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ABSTRACT

Output analysis methods that provide reliable point and confidence-interval estimators for system performance
characteristics are critical elements of any modern simulation project. Remarkable advances in simulation
output analysis have been achieved over the last thirty years, in part owing to the application of data-reuse
techniques designed to improve estimator accuracy and efficiency. Many of the key insights regarding data
reuse are given in the seminal 1984 Winter Simulation Conference paper by Meketon and Schmeiser that is
titled “Overlapping Batch Means: Something for Nothing?” and that introduced the method of overlapping
batch means (OBM). We trace the development of OBM from the original work of Meketon and Schmeiser,
and we discuss some recent extensions of the method.

1 INTRODUCTION

Stochastic simulations, such as those arising in queueing and manufacturing applications, typically generate
output processes that have both deterministic and stochastic components exhibiting highly anomalous
behavior. In such cases, successive simulation-generated observations are rarely independent, identically
distributed, or normal, thus making the use of classical statistical analysis methods questionable. A
number of output analysis technologies have been developed in the literature that attempt to mitigate these
difficulties. In terms of output analysis for steady-state simulation, Conway, Johnson, and Maxwell (1959)
and Conway (1963) are the first papers to address the problem via the method of nonoverlapping batch
means (NBM). Schmeiser (1982) makes a major contribution to the theory of NBM, as discussed by
Nelson (2011) elsewhere in this Proceedings. Other important output analysis methods along the way have
included regenerative analysis (Crane and Iglehart 1975, Crane and Lemoine 1977), standardized time
series (STS) (Schruben 1983), spectral-based methods (Fishman and Kiviat 1967), and overlapping batch
means (OBM) (Meketon and Schmeiser 1984), the latter of which motivates this paper.

The archetypal steady-state simulation output analysis problem is that of estimating the mean µ of a
discrete-time process {Y1,Y2, . . .}, where, for example, Yi could denote the waiting time of the ith customer
in a stationary queueing system. The obvious estimator for µ is of course the sample mean, Y n≡ n−1

∑
n
i=1Yi,

which is based on a sample of n consecutive observations. In keeping with proper statistical analysis, one
often provides a corresponding measure of the sample mean’s precision by calculating an estimator for
σ2

n ≡ nVar(Y n) or for what is known as the variance parameter, σ2 ≡ limn→∞ σ2
n . These quantities are of
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direct interest in and of themselves, and they are useful in constructing confidence intervals (CIs) for µ . In
fact, the objective of a major line of research in simulation output analysis has for years been to develop
improved estimators for σ2 with, for example, lower variance, lower bias, and lower mean squared error
(MSE).

Assuming that the simulation has been warmed up adequately so that it is indeed in steady-state
operation, we will henceforth regard the observed time series {Yi : i = 1,2, . . . ,n} as a realization of a
stationary process. We are motivated to perform a single run whose length n is sufficiently large to
ensure acceptable precision in the estimation of both µ and σ2. In particular, a single long run is typically
preferable to multiple independent replications with a proportionately smaller common run length, primarily
because of the difficulty and inefficiency of dealing with a potential warm-up period within each replication
(Alexopoulos and Goldsman 2004).

The NBM, OBM, and STS methods are usually carried out as single-run strategies. A common
technique shared by these single-run methodologies is obviously that of batching the observations —
instead of considering the entire simulation time series {Yi : i = 1,2, . . . ,n} in one fell swoop (that is,
performing the relevant analysis using all the observations in the data set at the same time), we break up this
data set into smaller subseries (batches) that are composed of consecutive observations; these batches may
be disjoint or overlapping, depending on the analysis method. We then perform the appropriate analysis on
each batch separately. For instance, when applying the NBM method, as discussed in Section 2, we split
the observations into adjacent nonoverlapping batches; then we assume that the resulting sample (batch)
means computed from each batch are approximately independent and identically distributed (i.i.d.) normal
random variables; and finally we apply “standard” variance-estimation techniques to the batch means. In
the STS method, batched estimators also use adjacent nonoverlapping batches. The idea is to compute a
separate STS estimator from each batch, assume the resulting STS estimators are i.i.d., and then average
those estimators.

As explained in Section 3, the OBM method works with overlapping batches, under the full realization
that the associated overlapping batch means are not independent, but they are identically distributed and
asymptotically normal with increasing batch size. We then compute an estimator of σ2 based on the sample
variance of the overlapping batch means. This seemingly problematic technique exploits key results from
the theory of spectral analysis to yield an estimator of the variance parameter σ2 that is provably superior
to the NBM variance estimator, at least asymptotically for certain types of serially correlated simulation
output processes. This is the key insight of Meketon and Schmeiser (1984).

Section 4 discusses variance estimators based on STS applied to overlapping batches, which is a natural
extension of the OBM method. In addition to formulating the first two moments of the overlapping STS
variance estimators, we give approximations to the asymptotic distribution of these variance estimators as
the batch size increases; and we exploit these approximations to construct asymptotically valid CIs for both
µ and σ2. For more details on the results presented in this paper, see Aktaran-Kalaycı et al. (2009) and
Alexopoulos et al. (2007a, 2007b). The slides for the oral presentation of this article are available online
via www.ise.ncsu.edu/jwilson/files/wsc11obm.pdf [accessed October 25, 2011].

2 NONOVERLAPPING ESTIMATORS

In this section, we will work with b contiguous, nonoverlapping batches of observations, each of length
(batch size) m, from the simulation-generated time series {Yj : j = 1,2, . . . ,n} of length n, where we assume
that n = bm. In particular, the observations {Y(i−1)m+k : k = 1,2, . . . ,m} constitute the ith nonoverlapping
batch for i = 1,2, . . . ,b. For the remainder of this article, we take b≡ n/m so that b always represents the
ratio of the sample size to the batch size; and when we work with nonoverlapping batches, b also equals
the number of batches.
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2.1 Nonoverlapping Batch Means Estimator

The quantities Y i,m ≡m−1
∑

m
k=1Y(i−1)m+k, i = 1,2, . . . ,b, are the nonoverlapping batch means, and are often

assumed to be i.i.d. normal random variables, at least for large enough values of the batch size m. The
i.i.d. normality assumption suggests that for fixed b we consider the NBM estimator for σ2,

N (b,m) ≡ m
b−1

b

∑
i=1

(Y i,m−Y n)
2 ⇒

σ2χ2
b−1

b−1
,

where χ2
ν denotes a chi-squared random variable with ν degrees of freedom; and the symbol ⇒ denotes

convergence in distribution as the batch size m→∞ (Glynn and Whitt 1991, Steiger and Wilson 2001). The
statistic N (b,m) is one of the most popular estimators for σ2, and it serves as a benchmark for comparison
with the other estimators discussed in this article. Under mild conditions, Chien, Goldsman, and Melamed
(1997), Goldsman and Meketon (1986), and Song and Schmeiser (1995) show that the expected value of
the NBM estimator converges to σ2 moderately quickly,

E[N (b,m)] = σ2 +
γ(b+1)

bm
+O(1/m2), (1)

where we use standard “big-Oh” notation to denote a term that goes to zero quickly, and the parameter
γ ≡−2∑

∞
k=1 kCov[Y1,Y1+k] is determined by the correlation structure of the underlying stationary stochastic

process. Thus, we see that the bias of N (b,m) as an estimator of σ2 is approximately γ(b+1)/(bm). As
for the NBM estimator’s variance, Glynn and Whitt (1991) (among others) find that, for fixed b,

lim
m→∞

(b−1)Var[N (b,m)] = 2σ
4.

The question that now arises is: Can we find other estimators for σ2 that have better bias or variance
properties than those of N (b,m)? The answer is in the affirmative. We now discuss alternative standardized
time series estimators based on nonoverlapping batches; and in the following two sections, we finally present
overlapping versions of these estimators.

2.2 Nonoverlapping Standardized Time Series Estimators

The standardized time series based on nonoverlapping batch i of size m is (Schruben 1983)

Ti,m(t) ≡
bmtc(Y i,m−Y i,bmtc)

σ
√

m
for t ∈ [0,1],

where b·c denotes the floor function and Y i, j ≡ j−1
∑

j
k=1Y(i−1)m+k denotes the jth cumulative sample mean

from batch i for i = 1,2, . . . ,b and j = 1,2, . . . ,m. Under a mild functional central limit theorem assumption,
described, e.g., in Alexopoulos et al. (2007b), it can be shown that[

T1,m(·), . . . ,Tb,m(·)
]
⇒
[
B0(·), . . . ,Bb−1(·)

]
,

where B0(·), . . . ,Bb−1(·) are independent standard Brownian bridge processes on [0,1]. In particular, we
define

Bs(t) ≡ t[W (s+1)−W (s)]− [W (s+ t)−W (s)] for t ∈ [0,1] and s ∈ [0,b−1],

where W (·) is itself a standard Brownian motion process.
We let Ai( f ;m) denote the area estimator computed exclusively from nonoverlapping batch i, and we

let Ai( f ) denote the associated limiting functional as the batch size m→ ∞ so that we have

Ai( f ;m) ≡

[
1
m

m

∑
k=1

f (k/m)σTi,m(k/m)

]2

and Ai( f ) ≡
[∫ 1

0
f (t)σBi−1(t)dt

]2

,
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Table 1: Approximate asymptotic bias and variance for different estimators.

Nonoverlapping
Estimators

(m/γ)Bias
(
b
/

σ4)Var Overlapping
Estimators

(m/γ)Bias
(
b
/

σ4)Var

N (b,m) 1 2 O(b,m) 1 1.333

A ( f ;b,m) Eq. (3) 2 A O( f ;b,m) Eq. (7) Eq. (8)
A ( f0;b,m) 3 2 A O( f0;b,m) 3 0.686
A ( f2;b,m) o(1) 2 A O( f2;b,m) o(1) 0.819

A ( fcos, j;b,m) o(1) 2 A O( fcos, j;b,m) o(1) (8π2 j2 +15)/(12π2 j2)
A O( fcos,1;b,m) o(1) 0.793

respectively, for i = 1,2, . . . ,b, where the weight function f (·) satisfies the conditions

E[Ai( f )] = σ2 and d2

dt2 f (t) is continuous at every t ∈ [0,1]. (2)

Clearly, Ai( f ;m) is the weighted area under the STS of that batch; and it is easily shown in the cited
references that A1( f ), . . . ,Ab( f ) are i.i.d. σ2χ2

1 random variables.
Equation (2) immediately suggests the batched area estimator for σ2, which is simply the average of

these estimators taken over all the nonoverlapping batches,

A ( f ;b,m) ≡ 1
b

b

∑
i=1

Ai( f ;m) ,

which, owing to the independence of A1( f ), . . . ,Ab( f ), converges to a σ2χ2
b

/
b random variable as m→∞.

Further, Goldsman, Meketon, and Schruben (1990) show that

E[A ( f ;b,m)] = σ2 +
[(F−F)2 +F2

]γ

2m
+O(1/m2), (3)

where

F(s)≡
∫ s

0
f (t)dt for s ∈ [0,1], F ≡ F(1), F(u)≡

∫ u

0
F(s)ds for u ∈ [0,1], and F ≡ F(1).

Further, under mild conditions, we have

lim
m→∞

bVar[A ( f ;b,m)] = 2σ
4.

Example 1 Schruben (1983) studied the area estimator with constant weight function f0(t)≡
√

12 for all
t ∈ [0,1]; in this case, Equation (3) implies that E[A ( f0;b,m)] =σ2+3γ/m+O(1/m2). If we choose a weight
function for which F = F = 0, then the resulting estimator is first-order unbiased for σ2; i.e., A ( f ;b,m)
has bias of the form O(1/m2). An example of such a weight function is f2(t) ≡

√
840
(
3t2− 3t + 1/2

)
(Goldsman, Meketon, and Schruben 1990). Other weight functions that yield first-order unbiased estimators
for σ2 are given by the family { fcos, j(t) ≡

√
8π j cos(2π jt) : j = 1,2, . . .}. Foley and Goldsman (1999)

show that this sequence of weights produces area estimators {A ( fcos, j;b,m) : j = 1,2, . . .} that are not only
first-order unbiased, but also asymptotically i.i.d. σ2χ2

b/b. For comparison purposes, see the nonoverlapping
results on the left-hand side of Table 1, which summarizes bias and variance properties for many of the
estimators studied herein.

Remark 1 Goldsman, Kang, and Seila (1999) study estimators for σ2 based on nonoverlapping Cramér–von
Mises (CvM) functionals of standardized time series. It turns out that it is possible to construct first-order
unbiased CvM estimators having lower variance than typical nonoverlapping area estimators. Yet for ease
of exposition, we simply refer the reader to the cited references for more details.
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3 OVERLAPPING BATCH MEANS ESTIMATOR — SOMETHING FOR NOTHING

Given the output of a single run of a steady-state simulation, one might seek to reuse that data set effectively
so as to calculate an improved estimator of σ2. This is the fundamental insight of Meketon and Schmeiser
(1984), an article that has garnered 191 citations in Google Scholar as of July 9, 2011. Among all the articles
published in the Proceedings of the Winter Simulation Conference since 1968, Meketon and Schmeiser
(1984) was one of ten articles to be recognized in 2007 with WSC’s Fortieth Anniversary Landmark Paper
Award.

To elaborate the fundamental insight of Meketon and Schmeiser (1984), we now consider the use of
estimators based on overlapping batches. Here we form n−m+1 overlapping batches, each of size m, from
the time series {Yj : j = 1,2, . . . ,n}. In particular, the observations {Yi+k : k = 0, . . . ,m−1} constitute the ith
overlapping batch for i = 1, . . . ,n−m+1. Recall that we continue to use b≡ n/m as before. We define the
ith overlapping batch mean as Y O

i,m ≡ m−1
∑

m−1
k=0 Yi+k, for i = 1,2, . . . ,n−m+1; clearly, these overlapping

batch means are strongly correlated, in contrast to the asymptotically independent nonoverlapping batch
means. In any case, the OBM estimator for σ2, originally studied by Meketon and Schmeiser (1984) (with
a slightly different scaling constant), is

O(b,m) ≡ nm
(n−m+1)(n−m)

n−m+1

∑
i=1

(Y O
i,m−Y n)

2.

Under mild conditions, it can be shown that

E[O(b,m)] = σ2 +
γ(b2 +1)
mb(b−1)

+O(1/m2), (4)

which is a close match with the corresponding NBM result given by Equation (1). For simple derivations
of (4), see Alexopoulos et al. (2007b), Goldsman and Meketon (1986), and Song and Schmeiser (1995).
As for the OBM estimator’s variance, Meketon and Schmeiser (1984) found that for sufficiently large batch
size m and sample-to-batch-size ratio b,

Var[O(b,m)]

Var[N (b,m)]
≈ 2/3. (5)

In other words, the OBM estimator has about the same bias as, but only 2/3 the variance of, the NBM
estimator! Equation (5) is perhaps the key result of Meketon and Schmeiser (1984), and it is of course
the driving force for several follow-up papers in the literature. For instance, Damerdji (1995) derives the
sharp result

lim
m→∞

Var[O(b,m)] =
(4b3−11b2 +4b+6)σ4

3(b−1)4 ∼ 4σ4

3b
as b→ ∞.

Using Equations (4) and (5), one can show that for a sufficiently large sample size n, the batch size
that minimizes the mean squared error MSE[O(b,m)]≡ Bias2[O(b,m)]+Var[O(b,m)] is given by

m∗ =
(

3γ2n
2σ4

)1/3

. (6)

Song (1996) developed methods for estimating the ratio γ2/σ4 for a variety of processes, including moving
average processes and autoregressive processes. Then one can obtain an estimator for m∗ by plugging
the estimator of γ2/σ4 into Equation (6). Sherman (1995) proposed a method that does not rely on the
estimation of γ2/σ4.

A second major feature of Meketon and Schmeiser (1984) is that this is one of the very first articles to
account carefully for the computational requirements of estimators for the steady-state variance parameter
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σ2. After all, a procedure that requires O(n2) calculations to deliver an estimate of σ2 is useless in
any typical large-sample application. The good news is that the Meketon and Schmeiser (1984) provide
an efficient algorithm to calculate the OBM estimator, essentially in O(n) effort. To recapitulate: OBM
produces estimators with reasonable bias, yet significantly smaller variance than NBM, while taking about
the same computational effort; and numerous subsequent analytical and Monte Carlo studies have borne
out OBM’s efficacy. Thus, OBM literally gives us something for nothing — a pithy description of OBM’s
main advantages!

Since Meketon and Schmeiser (1984) appeared, there has been significant progress in the study of
overlapping estimators. Welch (1987) relates OBM to certain spectral estimators and looks into the effects
of partial overlapping. Goldsman and Meketon (1986) and Song and Schmeiser (1993, 1995) derive bias
and variance properties of OBM estimators, among others. Song and Schmeiser (1993) also give additional
insight by plotting the coefficients of the estimators’ quadratic-form representations; included in their
presentation are the OBM estimators as well as overlapped versions of the STS area estimators, which we
shall describe next. Pedrosa and Schmeiser (1993, 1994) establish covariance properties between OBM
estimators and then propose a batch-size determination algorithm. In a terrific series of papers, Damerdji
(1991, 1994, 1995) establishes consistency results (both in the strong and mean-square senses) for a variety
of variance estimators, including OBM and an overlapping version of a certain STS estimator. In the spirit
of Welch (1987), Damerdji also establishes a formal linkage between the spectral method and simulation
analysis methods based on overlapping batches.

4 OTHER OVERLAPPING ESTIMATORS — SOMETHING MORE FOR NOTHING

The discussion in Section 3 raises an interesting question: what happens if we apply the technique of
overlapping batches to other estimators, say STS estimators? The results are surprisingly good — as
in the case of OBM, the STS estimators computed from overlapping batches possess the same bias as,
but asymptotically substantially smaller variance than, their counterparts computed from nonoverlapping
batches; and as a bonus, certain overlapping STS variance estimators outperform the original OBM estimator.

4.1 Moments of Overlapping STS Area Estimators

In parallel to our discussion in Section 2.2, we define the STS from overlapping batch i as

T O
i,m(t) ≡

bmtc(Y O
i,m−Y O

i,bmtc)

σ
√

m
for t ∈ [0,1] and i = 1,2, . . . ,n−m+1,

where

Y O
i, j ≡

1
j

j−1

∑
k=0

Yi+k, for i = 1,2, . . . ,n−m+1 and j = 1,2, . . . ,m.

Again under the mild functional central limit theorem assumption as described in Alexopoulos et al. (2007b),
we have

T O
bsmc,m(·) ⇒ Bs(·) for fixed s ∈ [0,b−1].

We define the area estimator computed exclusively from overlapping batch i by

AO
i ( f ;m) ≡

[
1
m

m

∑
k=1

f (k/m)σT O
i,m(k/m)

]2

for i = 1,2, . . . ,n−m+1.

The overlapping area estimator for σ2 is then given by the average of the area estimators taken over all
of the overlapping batches,

A O( f ;b,m) ≡ 1
n−m+1

n−m+1

∑
i=1

AO
i ( f ;m).
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One can then show that as m→ ∞,

A O( f ;b,m) ⇒ A O( f ;b) ≡ 1
b−1

∫ b−1

0

[
σ

∫ 1

0
f (u)Bs(u)du

]2

ds,

along with the obvious result

E[A O( f ;b,m)] = σ2 +
[(F−F)2 +F2

]γ

2m
+O(1/m2), (7)

which follows in light of Equation (3) and the fact that, for fixed batch size m and weight function f (·),
the area estimators from all of the batches have the same expected value.

So far so good — the expected values of the nonoverlapping and overlapping versions of the area
estimator match up. The discussion finally gets interesting when we consider the variance of the overlapping
area estimator. First of all, Alexopoulos et al. (2007b) show that, under mild conditions,

Var[A O( f ;b,m)] → Var[A O( f ;b)], as m→ ∞.

But how do we calculate this asymptotic variance? In terms of the functions F(·) and F(·) defined in the
unnumbered display immediately below Equation (3), we formulate the auxiliary function

p(y) ≡ F(1)
[
F(y)−F(1− y)−F(1)y

]
+
∫ 1−y

0
F(u)F(y+u)du for y ∈ [0,1].

The first-order unbiased weight functions f2(·) and fcos, j(·) satisfy the condition F(1) = 0, making the
calculation of p(y) for those weights particularly easy. In any case, for any weight f (·) satisfying (2), and
fixed b≥ 2, a corvée (i.e., an awful lot) of algebra yields

Var[A O( f ;b)] =
4σ4

(b−1)2

∫ 1

0
(b−1− y)p2(y)dy. (8)

Contrary to our findings in Section 2.2, where we did not use overlapping batches, some examples
show that the variance of the overlapping area estimator does depend on the choice of weight function.
In particular, as revealed in Table 1, the variances of the overlapping versions of the area estimator are
significantly lower than the corresponding nonoverlapping versions — and are even a great deal lower
than the variance of the OBM estimator — at least for those weight functions studied here. Although not
addressed in the current paper, the same type of improvement is also achieved with the overlapped versions
of the CvM estimators for σ2. After noting that Alexopoulos et al. (2007a) present an O(n) algorithm to
calculate these overlapping estimators, we see that we have achieved something more for nothing.

4.2 Density Estimation for Overlapping Variance Estimators

One can apply the technique of Satterthwaite (1941), as detailed in Alexopoulos et al. (2007b), to obtain
an approximation to the distribution of V O(b,m), a “generic” overlapping variance estimator, using the
following approach:

V O(b,m) ·∼ E[V O(b,m)]χ2
νeff

/
νeff , where νeff =

[[
2E2[V O(b,m)]

Var[V O(b,m)]

]]
, (9)

the symbol ·∼ means “is approximately distributed as,” and [[z]] denotes rounding of the real number z
towards the nearest integer. The quantity νeff is called the “effective” degrees of freedom for the overlapping
variance estimator V O(b,m).
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Figure 1 (taken from Alexopoulos et al. 2007b) illustrates the accuracy of the approximation (9) when
the particular STS variance estimators A O( f0;20,1000) and A O( f2;20,1000) are applied to a stationary
first-order autoregressive (AR(1)) process with autoregressive parameter φ = 0.9, steady-state mean µ = 0,
and variance parameter σ2 = 19. We generated 1,000,000 i.i.d. sample paths of this test process, and each
sample path contained n = 20,000 observations organized into overlapping batches of size m = 1,000 so
that b = 20. Two estimates of the probability density function (p.d.f.) of A O( f0;20,1000) are plotted
in the left-hand panel of Figure 1: (i) the dashed red line shows the fitted p.d.f. based on Equation
(9), which yielded a scaled chi-squared distribution with νeff = 53 degrees of freedom; and (ii) the solid
blue line shows the associated frequency polygon based on our random sample of size 1,000,000 from the
distribution of A O( f0;20,1000). The right-hand panel of Figure 1 shows the corresponding approximations
to the distribution of A O( f2;20,1000); and for this estimator, Equation (9) yielded a scaled chi-squared
distribution with νeff = 47 degrees of freedom. In all our experimental work, we have obtained excellent
approximations to the distributions of overlapping variance estimators based on Equation (9).
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Figure 1: Fitted and empirical p.d.f.’s for two STS variance estimators computed from an AR(1) process
with autoregressive parameter φ = 0.9, steady-state mean µ = 0, and variance parameter σ2 = 19.

4.3 Confidence-Interval Estimation for µ and σ2

Equation (9) can also be used to obtain approximate CIs for σ2 and µ , provided that the batch size m is
sufficiently large. Based on the generic overlapping variance estimator V O(b,m), we have the following
approximate 100(1−α)% two-sided CI for the variance parameter σ2:

νeff V O(b,m)

χ2
νeff ,1−α/2

≤ σ2 ≤ νeff V O(b,m)

χ2
νeff,α/2

; (10)

and the corresponding approximate 100(1−α)% two-sided CI for the steady-state mean µ is

Xn− t
νeff ,1−α/2

√
V O(b,m)/n≤ µ ≤ Xn + t

νeff ,1−α/2

√
V O(b,m)/n . (11)

Here χ2
ν ,β denotes the β -quantile of the chi-squared distribution with ν degrees of freedom, and tν ,β denotes

the β -quantile of Student’s t-distribution with ν degrees of freedom for β ∈ (0,1).
Using the same data from the AR(1) test process that was used to produce Figure 1, we evaluated the

empirical coverage probabilities for nominal 90% CIs of the form (10) and (11) based on the overlapping
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variance estimators A O( f0;20,1000) and A O( f2;20,1000). Table 2 summarizes the results. Because the
estimated coverage for each type of CI is based on 1,000,000 independent CIs of that type, the standard
error of each estimated coverage is approximately 0.0003; and thus each entry in the table is reported to
three significant figures.

Table 2: Performance of two nominal 90% STS CIs for µ and σ2 for an AR(1) process with φ = 0.9.

CI Eqn. Empirical Coverage of CIs Based on
Parameter Number A O( f0;20,1000) A O( f2;20,1000)

µ (11) 0.895 0.899
σ2 (10) 0.905 0.901

In all our experimental work with CIs of the form (11) and (10) for µ and σ2, respectively, we have
obtained excellent results. These developments have important implications for practical applications of
steady-state simulation output analysis.

4.4 Optimal Linear Combinations of Overlapping Variance Estimators

Additional benefits can be obtained by combining overlapping variance estimators. Aktaran-Kalaycı et al.
(2009) considered optimal linear combinations of overlapping variance estimators (OLCOVEs). The
constituent estimators are OBMs or overlapping STS area estimators. Each estimator’s batch size is a fixed
multiple (at least unity) of a base batch size, appropriately rounded; hence the overall sample size is a fixed
integral multiple of the base batch size. The control-variates method was used to obtain coefficients of the
linear combination so as to yield a minimum variance OLCOVE. The paper also established asymptotic
properties of the bias and variance of OLCOVEs, as the base batch size increases, and constructed CIs for
µ and σ2.

5 CONCLUSIONS

The ground-breaking Winter Simulation Conference paper Meketon and Schmeiser (1984) on the method
overlapping batch means has led to numerous advances in both the theory and practice of simulation output
analysis over the past three decades — in particular, many key insights that have subsequently set the stage
for more-efficient estimators for use in simulations. This article has surveyed some of these developments.
We anticipate much future work in the area of resampling and data reuse and its application to the design
and analysis of stochastic simulation experiments.
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