
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

DIVIDE AND CONQUER: A FOUR-FOLD DOCKING EXPERIENCE OF AGENT-BASED MODELS

S. M. Niaz Arifin

Gregory J. Davis

Steve Kurtz

James E. Gentile

Ying Zhou

Gregory R. Madey

Department of Computer Science & Engineering

University of Notre Dame

384 Fitzpatrick Hall

Notre Dame, IN 46556, USA

ABSTRACT

Verification and validation (V&V) techniques are used in agent-based modeling (ABM) to determine whether the

model is an accurate representation of the real system. Docking is a form of V&V that tries to align multiple

simulation models. In a previous paper, we described the docking process of an ABM that simulates the life cycle

of Anopheles gambiae. Results showed that the implementations were docked for adult but not for aquatic mosquito

populations. In this paper, following the ‘Divide and Conquer’ paradigm, we compartmentalize the simulation world

to prohibit the propagation of errors between compartments. Using four separate implementations that sprung from

the same core model, we describe a series of docking experiments, analyze the results, and show how they lead to

a successful dock. The complete four-fold docking encompasses verification between the four implementations, as

well as validation against the core model with respect to these implementations.

1 INTRODUCTION

Verification and validation (V&V) techniques are used in agent-based modeling (ABM) to determine whether the

model is an accurate representation of the real system. The primary goal of verification is to compare multiple

models with each other in order to ensure that the implementations are correct. Validation ensures that the model

is semantically right, and it is indeed modeling the phenomena of the real system being simulated. Docking, also

known as alignment or replication, is a form of V&V that tries to align multiple models in order to investigate

whether they yield similar results. Docking is useful to confirm whether the claimed results of a given simulation

are reliable, and can be reproduced by someone starting from scratch.

1.1 Background

In a previous paper (Arifin, Davis, Zhou, and Madey 2010), we described the verification and validation (V&V)

process of an agent-based model (ABM) that simulates the life cycle of Anopheles gambiae. Anopheles gambiae is

regarded as the primary vector for transmission of Malaria, which is one of the top three pathogen-specific causes of

global mortality. Following a fixed version of the core (conceptual) malaria entomology model, we developed two

agent-based implementations using Java and C++, the former having different versions which were developed in

different phases. Both implementation simulated the life cycle of Anopheles gambiae by tracking attributes relevant

to the vector population dynamics for each individual mosquito. We described the verification performed between

the implementations, and the validation performed against the core model with respect to these implementations. We

also described how the major findings helped to clarify concepts and eliminate ambiguities by identifying differences

in model specification, interpretation, implementation and enhancement phases, and revealing semantic errors. The

importance of rigorous docking was illustrated by the discovery of some incorrect assumptions and programming

575978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

errors, which, being unnoticed, led to erroneous results. However, as evident from the results of (Arifin, Davis,

Zhou, and Madey 2010), the two implementations were not completely ‘docked’, especially in terms of the aquatic
mosquito populations. The reason for this is explained below.

In a complex ABM, synergies arising from seemingly insignificant differences in separate implementations

may lead to significant mismatch in overall model output. Hence, it is crucial, and sometimes necessary, to

‘compartmentalize’ the artificial simulation world, i.e. to separate it into isolated compartments so that errors in

one specific compartment are not propagated and thus cannot influence the discovery (and correction) of errors in

other compartments.

In this paper, we compartmentalize the mosquito world with respect to the adult and aquatic populations, and

perform some experiments to identify and fix the sources of output mismatches in order to achieve a complete

‘dock’. Following the ‘Divide and Conquer’ paradigm, we ensure that the pieces are working as intended, and

then combine them to perform some other, more complex experiments. Using four separate implementations that

sprung from the simplified core malaria entomology model, we describe the design of these experiments, analyze

their results, and show how they lead to a successful dock between all four implementations, and hence achieve a

complete four-fold docking of the core model.

This paper particularly addresses the following issues:

• How the results from four agent-based implementations compare to each other and to the corresponding

results from theoretical models

• How to verify the age-structure of mosquito populations and the age-specific mortality rates (for both adults

and aquatic populations)

• How to verify the oviposition mechanism and the calculation of one-day old equivalent larval population
Ne at each step of the simulation (see Section 3.5.3), by removing all randomness (e.g. with fixed number

of eggs to lay, single aquatic habitat, etc.)

The complete four-fold docking encompasses verification between the four implementations, as well as validation
against the core model with respect to these implementations. The major findings, as described in Tables 2, 3, and

4, help to clarify model concepts and eliminate ambiguities.

This paper also serves as a case-study to illustrate the importance of docking complex simulations, since even

the best simulation programs may imply dubious assumptions, leading to erroneous results. Rigorous docking can

detect such problems, uncovering these incorrect assumptions (Will 2009). The four-fold docking process serves the

dual purpose of increasing confidence to the core model and revealing conceptual errors in model implementations.

1.2 Paper Organization

The organization of this paper is as follows: Section 2 discusses some previous works involving docking. Section

3 discusses one fixed version of the core malaria model and its two slightly different variations used in this paper.

Section 4 briefly describes the four separate implementations and the V&V workflow. Section 5 discusses the design

of docking experiments, which are performed in three phases. For each phase, we analyze the results and identify

issues to be updated for experiments in subsequent phases. We also show how the results lead to a successful dock

between all four implementations, and include two additional experiments. Finally, section 6 concludes.

2 LITERATURE REVIEW

In this section, we re-emphasize two recent works that show the importance of rigorous docking for agent-based

models. Edmonds and Hales (Edmonds and Hales 2003) replicated a published model involving co-operation

between self-interested agents in two independent implementations to align the results and the conceptual design.

The replication revealed a host of minor bugs and ill-defined implementation issues that otherwise appeared unnoticed.

They concluded that aligning models can be very difficult, but very revealing, because simply implementing simulations

with respect to a conceptual model and then analyzing outputs for consistency with the conceptual model and data

series is insufficient to ensure the correctness of an implementation.

Will and Hegselmann (Will and Hegselmann 2008) showed the importance of replication by reporting a failure

to replicate the results presented on a published model. Obtaining the source code from the original authors, Will

(Will 2009) found that the simulation unintentionally implemented an assumption that was never mentioned in the

576

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

original model, and showed that the model crucially depended on that dubious assumption, and its removal leaded

to dramatically different results.

This paper serves as a case study of docking multiple ABMs. It shows how to achieve a complete dock

between multiple implementations, all of which are built on a sufficiently complex core model. It also highlights the

importance of docking by showing that a successful dock may reveal conceptual and/or programming errors, and

may eliminate dubious assumptions, reinforcing the findings in (Carley 2002), (Edmonds and Hales 2003), (Rand

and Wilensky 2006), (Will 2009), and (Will and Hegselmann 2008).

3 THE AGENT-BASED MODELS

In this section, we briefly describe the fixed version of the simplified core (conceptual) malaria entomology model,

and the four different implementations.

3.1 The simplified core models

The core model is primarily governed by the biology underlying Anopheles gambiae. However, for the purpose

of docking, some simplifying assumptions have been made, which may deviate from biological plausibility. For

different experiments performed in this paper (see Section 5), we use two slightly different versions of the core

model. The major difference, as shown in Figure 1, is whether to use a single vs. multiple aquatic habitats.

Emerging Adults

New Eggs

Aquatic
Habitat

Pupa

Egg

Larva

Aquatic States

F
em

al
e

Gravid

Bloodmeal
Digesting

Bloodmeal
Seeking

Immature
Adult

Adult States

N
o

E
gg

s
R

em
ai

ni
ng

Emerging Adults

New Eggs

Aquatic
Habitat

1

Pupa

Egg

Larva

Aquatic States

F
em

al
e

Gravid

Bloodmeal
Digesting

Bloodmeal
Seeking

Immature
Adult

Adult States

N
o

E
gg

s
R

em
ai

ni
ng

Aquatic
Habitat

2

Pupa

Egg

Larva
Aquatic
Habitat

3

Pupa

Egg

Larva

Figure 1: The simplified Core Model 1 (on left) and the simplified Core Model 2 (on right). Core Model 1 has a

single aquatic habitat and is used in experiments E1, E2 and E3. Core Model 2, designed for experiments E4 and

E5, has three aquatic habitats.

The state durations for mosquito agents are defined in Table 1. One important, though biologically unnatural,

assumption is illustrated in the state duration for the Gravid state: the duration (in days) that the female mosquito

is forced to remain as Gravid equals the number of oviposition attempts taken to successfully lay all her remaining

eggs.

3.2 The Agents

Anopheles gambiae mosquitoes are the only mosquito agents in the model. Like all other mosquito species,

anophelines go through four major states in their life cycle: egg, larva, pupa, and adult (see Figure 1). The first

three states are collectively termed as ‘aquatic’. The adult state of the female mosquito is when the female is able

to be a vector of the malaria parasite. Being autonomous agents, mosquitoes begin their life as eggs (except the

initial adults created at the start of the simulation) and progress through various life cycle states.

577

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

Table 1: State durations for the mosquito agents. States marked with * apply only to female mosquito agents.

State Duration (in Days)
Egg 1

Larva Temperature-dependent; see Equation (1).

Pupa 1

Immature Adult 2

Bloodmeal Seeking* 1

Bloodmeal Digesting* 2

Gravid* Stay until all eggs are laid; then stay 1, 2 or 3 days depending on the

number of attempts taken that day.

3.2.1 Aquatic Mosquitoes

Eggs and pupae transition out of their current state after a 24-hour period. The growth and development of larvae,

however, is much slower and depends on daily temperature. Following the stochastic thermodynamic models of

Sharpe and DeMichele (Sharpe and DeMichele 1977) and Schoolfield et al. (Schoolfield, Sharpe, and Magnuson

1981), we use the equation

Devday = (Tempday ∗0.000305−0.003285)∗24 (1)

where Devday is the larval development rate and Tempday is the average temperature (in ◦C) of that day. The

threshold for the Larva → Pupa transition is deterministically set to 1.0 removing any randomness (see Section

5.1). Each day, each larva approaches its threshold by developing at a rate characterized by equation (1).

3.2.2 Adult Mosquitoes

For this paper, only female mosquitoes are considered, and all male mosquitoes are omitted. This allows an unbiased,

uniform selection of agents from separate age-groups when the mosquito agents die out. The females feed on

bloodmeals, lay eggs, and go back to feed on bloodmeals again. This is repeated until a female dies. Once a female

enters the Gravid state, it remains there until all of her eggs are laid, which are then instantiated as new agents into

the system. The states are described below.

In Immature Adult, a female mosquito emerges as an immature adult after its aquatic development is complete.

This is the starting state of the ABM where new mosquitoes are initially placed into the system and also when

pupae turn into adults. In Bloodmeal Seeking, the female seeks and finds a bloodmeal. In Bloodmeal Digesting,

the female rests while the blood is digested and eggs are developed. In Gravid, the eggs are developed, and the

female is ready to lay them. The maximum number of eggs a female may oviposit, Eggsmax, is deterministically set

to 80, removing any randomness. All eggs are set to be females. Once a female enters the Gravid state, it remains

there until all of her eggs have been laid, and then transitions back to the Bloodmeal Seeking state.

3.3 The Environment

The environment provides an artificial realm in which agents operate. Variables such as temperature and humidity

factors, defined within the environment, govern how the mosquito agents develop. The aquatic states of An. gambiae
require an aquatic habitat environment to develop, and are often found in transient, sunlit and small pools. These

aquatic habitats control the development of aquatic mosquitoes and the oviposition rate for female adults, as described

below. The carrying capacity of an aquatic habitat represents the repulsive force sensed by a Gravid female and

limits the number of eggs she may oviposit in that habitat. Though not treated as a hard limit, this is an indication

to the female that the habitat is full, and it may be more beneficial to lay eggs elsewhere.

578

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

Verification

Internal
Verification

Validation

Java1

Java2

CPP1

CPP2

Core
Model

Start of Day

End of Day

Kill adult mosquitoes

Kill aquatic mosquitoes

Update adult mosquitoes
(age, state duration & state transition)

Update aquatic mosquitoes
(age, state duration & state transition)

Collect, save & print output data

Figure 2: The daily processing order of the simulation (on left) and the V&V workflow (on right). In the workflow,

bidirectional arrows indicate Verification relationships between the four implementations. The dashed arrow, between

the re-factored implementations Java2 and CPP2, indicates Internal Verification, since these two are docked with

respect to each other. Unidirectional, dashed arrows indicate Validation relationships between the Core Model and

the four implementations.

3.4 Age-specific Mortality Rates

In any ABM, the mortality of agents plays a crucial role in shaping the model’s characteristics. Traditionally,

ABMs that model malaria transmission assume age-independent vector mortality (i.e. non-senescence of the vector).

However, as shown by recent studies (Styer, Carey, Wang, and Scott 2007), this leads to misleading predictions,

and obscures age-dependent aspects of mosquito biology. This led us to use the concept of Age-Specific Mortality

Rates (ASMRs) for the adults and larvae states. For these states, ASMR refers to the total number of deaths per

day of a given age. We use a modified version of the Gompertz function, making the age-dependent component

increase exponentially with age.

3.5 Population Dynamics

Mosquito populations are dynamic in nature. The population dynamics is governed by three key operations performed

at each simulation day: killing adult mosquitoes, killing aquatic mosquitoes, and creating new mosquitoes.

3.5.1 Daily Processing Order

The present model discretizes time such that every agent is updated during a time step representing a single day

(24-hour period). The major daily processing steps, modified and hence different from (Arifin, Davis, Zhou, and

Madey 2010), are shown in Figure 2 (left).

3.5.2 Killing Adult Mosquitoes

As noted in Section 3.4, adult mosquitoes have a daily age-specific mortality rate. Newly emergent adults begin

with a daily mortality rate of α . As the mosquito ages, the age-specific mortality rate ASMRAge(adult) for that age

group changes based on the following equation:

ASMRAge(adult) =
α ∗ e

Age
β

1+α ∗ s∗β (e
Age
β −1)

(2)

579

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

where α is set to the baseline daily mortality rate, β and s are constants defining the rate of increase and asymptote,

respectively. The number of adults with a given age that are removed from the system, ToKillAge(adult), is then

computed by:

ToKillAge(adult) = ASMRAge(adult) ∗AdultsAge (3)

3.5.3 Killing Aquatic Mosquitoes

Aquatic mosquitoes (in the egg, larva, and pupa states) have different mortality rates. Both eggs and pupae have a

constant mortality rate of 10%. Larval mortality rates, however, are dependent on both the age and the notion of

one-day old equivalent larval population, Ne. Within a given aquatic habitat, Ne is computed by:

Ne =
MaxAge

∑
Age=0

Age∗LarvaeAge (4)

where MaxAge is the age of the oldest larvae group in the system. Ne is then used to calculate the age specific

mortality rate for larvae using the following equation:

ASMRAge(larvae) = α ∗ e
Ne

Age∗C∗R (5)

where C is the carrying capacity of the aquatic habitat (see Section 3.3) and R is the rainfall coefficient (for now,

we assume a rainfall coefficient of 1.0). The number of larvae with a given age that are removed from the system,

ToKillAge(larvae), is then computed by:

ToKillAge(larvae) = ASMRAge(larvae) ∗LarveAge (6)

The Biomass of the aquatic habitat is defined as:

Biomass = Eggshabitat +Ne +Pupaehabitat (7)

where Eggshabitat and Pupaehabitat are the number of eggs and pupae, respectively, in the selected habitat.

3.5.4 Creating New Mosquitoes

Beyond the initial creation of adult mosquitoes, new mosquitoes are created when females in the Gravid state visit

an aquatic habitat and oviposit. Each day, Gravid females make a maximum of three attempts to lay the entirety

of eggs. However, the potential number of eggs, Eggspotential , that a female can actually lay in a given habitat is

limited by the Biomass already present in the habitat:

Eggspotential = Eggsmax ∗
(

1− Biomass
i∗C

)
(8)

where Eggsmax is the maximum number of eggs available to lay (see Section 3.2.2), Ne is the one-day old equivalent

larval population of the habitat (see Section 3.5.3), i is the oviposition attempt number (i.e. 1, 2, or 3), and C is the

carrying capacity of the habitat. If Eggspotential > Eggsmax, then all available eggs are laid and the female transitions

back to the Bloodmeal Seeking state. Otherwise, Eggsmax is reduced by Eggspotential and another oviposition attempt

occurs. If Eggsmax �= 0 after three attempts, the female stays another day in the Gravid state, attempting to lay the

remaining eggs.

4 Model Implementations

In this section, we briefly describe the four different implementations. Figure 2 (right) shows the V&V workflow,

illustrating logical connections between the implementations and the core model.

580

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

CPP1, described in detail in (Zhou, Arifin, Gentile, Kurtz, Davis, and Wendelberger 2010), is the earliest

implementation of the core model. It is developed in the C++ programming language utilizing the GNU Scientific

Library (GSL) (Galassi, Davies, Theiler, Gough, Jungman, Booth, and Rossi 2003). This implementation is written

to be portable, compiling and running on any platform for which an ANSI compliant C++ compiler is available. A

major drawback of this implementation is the lack of built-in visualization tools.

The first Java implementation, Java1, is built over three phases using Java. It provides some key advantages such

as built-in graphical visualization tools that allow the agents to be readily inspected (which aids in the debugging

process), high efficiency and less error-prone code. For details about Java1, see (Arifin, Davis, Zhou, and Madey

2010).

The re-factored implementations, CPP2 and Java2, reflect a unified architecture, and encode a mosquito’s life

cycle and behavior in a structure called a strategy. The strategy is flexible and can adapt to characterize new genus,

species or variation within one species. The architecture is well-suited for parallelization across many cores or

computers. For details, see (Gentile, Davis, Laurent, and Kurtz 2010). For the purpose of docking, CPP2 and Java2
are verified with respect to each other (internal verification), and a single output is compared with those of CPP1
and Java1.

5 EXPERIMENTS AND RESULTS

In this section, we describe the docking experiments and their results. For brevity, experiments are labeled as E1,

E2, and so on. We also describe the rationale behind designing these experiments from the docking point of view.

5.1 Model Assumptions

Experiments described in this paper make the following assumptions:

• All randomness are removed from the simulation in E1, E2, E3 and E4. This allows direct model-to-model

docking, and to compare the results against those of theoretical models.

• Carrying capacity of the aquatic habitat is reduced to 3000 (in E1, E2 and E3), and to 3000, 4000, 5000

(in E4 and E5; see Section 5.5).

• The Mate Seeking state is omitted altogether for simplicity.

• The oviposition mechanism has been simplified.

• All males are omitted from all experiments to allow uniform killing of agents from separate age-groups.

In E1 and E2, following the ‘Divide and Conquer’ paradigm, we compartmentalize the core model with respect

to the adult and aquatic populations. E3 combines the adult and aquatic populations.

5.2 Experiment 1 (E1): Isolating Adult Mosquito Populations

E1 deals with the adult mosquito populations by isolating it from the aquatic mosquito populations. We use 2, 2

and 0 days as the state durations for Immature Adult, Bloodmeal Seeking and Bloodmeal Digesting, respectively.

The female stays in the Gravid state until all eggs are laid, and transitions back to Bloodmeal Seeking the following

day (see Figure 1). Starting with 100 female adults, E1 ensures that the age-structure and age-specific mortality

rates (for the adult states) match to the theoretical values. It also verifies the simplified oviposition mechanism.

5.3 Experiment 2 (E2): Isolating Aquatic Mosquito Populations

E2 deals with the aquatic mosquito populations by isolating it from the adult mosquito populations. Starting with

1000 female eggs that initially reside in the single aquatic habitat (with 3000 carrying capacity), it ensures that the

age-structure of all aquatic states, the age-specific mortality rates of larvae, and the base mortality rates of eggs and

pupae populations match to the theoretical values. It also verifies the temperature-dependent larval development

rate (see Equation (1)).

581

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

5.4 Experiment 3 (E3): Combining Adult and Aquatic Mosquito Populations (Single Aquatic Habitat)

E3 combines the adult and aquatic mosquito populations. Starting with 100 female adults and 1000 female eggs

(initially residing in the single aquatic habitat with 3000 carrying capacity), it verifies the transitions from aquatic to

adult (i.e. from Pupa state to Immature Adult state) population. It also checks the oviposition mechanism, including

actual number of eggs laid in the aquatic habitat, and the state durations (see Table 1).

E3 is performed in three separate phases as described below. After each phase, we compare the four-fold

outputs, analyze and fix potential misinterpretations, and proceed to the next phase.

5.4.1 Phase 1

Figures 3 and 4 show the results of Phase 1. Table 2 discusses the issues discovered after analyzing these results.

��

����

����

����

����

����

	���

�
�

�
�

	
�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

	
	
�

	

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�

	
�

�

�������	
����

�����

������

����������

��

�����

�����

	����

�����

������

������

������

�	����

�
�

�
�

�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

	
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�

������������	��������������

����

������

����������

Figure 3: Four-fold docking results for E1, E2 and E3 (Phase 1). The graph on left shows the total number of

(female) adults, and the graph on right shows the total number of agents (adults and aquatic). The x-axis denotes

simulation days, and the y-axis denotes mosquito abundance.

��

�����

������

������

������

������

�� �� �� ��� ��� �	� �
� ��� ��� ��� ��� ��� ��� ��� ��� �	� �
� ��� ��� ��� 	�� 	�� 	�� ��� ��� �	� �
� ��� ��� ���
��
��
������

	�������

����

������

����������

��

�����

�����

	����

�����

������

������

������

�	����

������

������

�� �� �� ��� ��� �	� �
� ��� ��� ��� ��� ��� ��� ��� ��� �	� �
� ��� ��� ��� 	�� 	�� 	�� ��� ��� �	� �
� ��� ��� ���
��
��
������

���	��������������	
����������������
���	�

����

������

����������

Figure 4: Four-fold docking results for E1, E2 and E3 (Phase 1). The graph on left shows the One-day Old
Equivalent Larval Population, Ne (see Section 3.5.3). The graph on right shows the total biomass in the aquatic

habitat. The x-axis denotes simulation days, and the y-axis denotes mosquito abundance.

5.4.2 Phase 2

Figures 5 and 6 show the results of Phase 2 after the issues found in Phase 1 are addressed. Table 3 discusses the

issues discovered after analyzing these results.

582

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

Table 2: List of issues discovered and updated in Phase 1

Issue Resolution
In CPP1 and Java1, the adult populations are slightly

less in number than those in Java2 and CPP2. Also, the

aquatic populations in CPP1 and Java1 are killed at a

higher rate than suggested by the theoretical numbers.

Resolved after all implementations use the same carrying

capacities for the aquatic habitat.

CPP1 and Java1 have Gravid mosquitoes lay all of their

eggs on the first oviposition attempt. This creates an

egg-laying pattern where bursts of eggs are laid on the

same day, followed by a few days when no eggs are

laid, then another burst, and so on. In Java2 and CPP2,

however, the eggs are laid over a period of successive

days.

This issue suggests a difference in oviposition code. It

is partially resolved after all implementations ensure to

use the same formulas for calculating how many eggs a

female can lay in different oviposition attempts.

On the first oviposition attempt when eggs are laid, Java1
and CPP1 lay eggs one day sooner than Java2 and CPP2.

CPP1 and Java1 lay eggs at the end of the Bloodmeal
Digesting state, rather than waiting until the first day of

being Gravid. They are updated to ensure that eggs are

only laid while in the Gravid state.

In Java1, after all female mosquitoes lay all their (80)

eggs in the Gravid state, they do not transition back to

the Bloodmeal Seeking state on the same day.

Java1 updates to ensure that the females transition back

to the Bloodmeal Seeking state from the Gravid state on

the same day once all eggs are laid.

��

����

����

����

����

����

	���

�
�

�
�

�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

	
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�

�������	
����

����

������

����������

��

�����

�����

	����

�����

������

������

�
�

�
�

�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

	
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�

������������	�������
������

����

������

����������

Figure 5: Four-fold docking results for E3 (Phase 2). The graph on left shows the total number of (female) adults,

and the graph on right shows the total number of agents (adults and aquatic). The x-axis denotes simulation days,

and the y-axis denotes mosquito abundance.

5.4.3 Phase 3

After the issues found in Phase 2 are addressed, we analyze the results again and discover a single issue (see Table

4). Once it is addressed, the results produce a complete four-fold dock, as shown in Figure 7.

5.5 Additional Results

We also perform two more experiments (E4 and E5) that deal with multiple aquatic habitats and introduce some

randomness into the simulation. E4 combines the adult and aquatic populations in three aquatic habitats with carrying

capacities 3000, 4000, 5000, respectively. For egg-laying, Gravid female mosquitoes deterministically select aquatic

habitats. E5 operates with similar settings except that the selection of aquatic habitats are made at random.

Results from E4 and E5 confirm to those of E3, and are omitted for brevity.

583

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

��

�����

�����

	����

�����

������

������

������

�
�

�
�

�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

	
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�

�
	����������������	
����������������
���	�

����

������

����������

��

�����

�����

	����

�����

������

������

������

�	����

�
�

�
�

�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

	
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�

��������

����

������

����������

Figure 6: Four-fold docking results for E3 (Phase 2). The graph on left shows the One-day Old Equivalent Larval
Population, Ne (see Section 3.5.3). The graph on right shows the total biomass in the aquatic habitat. The x-axis

denotes simulation days, and the y-axis denotes mosquito abundance.

Table 3: List of issues discovered and updated in Phase 2

Issue Resolution
CPP1 and Java1 enable the female mosquitoes to lay

all (80) of their eggs on the first oviposition attempt

at the beginning part of the simulation (on day 5 and

6). However, as suggested by Equation 8, laying all the

eggs in a single oviposition attempt is possible only if

the aquatic habitat is empty.

CPP1 and Java1 find that the egg-laying is indeed com-

plete after three attempts, and performs a simple adjust-

ment in the delay before the female mosquitoes can leave

the Gravid state.

CPP2 and Java2 place an upper bound of 80% on the

larval mortality rate.

CPP1 and Java1 ensure the same.

In the calculations of Equation 8, CPP2 and Java2 use

Eggsremaining (the number of eggs remaining to lay),

instead of Eggsmax.

CPP2 and Java2 ensure to use Eggsmax.

In Java1, Gravid females incorrectly lay all (80) eggs,

and the biomass of the aquatic habitat does not affect

the number of eggs actually laid.

In the calculation of Eggslaid (the number of eggs allowed

to lay), some double values are coerced to integer values,

making the expression evaluating to 0 in these instances.

This, in turn, affects the related variables (Eggspotential ,

Eggslaid , and Eggsremaining). Java1 updates this by using

explicit typecasting to double values.

6 CONCLUSION

This paper serves as a case study of docking for ABMs. It shows how to achieve a complete four-fold dock between

multiple implementations, all of which are built from a sufficiently complex core model. Following the ‘Divide

and Conquer’ paradigm, we compartmentalize the agent-world with respect to the adult and aquatic populations.

Isolating the agent-world into compartments allows designing specific experiments that suit for each compartment.

We describe the design of these experiments and analyze their results. We show how the discovered issues help

to clarify model concepts and eliminate ambiguities from different implementations. As indicated by the results,

removal of these potential sources of output mismatches leads to a complete dock of the ABMs.

The complete four-fold docking encompasses verification between the four implementations, as well as validation
against the core model with respect to these implementations. It produces incremental agreement in model outputs

and serves the dual purpose of increasing confidence to the core model and revealing conceptual errors in model

implementations.

584

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

Table 4: The single issue discovered and updated in Phase 3

Issue Resolution
After 14 simulation days, CPP1 and Java1 kill a different

number of adult mosquitoes, suggesting a rounding error.

Java1 uses an extra ‘a’ in the adult age-specific mortality

rate function (Equation 2), and omits it to match the

correct equation.

��

�����

�����

	����

�����

������

������

�
�

�
�

�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

	
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�

������������	�������
������

����

������

����������

��

�����

�����

	����

�����

������

������

������

�	����

�
�

�
�

�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

	
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�

��������

����

������

����������

Figure 7: Four-fold docking results for E3 (Phase 3). The graph on left shows the total number of agents (adults

and aquatic). The graph on right shows the total biomass in the aquatic habitat. The x-axis denotes simulation

days, and the y-axis denotes mosquito abundance. The complete overlap between the four implementations’ results

indicates a complete four-fold dock.

ACKNOWLEDGMENTS

We would like to thank Frank H. Collins, George and Winifred Clark Chair of Biological Sciences at the University

of Notre Dame, for his continuous support and expert domain knowledge of Anopheles gambiae and malaria.

REFERENCES

Arifin, S. M. N., G. J. Davis, Y. Zhou, and G. R. Madey. 2010, July. Verification & Validation by Docking: A Case

Study of Agent-Based Models of Anopheles gambiae. In SCSC2010: Proceedings of the Summer Computer
Simulation Conference. Ottawa, ON, Canada.

Carley, K. M. 2002. Computational Organizational Science and Organizational Engineering. Simulation Modelling
Practice and Theory 10 (5-7): 253 – 269.

Edmonds, B., and D. Hales. 2003. Replication, Replication and Replication: Some Hard Lessons from Model

Alignment. Journal of Artificial Societies and Social Simulation 6:4.

Galassi, M., J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi. 2003, February. Gnu Scientific
Library: Reference Manual. Network Theory Ltd.

Gentile, J. E., G. J. Davis, B. S. Laurent, and S. Kurtz. 2010, July. A Framework for Modeling Mosquito Vectors.

In SCSC2010: Proceedings of the Summer Computer Simulation Conference. Ottawa, ON, Canada.

Rand, W., and U. Wilensky. 2006. Verification and Validation through Replication: A Case Study Using Axelrod

and Hammond’s Ethnocentrism Model. North American Association for Computational Social and Organization
Sciences (NAACSOS).

Schoolfield, R. M., P. J. H. Sharpe, and C. E. Magnuson. 1981. Non-linear regression of biological temperature-

dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology 88 (4): 719–731.

Sharpe, P. J. H., and D. W. DeMichele. 1977. Reaction kinetics of poikilotherm development. Journal of Theoretical
Biology 64 (4): 649 – 670.

Styer, L. M., J. R. Carey, J.-L. Wang, and T. W. Scott. 2007. Mosquitoes Do Senesce: Departure From The Paradigm

Of Constant Mortality. Am J Trop Med Hyg 76 (1): 111–117.

Will, O. 2009. Resolving a Replication That failed: News on the Macy & Sato Model. Journal of Artificial Societies
and Social Simulation 12:4.

585

Arifin, Davis, Kurtz, Gentile, Zhou and Madey

Will, O., and R. Hegselmann. 2008. A Replication That Failed: On the Computational Model in ‘Michael W. Macy

and Yoshimichi Sato: Trust, Cooperation and Market Formation in the U.S. and Japan. Proceedings of the

National Academy of Sciences, May 2002’. Journal of Artificial Societies and Social Simulation 11 (3): 3.

Zhou, Y., S. M. N. Arifin, J. Gentile, S. J. Kurtz, G. J. Davis, and B. A. Wendelberger. 2010, July. An Agent-based

Model of the Anopheles gambiae Mosquito Life Cycle. In SCSC2010: Proceedings of the Summer Computer
Simulation Conference. Ottawa, ON, Canada.

AUTHOR BIOGRAPHIES

S. M. NIAZ ARIFIN received his B.S. from Bangladesh University of Engineering and Technology (BUET) in

2004 and his M. S. from the University of Texas at Dallas in 2006. He is currently working as a Ph. D. student at the

University of Notre Dame. His research interests include agent-based simulations, mathematical modeling in biology

and data mining. His M.S. research focus was on artificial intelligence and natural language processing. He served

as a software developer in the stereotactic breast cancer treatment project at Xcision Medical Systems, California and

the Rails online database project at Sabre Holdings Corporation, Texas. His email address is <sarifin@nd.edu>.

GREGORY J. DAVIS is a graduate student at the University of Notre Dame pursuing a joint Ph. D. within

the Psychology and Computer Science & Engineering departments. Before returning to academia as a student, he

developed web-based data collection and reporting software for the Department of Epidemiology & Biostatistics at the

University of Texas Health Science Center in San Antonio, developed statistical models of cancer risk and treatment

benefits, and developed device drivers for mobile hardware platforms. His research interests in psychology involve

understanding and modeling the mechanisms of human visual attention. His research interestes in computer science

& engineering are in the area of agent-based modeling and simulation applied to biological populations, including

simulating disease vectors. Additionally, his interests include developing simulation tools for non-programmers, web-

based data collection and reporting, and mobile application development. His email address is<gdavis2@nd.edu>.

STEVEN KURTZ is a graduate student at the University of Notre Dame. He received his B. S. in Computer

Engineering from the University of Notre Dame. His primary research interest is in computer architectures for

emerging nanotechnologies. His email address is <skurtz@nd.edu>.

JAMES E. GENTILE is a graduate student at the University of Notre Dame. His research interests include

agent-based modeling, global health and system analysis. His email address is <jegentile@gmail.com>.

YING ZHOU received the master’s degree in Computer Science at Beijing University of Technology, Beijing,

China, in 2004. After graduation, she worked as a software engineer in the State Information Center in china from

2004-2005. Now, Ying is a third-year Ph. D. student in the Computer Science and Engineering Department at

University of Notre Dame. She is working on the project of Malaria Transmission Consortium, which is funded

by the Bill & Melinda Gates Foundation. Ying’s research efforts span agent-based modeling of the Anopheles

mosquito life cycle, malaria epidemiology simulation and PDA-based Malaria Indicator Survey development. Her

email address is <yzhou3@nd.edu>.

GREGORY R. MADEY received the Ph. D. and M. S. degrees in operations research from Case Western Reserve

University and the M. S. and B. S. degrees in mathematics from Cleveland State University. He worked in industry for

several firms, including Goodyear Aerospace, Gould Oceans Systems (now part of Northrup-Grumman), and Loral

(now part of Lockheed Martin). He is currently faculty in the Department of Computer Science and Engineering

at the University of Notre Dame. His research includes topics in agent-based modeling and simulation, emergency

management modeling and simulation, web-services and service oriented architectures, bioinformatics, web portals

for scientific collaboration, open source software, and cyberinfrastructure. He has published in various journals

including, Communications of the ACM, IEEE Transactions on Engineering Management, IEEE Computing in

Science & Engineering, The Journal of Systems & Software, BMC Bioinformatics, Computational & Mathematical

Organization Theory, Nucleic Acids Research, Decision Sciences, The European Journal of OR, Omega, Expert

Systems with Applications, and Expert Systems. He is a member of the ACM, AIS, IEEE Computer Society,

Informs, and the Society for Computer Simulation. His email address is <gmadey@nd.edu>.

586

