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ABSTRACT

The simulation of a Lévy process on a discrete time grid reduces to simulating from the distribution of
a Lévy increment. For a general Lévy process with no explicit transition density, it is often desirable to
simulate from the characteristic function of the Lévy increment. We show that the inverse transform method,
when combined with a Hilbert transform approach for computing the cdf of the Lévy increment, is reliable
and efficient. The Hilbert transform representation for the cdf is easy to implement and highly accurate,
with approximation errors decaying exponentially. The inverse transform method can be combined with
quasi-Monte Carlo methods and variance reduction techniques to greatly increase the efficiency of the
scheme. As an illustration, discrete Asian options pricing in the CGMY model is considered, where the
combination of the Hilbert transform inversion of characteristic functions, quasi-Monte Carlo methods and
the control variate technique proves to be very efficient.

1 INTRODUCTION

Lévy processes have been used to model the dynamics of various financial variables (Boyarchenko and
Levendorskiĭ 2002, Cont and Tankov 2004, Schoutens 2003). One needs to simulate a Lévy process
when Monte Carlo methods are used for the pricing and risk management of derivative securities in
Lévy models. Standard techniques can be used when the transition density of the Lévy process is known
explicitly and admits a simple form. Otherwise, one may simulate a Lévy process from its Lévy density,
which characterizes the behavior of jumps. For an infinite activity Lévy process, one may discard small
jumps when there are not too many such jumps (Cont and Tankov 2004) or approximate the small jump
component by a Brownian motion and simulate from a jump diffusion process (Asmussen and Rosiński
2001). One may also compute infinite series representations of a Lévy process and simulate from such a
series representation (Bondesson 1982, Rosiński 2001). When the Lévy process results from a Brownian
subordination, it suffices to simulate the subordinator and a standard normal random variable. For example,
see Rydberg (1997) for the case of simulating normal inverse Gaussian processes (Barndorff-Nielsen 1998).
Finally, although the transition density of a general Lévy process is often not known explicitly, due to
the celebrated Lévy-Khintchine formula for infinitely divisible distributions, the characteristic functions of
many popular Lévy processes are known. Thus, it suffices to simulate from a given Lévy characteristic
function.

One method to simulate from a characteristic function is to approximate the quantile function by
solving a non-linear integro-differential equation (Shaw and McCabe 2009). One may also follow Devroye
(1981), where a simple bound for the probability density is obtained and an acceptance-rejection method
is then used. In this approach, to generate each replicate, an inverse Fourier transform integral needs to
be computed. The computational cost could thus be high. Alternatively, one may invert the characteristic
function, compute and tabulate the values of the cumulative distribution function on an appropriately
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determined grid and then use the inverse transform method (Glasserman and Liu 2007, Glasserman and
Liu 2010). To generate a replicate, one generates a uniform variate and interpolate to find the solution
of the equation where the uniform variate equals the cdf. It is shown in Glasserman and Liu (2010) that
the bias due to linear interpolation decays quadratically in terms of the step size of the grid over which
the values of the cdf are tabulated. Alternatively, higher order schemes such as the Hermite interpolation
might be used to reduce the interpolation bias (Hörmann and Leydold 2003).

An important step when using the inverse transform method is to fast and accurately compute the
values of the cdf on the grid. It is shown in Glasserman and Liu (2010) that the bias of the method is
proportional to the approximation error of the characteristic function inversion scheme. To more reliably
control this source of bias, we use the Hilbert transform method of Feng and Lin (2011), which allows us
to compute the probabilities almost exactly with explicit and tight error estimates. In a full-length paper
(Chen, Feng, and Lin 2011), we describe how to precisely control the bias of the inverse transform method.
In this paper, we mainly exhibit the effectiveness of the method.

One of the advantages of the inverse transform method is that it can be easily used together with quasi-
Monte Carlo methods. Quasi-Monte Carlo methods can be attractive since they increase the convergence
order from 1/2 for standard Monte Carlo simulation to nearly 1. In Benth, Groth, and Kettler (2006), normal
inverse Gaussian processes are simulated using quasi-Monte Carlo methods and the Brownian subordination
construction of such processes. Quasi-Monte Carlo methods have also been applied to the simulation of
variance gamma processes (Madan, Carr, and Chang 1998) in Avramidis and L’Ecuyer (2006), Ribeiro and
Webber (2003), where special structures of such processes are exploited. See Fu (2007) for a review of
simulating variance gamma processes. We exhibit the effectiveness of quasi-Monte Carlo methods when
combined with the inverse transform method. In particular, we consider randomized quasi-Monte Carlo
methods (L’Ecuyer 2004, L’Ecuyer and Lemieux 2002) where error estimates can be obtained more easily.
The performance of the method is illustrated with the pricing of discrete Asian options in the CGMY model
(Carr, Geman, Madan, and Yor 2002). We use discrete geometric Asian options as control variates. For
geometric Asian options, we present a Hilbert transform method which can be used to price the options
almost exactly. The combination of the Hilbert transform inversion of characteristic functions, quasi-Monte
Carlo methods and the control variate technique proves to be very efficient. Comparison of the inverse
transform method with alternative approaches as well as more options pricing applications are reported in
Chen, Feng, and Lin (2011).

2 THE INVERSE TRANSFORM METHOD

Suppose we are interested in the expectation of a function f that depends on the values of a Lévy process
X = {Xt , t ≥ 0} on a uniform time grid with step size ∆ over a finite time horizon [0,T ], where ∆ = T/d
for some positive integer d:

E[ f (X∆, · · · ,Xd∆)]. (1)

We simulate N paths of the Lévy process: {(Xn
∆
, · · · ,Xn

d∆
) : 1 ≤ n ≤ N} and then estimate the above

expectation by the following:
1
N

N

∑
n=1

f (Xn
∆, · · · ,Xn

d∆).

Due to the independent and stationary increment properties of Lévy processes, X j∆−X( j−1)∆, j = 1,2, · · · ,d
are i.i.d. and have the same distribution as X∆. It thus suffices to simulate from the characteristic function
of the Lévy increment X∆. In the following, we first describe how the cdf of a Lévy increment can be
computed fast and accurately from its characteristic function using a Hilbert transform approach. The
inverse transform method for simulating the Lévy increment is then detailed.
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2.1 Hilbert Transform Representation for the Cdf

Feng and Lin (2011) presents a Hilbert transform method for the inversion of characteristic functions for
computing cdf’s. The Hilbert transform representation can be discretized using simple rules. For a wide
class of analytic characteristic functions, the method exhibits exponentially decaying discretization errors.
More specifically, the Hilbert transform of an integrable function f is defined by the following Cauchy
principal value integral (Stein and Weiss 1971):

H f (x) =
1
π

p.v.
∫
R

f (y)
x− y

dy, x ∈ R.

Then the cdf F(x) of a continuous distribution with an integrable characteristic function φ(ξ ) can be
expressed in terms of the Hilbert transform of φ (Theorem 1). Moreover, if the distribution admits
exponential moments in an interval containing the origin, φ is analytic in a horizontal strip containing
the real line in the complex plane. Denote the strip by D(d−,d+) = {z ∈ C : ℑ(z) ∈ (d−,d+)} for some
d− < 0 < d+, where ℑ(z) denotes the imaginary part of z. Further assume that φ has reasonable tail
behaviors and integrability as below:∫ d+

d−
|φ(ξ + iy)|dy→ 0, ξ →±∞, (2)

∫
R
(|φ(ξ + id−)|+ |φ(ξ + id+)|)dξ <+∞. (3)

Then the Hilbert transform representation for F(x) can be discretized using a simple rule highly accurately:

Fh(x) =
1
2
+

i
2

∞

∑
m=−∞

e−ix(m−1/2)h φ((m−1/2)h)
(m−1/2)π

, h > 0.

The discretization error is of the order O(exp(−πd0/h)) and hence converges to zero exponentially in
1/h. Here h is the discretization step size and d0 = 2min(−d−,d+). The resulting infinite series is further
truncated at a truncation level M ≥ 1. Denote the resulting finite sum by Fh,M(x):

Fh,M(x) =
1
2
+

i
2

M

∑
m=−M

e−ix(m−1/2)h φ((m−1/2)h)
(m−1/2)π

, h > 0,M ≥ 1. (4)

The truncation error depends on the tail behavior of the characteristic function. In many popular Lévy
models used in finance, the characteristic function satisfies the following for some constants κ,c,ν > 0:

|φ(ξ )| ≤ κ exp(−c|ξ |ν), ξ ∈ R. (5)

The exponential tail behavior of the characteristic function corresponds to the smoothness of the probability
density function. When (5) is satisfied, the truncation error also decays exponentially in terms of Mh. We
may thus select h = h(M) so that the discretization and truncation errors are proportional:

h(M) = (πd0/c)1/(1+ν)M−ν/(1+ν), M ≥ 1. (6)

Then the total error decays to zero exponentially in terms of M, which represents the computational cost
of approximating F(x). In summary, we have the following:
Theorem 1 (Feng and Lin 2011) Let F(x) and φ(ξ ) be the cdf and the characteristic function of a
continuous distribution. Suppose that φ ∈ L1(R). Then

F(x) =
1
2
− i

2
H (e−iξ x

φ(ξ ))(0).
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If φ is analytic in a stripe D(d−,d+) and satisfies (2) and (3), then there exists a constant C independent of
h such that

|F(x)−Fh(x)| ≤
Ce−πd0/h

1− e−πd0/h , h > 0,

where d0 = 2min(−d−,d+). If φ also satisfies (5), then there exists C > 0 independent of M such that

|F(x)−Fh(M),M(x)| ≤C exp(−c1/(1+ν)(πd0M)ν/(1+ν)), M ≥ 1.

When D(d−,d+) is asymmetric, one may shift the line of integration and further increase the rate of
convergence. Moreover, the error estimates in Theorem 1 admit explicit expressions. Precise error control
is therefore possible (Feng and Lin 2011, Chen, Feng, and Lin 2011). In derivatives pricing applications,
the price process of the underlying asset is modeled by the exponential of a Lévy process. For the asset
itself to be priced, certain exponential moments of the corresponding Lévy process exist. Consequently, the
characteristic function is analytic (Feng and Linetsky 2008a). For many popular Lévy models, the transition
probability density is smooth and the characteristic function admits exponentially decaying tails. Fh(M),M(x)
thus provides a highly accurate approximation to the cdf F(x). This is illustrated in the numerical section.

Finally, due to the e−ixmh term, the fast Fourier transform can be used to compute multiple values
of the cdf simultaneously very efficiently. More specifically, over an arbitrary interval [x0,x2M], given a
uniform grid {x0,x0 +η , · · · ,x0 + 2Mη = x2M}, the computation of {F(x0 +mη),m = 0,1, · · · ,2M} can
be reduced to a Toeplitz matrix vector multiplication which can be implemented using the fast Fourier
transform with O(M logM) operations only. See the appendices of Feng and Linetsky (2008a), Feng and
Linetsky (2008b) for more details. We would like to remark that, to use the fast Fourier transform based
on the Toeplitz matrix vector multiplication, the step sizes h > 0 and η > 0 can be arbitrary. This is in
contrast to a standard implementation of the fast Fourier transform method, where h and η have to satisfy
hη = 2π/(2M+1), which can be inconvenient and restrictive.

2.2 The Inverse Transform Method

To simulate a Lévy increment with cdf F(x), it suffices to simulate a uniformly distributed random variable
U on (0,1) and compute F−1(U). Since F−1 usually does not admit a closed form expression, we will
proceed as below. First, we take a large enough interval [x0,xK ] so that max(F(x0),1−F(xK))< ε for a given
tolerance level ε > 0 (the determination of such an interval will be detailed below). Let η = (xK− x0)/K
for a positive integer K, and xk = x0 + kη ,0 ≤ k ≤ K. We compute the values Fk = F(xk) and store the
pairs (xk,Fk) in the following matrix: (

x0 x1 · · · xK

F0 F1 · · · FK

)
. (7)

For each generated U , which is between 0 and 1, we use binary search to find 0 ≤ k ≤ K− 1 so that
Fk ≤U < Fk+1. F−1(U) is then approximated by the following linear interpolation:

F−1(U)≈ xk +
xk+1− xk

Fk+1−Fk
(U−Fk).

If 0 < U < F0 or FK ≤U < 1, we may solve the following equation numerically using a standard root
finding algorithm such as the Newton-Raphson method to obtain an approximation to F−1(U):

F(x) =U.

However, when ε is small, it is rare to get 0 < U < F0 or FK ≤U < 1. For instance, in our numerical
example, we take ε = 10−8. It takes on average 1/(2ε), or 50 million, iterations to get 0 < U < F0 or
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FK ≤U < 1. Therefore, one may simply use F−1(U)≈ x0 if 0 <U < F0 or F−1(U)≈ xK if FK ≤U < 1.
We will follow this in our implementation. We also would like to remark that it takes roughly log2(K)
iterations to locate the interval that contains U . For convenience, in our implementation, we let K be a
power of 2. Then it takes exactly log2(K) iterations to locate the interval through a binary search.

As for determining x0 and xK , we denote µ and σ the expected value and the standard deviation of
the distribution F(x). They can be computed from the given characteristic function φ as follows:

µ =−iφ ′(0), σ = ((φ ′(0))2−φ
′′(0))1/2,

where φ ′ and φ ′′ are the first and second order derivatives of φ . We then define x0 and xK as follows:

x0 = max(µ + jσ : F(µ + jσ)< ε), xK = min(µ + jσ : 1−F(µ + jσ)< ε).

Since for any integer j, F(µ + jσ) can be computed very fast and accurately, it is usually very easy to
compute x0 and xK defined above. One starts with F(x) for x = µ , and then keep increasing or decreasing
x by an amount of σ until x0 or xK is obtained. The above procedure is very simple. It is possible to
determine x0 and xK for any given bias tolerance level. This will be shown in Chen, Feng, and Lin (2011).

We recognize that the above interpolation procedure will introduce bias. It is shown in Glasserman and
Liu (2010) that the bias is of the order O(η2). One may thus select η accordingly for a required level of
accuracy. Additional bias may be introduced if the probabilities in (7) are not computed accurately. However,
due to the exponential converging nature of the scheme (4), we are able to compute the probabilities in (7)
almost exactly. Moreover, this needs to be done once only at the very beginning of the simulation procedure,
and can usually be done fast with the help of the fast Fourier transform, when necessary. Therefore, when
implementing the above method, we are mainly concerned about the interpolation bias. In the numerical
section, we exhibit the selection of η and its impact on the quality of the simulation outcome. In Chen,
Feng, and Lin (2011), we further show how to determine η for any given bias tolerance level.

2.3 Randomized Quasi-Monte Carlo Methods

One advantage of the inverse transform method is that it can be easily used together with quasi-Monte
Carlo methods. Suppose we want to compute an expectation which can be reduced to the following form
for d i.i.d. uniform random variables on (0,1), U1, · · · ,Ud :

E[ f (F−1
1 (U1), · · · ,F−1

d (Ud))], (8)

where F−1
j , 1≤ j≤ d, are certain inverse cumulative distribution functions. For example, we have seen that

the expectation (1) reduces to the above. When estimating the expectation above using quasi-Monte Carlo
methods, instead of using i.i.d. d−dimensional uniform variables, a deterministic sequence {x1, · · · ,xN0}
in [0,1]d is used and the following estimation is obtained:

1
N0

N0

∑
n=1

f (F−1
1 (x1

n), · · · ,F−1
d (xd

n)), (9)

where (x1
n, · · · ,xd

n) = xn ∈ [0,1]d , 1 ≤ n ≤ N0. In contrast to the characteristic 1/2 order of convergence
for Monte Carlo methods, the convergence of quasi-Monte Carlo approximation may be accelerated to
O(1/N1−ε

0 ) for an arbitrarily small ε > 0. This could be attractive in applications.
On the other hand, we also note that while error estimates are rather straightforward to obtain for Monte

Carlo methods, it is harder to obtain reliable error estimates for quasi-Monte Carlo methods. This has
motivated randomized quasi-Monte Carlo methods, which effectively turn quasi-Monte Carlo methods into
variance reduction techniques. One way to randomize a quasi-Monte Carlo method is to use the so called
digital shift (L’Ecuyer 2004, L’Ecuyer and Lemieux 2002). More specifically, for a given quasi-Monte
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Carlo sequence {x1, · · · ,xN0} in [0,1]d , we generate d i.i.d. uniform random variables U1, · · · ,Ud , and then
use them to generated the following shifted sequence {xU

1 , · · · ,xU
N0
}:

xU
n = (x1

n⊕U1, · · · ,xd
n⊕Ud), 1≤ n≤ N0,

where ⊕ refers to the exclusive-or operator. From this shifted sequence, we obtain an approximation of the
form (9). When the above procedure is repeated L times, we obtain L i.i.d. variables. The sample mean
of these L variables is then used to estimate the expectation in (8). The standard error computed from
these L variables provides an estimate of the error of the randomized quasi-Monte Carlo approximation. In
total, LN0 replicates have been generated to obtain the above estimate. Finally, in our implementation, we
have used Sobol’s sequence to generate {x1, · · · ,xN0}, which has been shown to be effective in financial
applications (Glasserman 2004).

3 DISCRETE ASIAN OPTIONS IN LEVY MODELS

We illustrate the method by considering the pricing of discretely monitored Asian options. We assume a
geometric Lévy model in a given risk neutral measure, where the asset price is governed by

St = S0eXt .

Here S0 is the current asset price, and {Xt , t ≥ 0} is a Lévy process starting at the origin at time 0. Consider
a fixed strike Asian call option with maturity T and strike price K. The payoff of such an option is given
by

max(0,AT −K),

where AT is the average asset price over the time period [0,T ]. We assume that the average asset price is
computed based on the asset price monitored discretely on a uniform grid of [0,T ] with monitoring interval
∆ = T/d. Here d > 0 is the number of monitoring intervals. That is,

AT =
1

d +1

d

∑
k=0

Sk∆.

Then, from the risk neutral pricing theory, the price of the call is given by

V = e−rTE[max(0,AT −K)],

where r is the continuously compounded risk free interest rate.

3.1 Geometric Asian Options

Most traded Asian options assume arithmetic averaging described above. Closed form solutions usually do
not exist for such contracts. However, if the average is computed in the geometric sense, one may obtain a
semi-analytic expression for the option price that can be computed very fast and accurately. They serve as
excellent control variates for the pricing of arithmetic Asian options. The price of a discretely monitored
geometric Asian call option with maturity T and strike K is given by the following:

V g = e−rTE[max(0,Ag
T −K)], Ag

T =
(

Π
d
k=0Sk∆

)1/(d+1)
.

Let Y = ln(Ag
T/S0) =

1
d+1 ∑

d
k=0 Xk∆. We further rewrite Y in terms of independent Lévy increments (recall

that X0 = 0):

Y =
1

d +1

d

∑
k=1

k(X(d−k+1)∆−X(d−k)∆).
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Denote the characteristic function of the Lévy process by φt(ξ ) = E[eiξ Xt ]. Then for any 1 ≤ k ≤ d, the
characteristic function of the Lévy increment X(d−k+1)∆−X(d−k)∆ is given by

E[eiξ (X(d−k+1)∆−X(d−k)∆)] = φ∆(ξ ).

Consequently, the characteristic function of Y is given by

φY (ξ ) = E[eiξY ] = Π
d
k=1φ∆

( kξ

d +1

)
.

Therefore,

V g = e−rTE[(S0eY −K)1{Y>ln(K/S0)}]

= e−rT S0E[eY 1{Y>ln(K/S0)}]−Ke−rTP(Y > ln(K/S0)). (10)

Obviously, the second term above can be approximated using (4) highly accurately:

P(Y > ln(K/S0))≈
1
2
− i

2

M

∑
m=−M

e−i ln(K/S0)(m−1/2)h φY ((m−1/2)h)
(m−1/2)π

. (11)

Using a standard measure change technique, the first term can also be turned into a probability and hence
admits a Hilbert transform representation. The following is shown in Feng and Lin (2011):
Theorem 2 (Feng and Lin 2011) Let φ be the characteristic function of a continuous random variable X .
Suppose that φ is analytic in a strip D(d−,d+), β ∈ (d−,d+), and φ(·+ iβ ) ∈ L1(R), then

E
[
e−βX 1{X≤θ}

]
=

φ(iβ )
2
− i

2
H (e−iξ θ

φ(ξ + iβ ))(0).

If φ satisfies (2) and (3), we have the following approximation and error estimate:

Fβ ,θ
h =

φ(iβ )
2

+
i
2

∞

∑
m=−∞

e−iθ(m−1/2)h φ((m−1/2)h+ iβ )
(m−1/2)π

,

∣∣∣E[e−βX 1{X≤θ}

]
−Fβ ,θ

h

∣∣∣≤ Ce−πd0/h

1− e−πd0/h , h > 0,

where d0 = 2min(β −d−,d+−β ) and C > 0 is a constant independent of h. If φ(·+ iβ ) further satisfies
(5), h = h(M) is selected according to (6), and Fβ ,θ

h,M is the finite sum approximation of Fβ ,θ
h with truncation

level M ≥ 1, then∣∣∣E[e−βX 1{X≤θ}

]
−Fβ ,θ

h,M

∣∣∣≤C exp(−c1/(1+ν)(πd0M)ν/(1+ν)), M ≥ 1,

for some constant C independent of M.
Notice that

E
[
e−βX 1{X>θ}

]
= φ(iβ )−E

[
e−βX 1{X≤θ}

]
.

Taking β =−1 and θ = ln(K/S0), we obtain the following approximation to the first term in (10):

E[eY 1{Y>ln(K/S0)}]≈
φY (−i)

2
− i

2

M

∑
m=−M

e−i ln(K/S0)(m−1/2)h φY ((m−1/2)h− i)
(m−1/2)π

. (12)

For those Lévy models with characteristic functions that decay exponentially, the pricing error of the above
scheme decreases to zero exponentially in terms of the truncation level M. Consequently, the price of the
geometric Asian option can be computed highly accurately. In the example considered in Section 4, we
obtain the geometric Asian option price almost exactly in a very small amount of time.
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3.2 Control Variates

To compute V = e−rTE[max(0,AT −K)], we simulate d Lévy increments and hence a Lévy path {Xn
∆

, · · · ,
Xn

d∆
} and compute Vn = max(0,AT −K) and V g

n = max(0,Ag
T −K). Moreover, the discrepancy between

V g
n and E[max(0,Ag

T −K)] can be used to adjust Vn in the following way so that the resulting quantity is
closer to E[max(0,AT −K)]:

V b
n :=Vn +b(E[max(0,Ag

T −K)]−V g
n ).

Here b is a constant to be determined. We repeat the above for n = 1,2, · · · ,N, and obtain the following
estimator to E[max(0,AT −K)]:

V̄ b
N :=

1
N

N

∑
n=1

V b
n .

By the law of large numbers, V̄ b
N converges to E[max(0,AT −K)]. Moreover, let σa denote the standard

deviation of max(0,AT −K), σg the standard derivation of max(0,Ag
T −K), and ρ the correlation coefficient

of the two random variables. When b is selected according to b = ρσa/σg, the variance of V̄ b
N is reduced to

var(V̄ b
N) = (1−ρ

2)var(V̄N),

where V̄N = 1
N ∑

N
n=1Vn is the estimator of E[max(0,AT −K)] without using a control variate. When ρ is

large, the performance improvement of the above scheme over a standard scheme without control variates is
significant. Since the true value of b is usually unknown to us, an estimate of b is obtained by simulating a
predetermined number (e.g., 1000) of pairs of (Vn,V

g
n ) and replacing the correlation coefficient and standard

deviations by sample correlation coefficient and sample standard deviations.

4 NUMERICAL RESULTS

We illustrate the method by considering the pricing of an arithmetic Asian call option in the CGMY model
(Carr, Geman, Madan, and Yor 2002). Computations are done using C++ in Windows XP on a Lenovo
laptop T61p with Intel Core 2 Duo 2.5GHz CPU and 3GB RAM. The maturity of the contract is 6 months
(T = 0.5). The average is computed based on either monthly monitoring (d = 6) or weekly monitoring
(d = 26). The current asset price and the strike price are S0 = K = 100. The risk free interest rate is r = 5%.
The underlying asset does not pay dividends. The parameters of the CGMY model are the same as those
in Feng and Linetsky (2008a):

Ĉ = 4, Ĝ = 50,M̂ = 60,Ŷ = 0.7.

The explicit expression of the transition probability density of a general CGMY process is not available.
However, the characteristic function of such a process X = {Xt , t ≥ 0} admits a simple form and is given
by

φt(ξ ) = exp(iµ̂tξ − tĈΓ(−Ŷ )(M̂Ŷ − (M̂− iξ )Ŷ + ĜŶ − (Ĝ+ iξ )Ŷ )),

where µ̂ = r− ĈΓ(−Ŷ )((M̂− 1)Ŷ − M̂Ŷ +(Ĝ+ 1)Ŷ − ĜŶ ) is the drift of the CGMY process, and Γ(·) is
the gamma function.

4.1 Computing the Probabilities

We first compute the endpoints of the interval [x0,xK ] on which the values of the cdf of the Lévy increment
are tabulated. We assume ε = 10−8. Note that the expected value and the standard deviation of XT can be
easily computed to be (see formulas in Section 2.2)

E[X0.5] = 0.015, stdev(X0.5) = 0.141.
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Using the independent and stationary increment properties of Lévy processes, the expected value and the
standard deviation of the Lévy increment X∆ with d monitoring intervals on [0,0.5] are given by

µ∆ = E[X∆] =
1
d
E[X0.5], σ∆ = stdev(X∆) =

1√
d

stdev(X0.5).

It can be easily checked that, for any ∆ > 0, φ∆ is analytic in a horizontal strip and satisfies the exponential
tail condition (5) with

d− =−M̂, d+ = Ĝ, ν = Ŷ , c∆ = 2∆Ĉ|Γ(−Ŷ )cos(πŶ/2)|. (13)

For d = 6 and ∆ = T/6, we compute the probabilities F∆(µ∆ + jσ∆) for j = 0,−1, · · · ,−8 and find that

F∆(µ∆−8σ∆)< ε = 10−8, µ∆−8σ∆ ≈−0.458.

Similarly, we compute F∆(µ∆ + jσ∆) for j = 1, · · · ,7 to find that

1−F∆(µ∆ +7σ∆)< ε = 10−8, µ∆ +7σ∆ ≈ 0.405.

We thus take [x0,xK ] = [−0.458,0.405] when d = 6 with monthly monitoring. Similarly, for weekly
monitoring with d = 26, we find the interval to be [x0,xK ] = [−0.331,0.277]. In our implementation, we
take M = 150 so that the probabilities in (7) are accurate up to 12 digits after the decimal point. The purpose
is to focus on the error due to the interpolation and the simulation itself. When K = 16 (corresponding to
an interpolation bias of about 1 cent), it takes 0.001 second to produce all the K +1 probabilities. When
K = 128 (corresponding to an interpolation bias of about 0.01 cent), it takes 0.007 second to produce all
129 probabilities. In this example, since K does not need to be very large to guarantee a practical accuracy,
we didn’t use the fast Fourier transform. However, if in a particular application, K has be to larger, the
fast Fourier transform can be used to greatly reduce the computational time (Chen, Feng, and Lin 2011).

4.2 Computing Geometric Asian Option Prices

When the corresponding geometric Asian option is used as a control variable, we need to compute the exact
geometric Asian option price. This again can be computed highly accurately and fast using the method
described in Section 3.1. We first note that φY defined in Section 3.1 is again analytic in a horizontal strip
and satisfies the exponential tail condition (5) with

d−(Y ) = d−(d +1)/d, d+(Y ) = d+(d +1)/d, ν = Ŷ , c(Y ) = c∆

d

∑
k=1

kν/(d +1)ν , (14)

where d± and c∆ are given in (13). We use (11) and (12) to compute the two terms in (10). By Theorems 1
and 2, we select h = h(M) according to (6), (14) and d0 = 2min(−1−d−(Y ),d+(Y )). The geometric Asian
option prices can be computed with an accuracy of up to 12 digits after the decimal point with only M = 50.
For the monthly monitored contract (d = 6), the price is 3.604561644590 and it takes 0.001 second. For
the weekly monitored contract (d = 26), the price is 3.698573792716 and it takes 0.005 second.

4.3 Interpolation Bias

In the following, we assume that the errors contained in the probabilities in (7) and the geometric Asian
call prices are negligible and focus on the interpolation bias. For K = 16,32,64,128, we increase the
simulation sample size and observe the pricing error. Benchmark prices for the arithmetic Asian options
have been computed using the Fourier transform method (Benhamou 2002, Carverhill and Clewlow 1990)
to be V = 3.71933798 for monthly monitoring and V = 3.80167775 for weekly monitoring. We use the
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Monte Carlo scheme with control variate (MC-CV). This scheme is fast and accurate. Very soon we
observe that the pricing error does not decrease any more by increasing the sample size. That is when
the interpolation bias starts to dominate. We consider the case with monthly monitoring (d = 6). In Table
1, the first column refers to sample sizes that are used. Columns with label “Error” are absolute pricing
errors (the difference between the Monte Carlo estimate and the benchmark price). Computational times
for the Monte Carlo scheme will be reported later when different methods are compared. Columns with
label “SE” refer to the standard error of the Monte Carlo estimate. Suppose N replicates {V b

1 ,V
b
2 , · · · ,V b

N}
are generated. The SE is defined by

SE(V b
1 ,V

b
2 , · · · ,V b

N) =

√
∑

N
n=1(V b

n −V̄ b
N)

2

N(N−1)
, V̄ b

N =
1
N

N

∑
n=1

V b
n .

Note that in Table 1, SE is not necessarily a good indicator of the absolute pricing error since the interpolation
bias is not accounted for in its definition. On the other hand, when SE is very small, the pricing error
is mainly due to the interpolation bias. We are thus able to observe the interpolation bias by looking at
the bottom of the table. We find that when K = 16 (η = (XK −X0)/K = (0.405+ 0.458)/16 ≈ 0.054),
the interpolation bias is about 9×10−3. This implies an interpolation bias of the form cη2 ≈ 3η2 in this
example. It can be seen from the numbers in bold that when K doubles, the interpolation bias roughly
decreases by 4 times, which is consistent with Glasserman and Liu (2010). In particular, in this example,
a fairly small K will be sufficient for practical purpose.

Table 1: Interpolation bias (d = 6). Error: absolute pricing error; SE: standard error, it should not be used
as an indicator of the pricing error unless the interpolation bias is negligible.

N K = 16 K = 32 K = 64 K = 128
SE Error SE Error SE Error SE Error

1000 3.4E-3 4.0E-3 3.9E-3 1.1E-2 3.7E-3 5.5E-3 3.7E-3 3.2E-3
4000 2.0E-3 1.0E-2 1.8E-3 1.4E-3 1.8E-3 2.1E-3 1.8E-3 1.6E-3

16000 9.8E-4 8.4E-3 9.3E-4 4.3E-3 8.6E-4 7.0E-4 8.4E-4 2.7E-4
64000 4.9E-4 9.5E-3 4.5E-4 2.4E-3 4.3E-4 2.8E-4 4.3E-4 2.2E-4
256000 2.5E-4 9.4E-3 2.2E-4 2.3E-3 2.2E-4 6.5E-4 2.2E-4 2.2E-4
1024000 1.2E-4 8.9E-3 1.1E-4 2.0E-3 1.1E-4 8.0E-4 1.1E-4 1.0E-4
4096000 6.1E-5 8.9E-3 5.5E-5 2.1E-3 5.4E-5 6.6E-4 5.3E-5 1.7E-4
16384000 3.1E-5 8.7E-3 2.8E-5 2.3E-3 2.7E-5 6.2E-4 2.7E-5 1.4E-4

4.4 Simulation Errors

Finally, we investigate the simulation error. To have a clear comparison, we make the interpolation bias
small by taking a large K = 1024. Based on the previous section, with this K, the interpolation bias is about
2× 10−6 and is hence negligible compared to simulation errors. We compare the standard Monte Carlo
scheme (MC), the randomized quasi-Monte Carlo scheme (RQMC), the Monte Carlo scheme with control
variate (MC-CV), and the randomized quasi-Monte Carlo scheme with control variate (RQMC-CV). For
MC-CV, we generate 1000 pairs of arithmetic and geometric Asian call payoffs to estimate the parameter
b. For simplicity, these 1000 pairs are not reused. For RQMC-CV, since the number of batches L is
typically small (between 5-25 according to L’Ecuyer (2004)), we directly use the L pairs of arithmetic and
geometric Asian option prices that we obtain, estimate the parameter b, and adjust the arithmetic Asian
option prices accordingly. For each scheme, we increase the sample size N and record the standard error
(“SE”), absolute pricing error (“Error”), and computational time (“CPU”). For a better comparison, the
computational time does not include the time to compute the probabilities in (7) and geometric Asian
option prices (see Sections 4.1 and 4.2 instead). For MC and MC-CV, N = 1000,4000, · · · ,1024000 refers
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Table 2: Discrete Asian call options in the CGMY model. MC: standard Monte Carlo; RQMC: randomized
quasi-Monte Carlo; MC-CV: Monte Carlo with control variate; RQMC-CV: randomized quasi-Monte
Carlo with control variate; N: total number of Lévy paths generated; Error: absolute pricing error; CPU:
computational time in seconds (not including the time for computing the probabilities in (7) and the
geometric Asian option prices; see Sections 4.1 and 4.2); SE: standard error.

MC RQMC MC-CV RQMC-CV
N SE Error CPU SE Error CPU SE Error CPU SE Error CPU

1000 2E-1 2E-1 0.002 4E-2 6E-3 0.001 4E-3 2E-3 0.003 2E-3 1E-4 0.004
4000 8E-2 2E-1 0.004 2E-2 3E-2 0.004 2E-3 2E-3 0.006 5E-4 1E-3 0.006

d
=

6 16000 4E-2 2E-2 0.012 7E-3 2E-3 0.014 9E-4 5E-4 0.015 2E-4 2E-4 0.016
64000 2E-2 2E-3 0.046 2E-3 7E-4 0.051 4E-4 3E-4 0.053 1E-4 1E-4 0.055

256000 1E-2 7E-3 0.177 5E-4 4E-4 0.199 2E-4 4E-4 0.206 4E-5 9E-6 0.214
1024000 5E-3 4E-3 0.707 2E-4 9E-5 0.795 1E-4 9E-5 0.818 3E-5 9E-6 0.867

1000 2E-1 2E-1 0.004 1E-1 6E-2 0.005 3E-3 3E-3 0.007 2E-3 3E-3 0.006
4000 8E-2 3E-2 0.013 2E-2 2E-2 0.013 2E-3 2E-3 0.016 8E-4 5E-4 0.016

d
=

26

16000 4E-2 4E-3 0.046 1E-2 1E-2 0.049 8E-4 1E-3 0.051 6E-4 3E-4 0.055
64000 2E-2 3E-2 0.176 2E-3 2E-3 0.195 4E-4 5E-4 0.196 3E-4 2E-4 0.211

256000 1E-2 1E-3 0.698 1E-3 1E-3 0.771 2E-4 9E-5 0.780 1E-4 3E-4 0.834
1024000 5E-3 2E-3 2.853 6E-4 8E-4 3.046 1E-4 4E-5 3.097 4E-5 5E-5 3.353

to the sample size (the total number of Lévy paths generated) and the SE is computed as in the previous
section. For RQMC and RQMC-CV, we use L = 10 batches and for each batch we use a sequence of
length N0 = 100,400, · · · ,102400. Therefore, N = LN0 again refers to the total number of Lévy paths that
are generated. The SE is computed from the L estimates we obtain.

We observe that the computational times are close among different methods (all of them use the same
number of Lévy paths). The standard Monte Carlo scheme is less accurate in general. The randomized
quasi-Monte Carlo method greatly increases the convergence, in particular for d = 6. The improvement in
the performance is less significant for d = 26. It is well known that quasi-Monte Carlo methods worsen
when the dimension of the problem increases. Dimension reduction schemes such as bridge sampling
(Avramidis and L’Ecuyer 2006, Fu 2007, Ribeiro and Webber 2003) might be used to reduce the effective
dimension of the problem and can be implemented for Lévy processes where such schemes apply. We
also observe that when geometric Asian options are used as control variates, the performance of the simple
Monte Carlo scheme greatly improves. The MC-CV scheme is even better than the RQMC scheme. Finally,
the RQMC scheme with control variate outperforms all other methods.

In summary, the inverse transform method combined with quasi-Monte Carlo approximation and
variance reduction techniques proves to be very fast and accurate, at least for the discrete Asian options
pricing example considered in this paper. With less than 1 second, one obtains an accuracy (measured
by SE in Table 2) of about 3×10−5 ∼ 4×10−5 for the monthly or weekly monitored Asian options we
consider.
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