
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

RARE EVENT SIMULATION FOR ROUGH ENERGY LANDSCAPES

Paul Dupuis
Konstantinos Spiliopoulos

Hui Wang

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics

Brown University 182 George Street
Providence, RI, 02912, USA

ABSTRACT

A rough energy landscape can be modeled by a potential function superimposed by another fast oscillating
function. Modeling motion in such a rough energy landscape by a small noise stochastic differential equation
with fast oscillating coefficients, we construct asymptotically optimal importance sampling schemes for
the study of rare events. Standard Monte Carlo methods perform poorly for these kind of problems in the
small noise limit, even without the added difficulties of the fast oscillating function. We study the situation
in which the fast oscillating parameter goes to zero faster than the intensity of the noise. We identify an
asymptotically optimal estimator in the sense of variance minimization using the subsolution approach.
Examples and simulation results are provided.

1 INTRODUCTION

We study efficient importance sampling schemes for the d-dimensional process Xε .
= {Xε(t), t ≥ 0} satisfying

the first order Langevin equation

dXε(t) =−∇V ε

(
Xε(t),

Xε(t)
δ

)
dt +
√

ε
√

2DdW (t), Xε(0) = x0. (1)

Here 2D is a diffusion constant, W (t) is a standard d-dimensional Wiener process, the two-scale potential
is composed of a large-scale part and a fluctuating part in the form

V ε (x,x/δ ) = εQ(x/δ )+V (x),

and ∇V ε (x,x/δ ) denotes ∇[εQ(x/δ )+V (x)]. It is also assumed that δ = δ (ε) ↓ 0 in such a way that

ε

δ
→ ∞ as ε ↓ 0. (2)

The functions V (x) and Q(y) are assumed to be smooth and Q(y) to be periodic with period λ in every
direction. An example of such potential is given in Figure 1.

It was suggested long ago (e.g., Lifson and Jackson 1962) that the potential surface of a protein might
have a hierarchical structure with potential minima within potential minima, etc. The underlying energy
landscapes of certain biomolecules can be rugged (i.e., consist of many minima separated by barriers
of varying heights) due to the presence of multiple energy scales associated with the building blocks
of proteins. Roughness of the energy landscapes that describe proteins has numerous effects on their
folding and binding as well as on their behavior at equilibrium. Often these phenomena are described
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Figure 1: V ε(x, x
δ
) = ε

(
cos( x

δ
)+ sin( x

δ
)
)
+ 3

2(x
2−1)2 and V (x) = 3

2(x
2−1)2 with ε = 0.1 and δ = 0.01.

mathematically by diffusions in a rough potential made up of a smooth function superimposed by a rapidly
oscillating function (see Figure 1). A representative, but by no means complete, list of references is (Ansari
2000, Bryngelson et al 2995, Hyeon and Thirumalai 2003, Mondal, Ghosh and Ray 2009, Saven, Wang
and Wolynes 1994, Zwanzig 1988).

It is well known that the estimation of rare event probabilities for diffusion processes with small noise
is difficult. Standard Monte Carlo sampling techniques are inadequate, in that with any fixed number of
samples the relative error grows rapidly as the event of interest becomes more and more rare. Problems
with fast oscillating coefficients are even more difficult, due to the additional small parameter δ and its
interaction with the intensity of the noise ε .

The purpose of this paper is to show how importance sampling can be effectively applied to the problem
of estimating rare event probabilities for diffusions in a rough energy potential. With rapidly oscillating
coefficients a standard approach to model approximation and simplification is via homogenization, where
one replaces the true system by a simpler approximating system with appropriate new drift and diffusion
coefficients. However, in the setting of rare event estimation homogenzation must be used with some care,
and in particular one cannot use importance sampling schemes that are based just on the homogenized
system alone. Using large deviation results that are developed in Dupuis and Spiliopoulos 2010, we will
show how to adapt the subsolution approach (Dupuis and Wang 2004, Dupuis and Wang 2007) to deal
with this particular type of homogenization, and note that the methods developed can be extended to treat
other forms as well.

The paper is organized as follows. In Section 2 we review importance sampling. Section 3 gives
assumptions and notation, and reviews the large deviations results that will be needed. In Section 4
we recall the role of subsolutions in the context of importance sampling. In Section 5 we explain the
methodology for the construction of the optimal control (equivalently, change of measure), summarize the
proposed simulation scheme, and state the main results. Section 6 contains simulation results together with
a discussion on the computational challenges that one faces when simulating from (1) (see Theorem 8 and
the subsequent discussion).

2 BOUNDS ON MONTE CARLO ESTIMATION

Consider an arbitrary bounded and continuous function h : Rd 7→R. Suppose we are interested in estimating
Et,x[e−

1
ε

h(Xε (T ))], where Et,x denotes the expected value given Xε(t) = x and T is a given final time. Consider
also

G(t,x) = inf
φ∈A C ([t,T ];Rd),φ(t)=x

{StT (φ)+h(φ(T ))} ,
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where A C ([t,T ];Rd) denotes the set of absolutely continuous functions from [t,T ] to Rd and StT (·) is
the large deviation rate function of {Xε ,ε > 0}. The particular form of StT (·) was derived in Dupuis and
Spiliopoulos 2010 (see also Freidlin and Sowers 1999) and will be recalled in Section 3. Then by the
contraction principle

lim
ε→0
−ε lnEt,x

[
e−

1
ε

h(Xε (T ))
]
= G(t,x). (3)

Consider any unbiased estimator, i.e., any random variable Γε(T ) defined on a probability space with
probability measure P̄ such that

ĒΓ
ε(T ) = Et,x

[
e−

1
ε

h(Xε (T ))
]
,

where Ē is the expectation operator associated with P̄ (we will only deal with unbiased estimators). The
goal of any accelerated Monte Carlo scheme is to construct a random variable Γε(T ) that can be simulated
without too much difficulty, and for which the ratio of the standard deviation of the estimator to the quantity
being estimated does not grow too quickly as ε → 0. Because of unbiasedness, minimizing variance is
equivalent to minimizing the second moment of the estimator. By Jensen’s inequality

Ē(Γε(T ))2 ≥ (ĒΓ
ε(T ))2 =

(
Et,x

[
e−

1
ε

h(Xε (T ))
])2

.

Taking logs in the inequality above, multiplying by ε and using (3), we observe that

limsup
ε→0

−ε ln Ēt,x(Γ
ε(T ))2 ≤ 2G(t,x).

Therefore, 2G(t,x) is the best possible rate of decay. If one can prove

liminf
ε→0

−ε ln Ēt,x(Γ
ε(T ))2 ≥ 2G(t,x),

then Γε(T ) achieves this best rate. Such an estimator will be called asymptotically optimal.
In the framework of importance sampling we consider probability measures P̄ that are absolutely

continuous with respect to P (the probability measure under which the expectation operator E is defined),
and use the particular form Γε(T ) = e−

1
ε

h(Xε (T ))
[
dP/dP̄

]
(note that this is an unbiased estimator). Our

goal is to identify a measure P̄ (or more precisely a sequence of measures indexed by ε) so that Γε(T ) is
asymptotically optimal.

3 PRELIMINARY RESULTS

In this section we introduce assumptions and notation, and also review the results on large deviations for
(1) from Dupuis and Spiliopoulos 2010 that will be used. We work with the canonical filtered probability
space (Ω,F,P) equipped with a filtration Ft that satisfies the usual conditions, i.e., Ft is right continuous
and F0 contains all P-negligible sets. Regarding the SDE (1) we impose the following condition:
Condition 1 The function Q(y) is C2(Rd) with all derivatives continuous and periodic with respect to
the d−dimensional torus Y = Td = [0,λ ]d . The function V (x) is C1(Rd) with bounded and Lipschitz
continuous derivative.

For notational convenience we define the operator · : ·, where for two matrices A = [ai j],B = [bi j]

A : B .
= ∑

i, j
ai jbi j.

Consider the operator
L =−∇Q(y) ·∇+DI : ∇∇
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equipped with periodic boundary conditions. It is easy to see that there is an explicit formula for the
invariant density µ(y) corresponding to L , which is the Gibbs distribution

µ(y) =
1
L

e−
Q(y)

D , L =
∫

Y
e−

Q(y)
D dy. (4)

Under Condition 1, for each `∈ {1, . . . ,d} there exists a unique function χ`(y) that is twice differentiable
and λ−periodic in every direction in y, and which solves

L χ`(y) = (∇Q)`(y),
∫

Y
χ`(y)µ(dy) = 0. (5)

For a proof see Bensoussan, Lions and Papanicolaou 1978, Theorem 3.3.4. The equation (5) is known
as a cell problem. Let χ = (χ1, · · · ,χd). As we shall see below, χ plays a crucial role in the design of
asymptotically efficient importance sampling schemes for multiscale diffusions.

The large deviations principle for the solution of (1) together with the identification of a control that
achieves the large deviations lower bound was derived in Dupuis and Spiliopoulos 2010. This control is
closely related to the design of efficient importance sampling schemes (see Remark 4). We remark here that
in Dupuis and Spiliopoulos 2010 the authors consider the case of general drift and diffusion coefficients,
i.e., b(x,y) in place of −∇Q(y), c(x,y) in place of −∇V (x), and σ(x,y) in place of

√
2D as the diffusion

coefficient. Note that the large deviations principle (without the identification of a nearly optimal control)
for the particular case b = b(y),c = c(y),σ = σ(y) was previously derived in Freidlin and Sowers 1999,
and for b = c = 0,σ = σ(y) in Baldi 1991.
Theorem 2 Let {Xε ,ε > 0} be the unique strong solution to (1) and suppose that µ(dy) is the Gibbs
distribution (4) and χ(y) is defined by (5). Under Condition 1 {Xε ,ε > 0} satisfies a large deviations
principle with rate function

S0T (φ) =

{
1
2
∫ T

0 (φ̇(s)− r(φ(s)))T q−1(φ̇(s)− r(φ(s)))ds if φ ∈A C ([0,T ];Rd),φ(0) = x0

+∞ otherwise,

where

• r(x) =−
[∫

Y (I + ∂ χ

∂y )(y)µ(dy)
]

∇V (x),

• q = 2D
∫
Y (I + ∂ χ

∂y )(y)(I +
∂ χ

∂y )
T (y)µ(dy).

When the fluctuating part is separable, i.e., Q(y1,y2, . . . ,yd) = Q1(y1)+Q2(y2)+ · · ·+Qd(yd), the rate
function can be made more explicit. We summarize this result in the following corollary.
Corollary 3 Let {Xε ,ε > 0} be the unique strong solution to (1). Assume Q(y1,y2, · · · ,yd) = Q1(y1)+
Q2(y2)+ · · ·+Qd(yd). Under Condition 1, {Xε ,ε > 0} satisfies a large deviations principle with rate
function

S0T (φ) =

{
1
2
∫ 1

0 (φ̇(s)− r(φ(s)))T q−1(φ̇(s)− r(φ(s)))ds if φ ∈A C ([0,T ];Rd),φ(0) = x0

+∞ otherwise,

where

r(x) =−Θ∇V (x), q = 2DΘ, Θ = diag
[

1
Z1Ẑ1

, · · · , 1
Zd Ẑd

]
and for i = 1,2, . . . ,d

Zi =
∫
T

e−
Qi(yi)

D dyi, Ẑi =
∫
T

e
Qi(yi)

D dyi.
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Note that the effective diffusivity matrix q in Corollary 3 differs from the original one. In particular, q
is a diagonal matrix and one can check that the elements of q are always smaller than the corresponding
diagonal elements of the original diffusion matrix. In the original multiscale problem there are many small
energy barriers. These are not captured by the homogenized potential and hence must be accounted for in
the homogenized process, and it is the trapping from these numerous local minima that is responsible for
the reduction of the diffusion coefficient.

4 SUBSOLUTIONS TO A RELATED PDE

In this section, we recall the notion of a subsolution to a Hamilton-Jacobi-Bellman equation of the type

Ut(t,x)+ H̄(x,∇xU(t,x)) = 0
U(T,x) = h(x) (6)

where H̄(x, p) is a Hamiltonian. The use of subsolutions in the context of importance sampling will become
clear in Section 5.
Definition 1 A function Ū(t,x) : [0,T ]×Rd 7→R is said to be a classical subsolution to the HJB equation
(6) if

1. Ū is continuously differentiable,
2. ∂tŪ(t,x)+ H̄(x,∇xŪ(t,x))≥ 0 for every (t,x) ∈ (0,T )×Rd .
3. U(T,x)≤ h(x) for every x ∈ Rd .

5 METHODOLOGY AND MAIN RESULTS

Define the function
Φ

ε(t,x) = Et,x

[
e−

1
ε

h(Xε (T ))
]
,

where Xε is the strong solution to the uncontrolled process (1) with X(t) = x as the initial condition. Next
observe that the function

Uε(t,x) =−ε lnΦ
ε(t,x)

solves the Hamilton-Jacobi-Bellman (HJB) equation

∂tUε +Hε(x,x/δ ,∇xUε ,∇2
xUε) = 0

Uε(T,x) = h(x),

where
Hε(x,y, p,q) =

〈
− ε

δ
∇Q(y)−∇V (x), p

〉
−D‖p‖2 + εDI : q.

Uε(t,x) converges, as ε ↓ 0, to the unique bounded, continuous viscosity solution U(t,x) of the equation

Ut(t,x)+ H̄(x,∇xU(t,x)) = 0
U(T,x) = h(x) (7)

where
H̄(x, p) = 〈r(x), p〉− 1

2

∥∥∥q1/2 p
∥∥∥2

and where r(x) and q are as in Theorem 2. Note ε/δ →∞ and so the proof is not straightforward. However,
the result can be derived as in Buckdahn and Ichibara 2005 making use of the solution χ(y) to the cell
problem (5) and results in section VII.8 of Fleming and Soner 2006. Define the control

ū(t,x,y) =−
√

2D
(

I +
∂ χ

∂y
(y)
)T

∇xU(t,x). (8)
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Theorem 6 shows that, under appropriate regularity conditions, such a control gives rise to an asymp-
totically optimal estimator. Of course finding a solution to (8), even via numerical methods, is in general
difficult in high dimensions. However, it is known for problems without multiscale features that it is suf-
ficient to work with suitable subsolutions rather than solutions to the corresponding HJB equation Dupuis
and Wang 2007. This is true in the present setting as well, and in fact Theorem 6 shows that it is enough
to construct appropriate subsolutions to (7) (see Section 4). A classical solution to (7) is always a classical
subsolution to (7) (see Definition 1), and hence there is greater flexibility in the design of schemes.

Before giving precise statements we make two observations. Although stated with reference to the
solution to the HJB equation, the analogous statements apply to subsolutions and the schemes based on
them as well.
Remark 4 Assume that the function

G(t,x) = inf
φ∈C ([t,T ];Rd),φ(t)=x

[StT (φ)+h(φ(T ))] (9)

is continuous and that a minimizer of the right hand side exists for every (t,x) ∈ [0,T ]×Rd . Then by
Theorem II.7.2 in Fleming and Soner 2006 G(t,x) is the unique viscosity solution of (7), i.e., G =U .

For points (t,x) ∈ [0,T ]×Rd such that there exists a unique minimizer φ̄t,x of the right hand side of
(9), ū defined by (8) can be equivalently written as

ū(t,x,y) =
√

2D
(

I +
∂ χ

∂y
(y)
)T

q−1( ˙̄
φt,x− r(x)).

(In fact, this particular form of the control is useful in proving the large deviations lower bound Dupuis
and Spiliopoulos 2010).
Remark 5 Notice that the optimal control has the extra coefficient

√
2D
(

I +
∂ χ

∂y
(y)
)T

(q−1/2)T

multiplying the expression that one would expect based on just the rate function, i.e., −(q1/2)T ∇xU(t,x).
This reflects the fact that one cannot base an asymptotically optimal scheme on the homogenized problem
alone. Instead one needs to include more detailed information on the fast oscillatory coefficients. The
importance of this term will be numerically illustrated in Section 6.

From now on we write ū to refer to the control defined in (8) when U = Ū , where Ū is a classical
subsolution. For notational convenience, we sometimes abbreviate

ū(s) = ū
(

s,Xε
t,x(s),

Xε
t,x(s)
δ

)
.

Consider the family of distributions P̄ given by the change of measure

dP̄
dP

= Zt,T = e−
1

2ε

∫ T
t |ū(s)|2ds+ 1√

ε

∫ T
t ū(s)dW (s)

.

Note that P̄ is absolutely continuous with respect to P. By Girsanov’s Theorem the process W̄ (s) =
W (s)− 1√

ε

∫ s
t ū(ρ)dρ is a Brownian motion under measure P̄ and the dynamics of Xε under P̄ are given by

dXε
t,x(s) =

[
− ε

δ
∇Q
(

Xε
t,x(s)
δ

)
−∇V

(
Xε

t,x(s)
)
+
√

2Dū(s)
]

ds+
√

ε
√

2DdW̄ (s)

Xε
t,x(t) = x.
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By the standard change of measure

Et,x

[
e−

1
ε

h(Xε (T ))
]
= Ēt,x

[
e−

1
ε

h(Xε (T )) dP
dP̄

(Xε)

]
Define

Qε
h(t,x; ū) = Ēε

t,x

([
e−

1
ε

h(Xε (T )) dP
dP̄

(Xε(·))
]2
)
.

The main theorem of this paper is Theorem 6, whose proof can be found in Dupuis, Spiliopoulos and Wang
2011.
Theorem 6 Let h : Rd 7→ R be an arbitrary bounded and continuous function and assume Condition 1.
Consider the control ū(t,x,y) defined by (8) with a classical subsolution Ū in place of U . Then

liminf
ε→0

−ε lnQε
h(t,x; ū)≥ G(t,x)+Ū(t,x). (10)

Remark 7 Theorem 6 quantifies the speedup obtained using the subsolution approach. Standard Monte-
Carlo corresponds to a lower bound as in (10) with Ū(t,x) = 0. The optimal bound from (10) is twice
the value of the maximal subsolution (which of course is twice the value of the solution), 2G(t,x). Hence
a subsolution that corresponds to a bound between these two extremes identifies an important sampling
scheme that performs better than standard Monte-Carlo. It is also important to note that one can have
schemes corresponding to different subsolutions whose performance as measured by (10) is the same since
one can, in principle, construct different subsolutions whose values are the same at the point (t,x).

5.1 Simulation Scheme

In this subsection we summarize the proposed simulation scheme. Let X̄ε = X̄ε,ū be the solution to the
SDE

dX̄ε(s) =

[
− ε

δ
∇Q
(

X̄ε(s)
δ

)
−∇V (X̄ε(s))+

√
2Dū(s)

]
dt +
√

ε
√

2DdW (s) (11)

X̄(0) = x0.

The simulation scheme that estimates θt,x(ε)
.
= Et,x

[
e−

1
ε

h(Xε (T ))
]

is as follows.

1. Consider ū(t,x,y) as defined by (8) with U = Ū , where Ū is a classical subsolution.
2. Construct

Zū
j
.
= e−

1
2ε

∫ T
t

∣∣∣ū(s,X̄ε,ū
j (s), X̄ε,ū

j (s)
/

δ

)∣∣∣2ds− 1√
ε

∫ T
t ū
(

s,X̄ε,ū
j (s), X̄ε,ū

j (s)
/

δ

)
dWj(s),

and (Wj, X̄
ε,ū
j ) are the N independent samples generated from (11) with control

ū(s) = ū(s, X̄ε,ū
j (s), X̄ε,ū

j (s)
/

δ ).
3. Return the estimate

θ̂t,x(ε)
.
=

1
N

N

∑
j=1

[
e−

1
ε

h(X̄ε,ū
j )Zū

j

]
. (12)

6 SIMULATION RESULTS

In this section we test the performance of the proposed estimator (12) by estimating θ(ε)
.
=Et0,x0 [e

− 1
ε

h(Xε (T ))]
for a continuous function h. We consider a one dimensional example and assume that the diffusion process
Xε satisfies the first order Langevin equation (1).
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Let u2(t,x) =−
√

qGx(t,x). This is the control one would consider without fully taking into account
the homogenization phenomena. In other words, this control does not have the prefactor

√
2Dq(1+χy(y))

(see Remark 5).
We compare the proposed estimator θ̂1 given by (12) with the standard Monte-Carlo estimator θ̂0, and

and also with the estimator θ̂2 based on u2, i.e.,

θ̂0(ε) =
1
N

N

∑
j=1

[
e−

1
ε

h(Xε
j (1))

]
and θ̂2(ε) =

1
N

N

∑
j=1

[
e−

1
ε

h(X̄ε,u2
j (1))Zu2

j

]
.

As we will see the estimator given by (12) outperforms the other two estimators significantly as ε ↓ 0.
For purposes of illustration, we consider the potential function that is drawn in Figure 2, i.e,

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

x

 V
(x

)

Figure 2: V ε(x, x
δ
) = ε

(
cos( x

δ
)+ sin( x

δ
)
)
+ 1

2 x2 and V (x) = 1
2 x2 with ε = 0.1 and δ = 0.01.

V (x) =
1
2

x2

Q(y) = cos(y)+ sin(y)

The function h(·) is chosen to be

h(x) =

{
(x−1)2 x≥ 0,
(x+1)2 x < 0.

The period is λ = 2π . Let κ = 4π2/LL̂. The effective drift r(x) and diffusion q are respectively

r(x) =−κx, q = 2Dκ.

The limiting HJB equation (7) is

Ut(t,x)−κxUx(t,x)−κD|Ux(t,x)|2 = 0,
U(T,x) = h(x).

Under appropriate conditions (which are satisfied here) one can represent the unique viscosity solution to
this equation by the value function

G(t,x) = inf
φ∈C ([t,T ];Rd),φ(t)=x

[StT (φ)+h(φ(T ))] ,
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where StT (·) is given by Corollary 3 with r(x) =−κx and q = 2Dκ . One can solve this variational problem
explicitly and obtain

U(t,x) =
(eκT −|x|eκt)2

−2De2κt +(1+2D)e2κT .

One can fit this problem into the subsolution framework by defining

U1(t,x) =
(eκT − xeκt)2

−2De2κt +(1+2D)e2κT , U2(t,x) =
(eκT + xeκt)2

−2De2κt +(1+2D)e2κT

and then considering the subsolution Ū(t,x) =U1(t,x)∧U2(t,x). In general, one needs to mollify such a Ū
in order to produce a smooth subsolution. However, it is known (see Vanden-Eijnden and Weare 2009 for
an analogous situation) that the bound on the performance is still valid if the subsolution is the minimum
of two classical sense solutions with a single discontinuity interface.

The optimal control is given by ū(t,x,y) =−
√

2D(1+ ∂ χ

∂y (y))Ūx(t,x). Observing that

1+
∂ χ

∂y
(y) =

2π

L̂
eQ(y)/D =

2π

L̂
e(cos(y)+sin(y))/D,

we obtain the expression for the optimal control

u1(t,x)
.
= ū(t,x) =

−
√

2D 2π

L̂
e(cos( x

δ
)+sin( x

δ
))/D −2eκt(eκT−xeκt)

−2De2κt+(1+2D)e2κT x > 0

−
√

2D 2π

L̂
e(cos( x

δ
)+sin( x

δ
))/D 2eκt(eκT+xeκt)

−2De2κt+(1+2D)e2κT x < 0
.

On the other hand the control u2 is

u2(t,x) =

−
√

q −2eκt(eκT−xeκt)
−2De2κt+(1+2D)e2κT x > 0

−√q 2eκt(eκT+xeκt)
−2De2κt+(1+2D)e2κT x < 0

.

We choose D = 1, initial point (t0,x0) = (0,0.05) and final time T = 1, and calculate that

L̂ = 9.83999, κ =
4π2

LL̂
= 0.407728.

Before presenting the simulation results we comment on the simulation aspect of the problem. Let
Y ε

n denote the numerical approximation to Xε
t with weak order of convergence p. For such a numerical

scheme one has the following error bound.
Theorem 8 If ε,δ and the discretization step ∆ are such that ∆ε/δ 2� 1, then for every T > 0 and every
smooth function f with compact support, there exists h0 > 0 and a constant C0 that is independent of ε,δ
and ∆ such that whenever ∆ε/δ 2 < h0

sup
n≤T/∆

|Ex0 f (Xε
tn)−Ex0 f (Y ε

n )| ≤C0
(
∆ε/δ

2)p
. (13)

The proof of this theorem follows standard arguments (see for example E, Liu and Vanden-Eijnden
2005 for a proof in an analogous situation). It illustrates the computational difficulty of the problem.
Consider a fixed error tolerance ζ . The error bound (13) indicates that we would need a time step of order

∆ = O
(

δ 2

ε
ζ

1/p
)
.
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The corresponding computational cost per unit of time is proportional to N = 1/∆.
In the following table we summarize some simulation results. We used a predictor-corrector Euler

scheme to simulate trajectories of (1) (or of the associated control SDE). By Theorem 8 we know that
the error in the Euler approximation is bounded by the term ∆ε/δ 2, where ∆ is the discretization step.
For each choice of ε and δ we choose ∆ so that the aforementioned error bound is of the order of 0.001.
In other words, we set ∆ = 0.001(δ 2/ε). Since δ 2/ε → 0 as ε → 0 by assumption (2), one should make
the discretization step ∆ smaller as ε gets smaller. Simulations were done using parallel computing in
the C programming language. The simulation results are based on N = 107 trajectories and, as numerical
experimentation indicated, the reported values for the accelerated Monte-Carlo estimator and its estimated
relative error are stable. We used Mersenne Twister (Matsumoto and Nishimura 1998) for the random
number generator.

The measure used to compare the different estimators is the relative error of the estimator. In order
to distinguish among the different Monte-Carlo procedures, we denote the relative error for control u = 0
(standard Monte-Carlo), u = u1 (importance sampling with the optimal control) and u = u2 (importance
sampling without taking into consideration the homogenization effect) by ρε

0 , ρε
1 , and ρε

2 , respectively.
Let Var(θ̂i(ε)) be the variance of the estimator based on the change of measure induced by the control

ui for i = 0,1,2. The corresponding relative error of this estimator is defined by

ρ
ε
i
.
= ρ(θ̂i(ε)) =

√
Var(θ̂i(ε))

θ(ε)
=

1√
N

√√√√√√√ Ēε
t0,x0

[
e−

2
ε

h(Xε (T ))
(

dP
dP̄i

(Xε
t0,x0)

)2
]

(
Eε

t0,x0

[
e−

1
ε

h(Xε (T ))
])2 −1. (14)

Theorem 6 then implies that for small ε , ρε
1 will remain close to 0 whereas for i = 0,2, ρε

i will get larger
as ε gets smaller.

Notice however that we do not have a closed form expression for θ(ε)= Ēε
t0,x0

[θ̂i(ε)] =Eε
t0,x0

[e−
1
ε

h(Xε (T ))],
the true value of the quantity that we want to estimate or for its variance. Thus, we cannot compute (14)
in practice. Instead, we compute the estimated relative error

ρ̂
ε
i
.
= ρ̂(θ̂i(ε)) =

√
̂Var(θ̂i(ε))

θ̂1(ε)
.

The corresponding results are in Table 1.

Table 1: Comparison table.

No. ε δ ε/δ θ̂1(ε) ρ̂ε
0 ρ̂ε

1 ρ̂ε
2

1 0.25 0.1 2.5 2.25e−01 3.36e−4 1.76e−3 6.34e−4
2 0.125 0.04 3.125 3.65e−02 8.40e−4 1.80e−3 1.43e−3
3 0.0625 0.015625 4 8.75e−04 1.06e−2 1.29e−3 4.08e−3
4 0.03125 0.007 4.46 6.87e−07 4.47e−2 8.00e−4 3.32e−2
5 0.025 0.004 6.25 1.61e−08 6.85e−2 7.55e−4 3.06e−2
6 0.02 0.002 10 1.99e−10 4.09e−1 3.82e−4 4.97e−2
7 0.015 0.0013 11.54 1.37e−13 2.53e−1 3.01e−4 1.86e−1

As we see from Table 1, the estimator corresponding to the change of measure induced by the control
u1 outperforms both the standard Monte Carlo estimator (u = 0) and the estimator corresponding to the
change of measure induced by the control u2 as ε gets smaller. In particular, as ε gets smaller, ρ̂ε

1 is
considerably smaller than both ρ̂ε

0 and ρ̂ε
2 . Moreover, in contrast to the estimated relative errors ρ̂ε

0 and
ρ̂ε

2 , ρ̂ε
1 decreases as ε,δ get smaller while ε/δ increases.
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