiotics, including some that produce significant response or toxicity.   

The results also demonstrate a new scientific method to experimentally explore and challenge mecha-

nistic hypotheses about the causal nature of toxicologic and pharmacologic phenomena.   
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