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ABSTRACT 

Energy consumption in commercial buildings and the resulting production of green house gas emissions 
continues to be one of the major challenges facing the United States. With more than 80 percent of the 
energy consumed by buildings occurring during their operational phase, most policies and programs over 
the last decade have focused on the design requirements for new and renovated buildings to ensure reduc-
tions in energy use during building operation. These policies are primarily focusing on the technical as-
pect of building systems, ignoring the role played by occupants’ behavior, and most importantly how to 
influence this behavior to reduce energy consumption. Various approaches have proven to be effective in 
inducing behavioral changes such as energy conservation campaigns, financial incentives, feedback tech-
niques, and others. This paper presents an agent-based approach to modeling these methods, simulating 
their impact on occupants’ behavior, and predicting their effect on building energy use and costs. 

1 INTRODUCTION 

The building sector accounts for 30 to 40 percent of global energy use and can play a key role in mitigat-
ing the impact and risks of global warming (UNEP 2007). More than 80 percent of the energy consumed 
in buildings occur during their operating phase. Therefore, governments have been utilizing a variety of 
policies and instruments to support energy reduction during building operation as an immediate and cost-
effective way to reduce greenhouse gas emissions (Carrico and Riemer 2011, Allcott and Mullainathan 
2010, UNEP 2007). 

In the United States (US), commercial buildings in particular present an important opportunity for en-
ergy savings. Every year, nearly 5 million commercial buildings consume 19 percent of the total national 
energy use, emit more than one billion metric tons of carbon dioxide, and result in $95 billion in energy 
costs (US EIA 2003). These facts highlight the economic and environmental impact of potential energy 
reductions in the commercial building sector. 

Two different approaches can typically be used to reduce buildings’ energy use. First, the technologi-
cal approach consists of investing in more energy efficient building systems and equipment. Second, the 
behavioral approach focuses on encouraging building occupants to adopt energy saving practices (Carrico 
and Riemer 2011; Dietz et al. 2009; Henryson, Hakansson, and Pyrko 2000). US policies and programs 
over the past decade have solely focused on energy reduction through technology, overlooking the signif-
icant potential energy savings from occupancy behavioral changes (ARRA 2009, EPA 2005). The main 
focus on the ‘technological’ rather than ‘behavioral’ energy use solutions is in part due to the higher level 
of predictability associated with technology related investments (Carrico and Riemer 2011; Henryson, 
Hakansson, and Pyrko 2000). For instance, one would argue that it is easier to predict building energy 

816978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Azar and Menassa 
 

savings resulting from replacing incandescent light bulbs with fluorescent ones, rather than trying to in-
fluence occupants’ energy consumption characteristics.     

However, literature has proven that several behavioral energy conservation techniques are effective 
and result in significant energy and monetary savings (Peschiera, Taylor, and Siegel 2010; Jackson 2005; 
Staats, Harland, and Wilke 2004; Staats, van Leeuwen, and Wit 2000). The most commonly used tools 
are energy informational feedback, energy social marketing campaigns, and financial incentives. Stake-
holders (e.g., building owners) can directly benefit from these tools to reach their energy savings goals. 
However, in order to optimize the choice of methods, they must be well-informed and able to predict and 
simulate the impact of these energy conservation interventions on their specific buildings (CRS 2009; 
Henryson, Hakansson, and Pyrko 2000). 

2 OBJECTIVES 

The aim of this paper is to present a new framework that models the impact of different energy conserva-
tion interventions on building energy use and associated energy costs. The considered life-cycle approach 
to energy consumption in buildings allows for fair and comprehensive comparisons between various en-
ergy conservation alternatives. So, the main outcome of this research is a computational model that (1) 
predicts the initial building energy use, (2) simulates the impact of energy conservation interventions on 
the building occupants’ energy use, (3) calculates the changing energy consumption levels, and (4) calcu-
lates the life-cycle energy costs paid by the building owner, which include energy bills and the implemen-
tation costs of the energy conservation interventions. 

3 BACKGROUND 

The first step in this research was to perform an extensive literature review to evaluate and understand: 
(1) the impact of occupants on energy use, (2) the different factors that might cause occupants energy be-
havioral changes, and (3) the different energy modeling techniques typically used to predict building en-
ergy use. 

3.1 Impact of Occupants on Building Energy Use 

Several studies have proven that building energy consumption is highly dependent on occupants’ energy 
use behavior, and that significant energy savings can be obtained if this behavior was modified (Yudelson 
2010, Dell’lsola and Kirk 2003, Soebarto and Williamson 2001). In commercial buildings, more energy is 
often used during non-working hours (56 percent) than during working hours (44 percent) mainly due to 
occupancy related actions (Masoso and Groblera 2009). For instance, Sanchez et al. (2007) and Webber et 
al. (2006) showed that less than 50 percent of office building equipment is switched off by building occu-
pants during non-operating hours, resulting in unnecessary energy use. Another study by Bourgeois, 
Reinhart, and Macdonald (2006) considered light switching patterns of occupants and the resulting impact 
on building energy use. Results from this study showed that occupants that actively seek day lighting con-
sume 40 percent less energy when compared to occupants who constantly rely on artificial lighting. All of 
these studies highlight the significant energy savings potential in commercial buildings, and the motiva-
tion to change energy use behavior among occupants. To address these occupancy related issues, several 
energy conservation interventions are available in literature and have proven to result in building energy 
savings. 

3.2 Energy Conservation Interventions 

The most common and effective energy conservation interventions typically used in commercial buildings 
are: (1) feedback, (2) occupants energy education, and (3) energy social marketing campaigns. 

First, feedback techniques are believed to be among the most consistent and efficient energy conser-
vation interventions. Many studies in literature show that sharing energy consumption information of a 
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building with its occupants can lead to significant energy savings. This is particularly important in com-
mercial buildings, where there are typically no financial incentives for occupants to save energy (Carrico 
and Reimer 2011; Faruqui, Sergici, and Sharif 2010; Peschiera, Taylor, and Siegel 2010; Staats, Harland, 
and Wilke 2004). Faruqui, Sergici, and Sharif (2010) evaluated the impact of this technique by gathering 
information about 12 feedback pilot programs that were conducted on residential buildings in North 
America and abroad. Energy savings from these programs ranged from 3 to 13 percent, with an average 
of 7 percent. Carrico and Reimer (2011) tested feedback on 24 office-type commercial buildings, also 
leading to an average of 7 percent in energy savings. 
 Second, occupants energy education consists of increasing building occupants’ knowledge of envi-
ronmental problems and of energy saving practices they can adopt to reduce their impact on the environ-
ment. It is assumed that more knowledge will result in changes in attitudes, which in turn affects behav-
ior. Educating occupants is typically achieved through energy conservation trainings/workshops, or 
through specific occupants that are assigned to promote energy conservation (Steg and Vlek 2009; Abra-
hamse et al. 2005; Lehman and Geller 2004). This technique is on average less effective than other meth-
ods such as feedback, which was confirmed by Carrico and Reimer (2011) who observed an efficiency of 
only 4 percent in office-type commercial buildings. 
 Third, social marketing is “the use of marketing principles and techniques to influence a target audi-
ence to voluntarily accept, reject, modify, or abandon a behavior for the benefit of individuals, groups, or 
society as a whole” (Kotler, Roberto, and Lee 2002). In this research, energy social marketing represents 
social marketing campaigns that promote good energy consumption practices to reduce building energy 
consumption. Many social marketing programs that are found in literature resulted in important energy 
savings. These programs typically applied the McKenzie–Mohr's principles of Community-Based Social 
Marketing (McKenzie-Mohr 2000). The best known and documented example is the Ecoteams program 
established internationally as part of the Global Action Plan for the Earth to reduce household resource 
consumption. This program successfully induced a reduction of 9 to 17 percent for domestic energy con-
sumption in the US cities studied (Pickens 2002). 

It is also possible that occupants change behavior and adopt in some cases bad energy consumption 
habits, due to the often called ‘rebound effect’ (Sorrell, Dimitropoulos, and Sommerville 2009). For in-
stance, occupants might tend to use more electric lighting following the installation of energy saving 
bulbs, assuming that their actions have less impact on the environment. 

After studying the impact of occupants’ behavior on building energy use and evaluating different be-
havioral changing techniques, the next step was to review the most common tools that model energy con-
sumption in building. 

3.3 Energy Modeling Techniques and Tools 

A number of empirical and simulation models exist and are widely used during the design phase of build-
ings to predict their energy consumption during operation. The most common software programs are En-
ergyPlus, eQuest, and Energy-10 (SBCI 2010, EnergyPlus 2009, eQuest 2009). However, these software 
provide very little flexibility when accounting for occupants, ignoring the impact of their behavior on 
building energy use. They assume that all building occupants have the same energy consumption behav-
ior, and that occupants energy use characteristics are constant over time (Hoes et al. 2009; Turner and 
Frankel 2008). This is believed to be the main limitation of traditional energy modeling software, result-
ing in large discrepancies (exceeding 30 percent) between their generated energy predictions and actual 
energy consumption levels (Yudelson 2010, Dell’lsola and Kirk 2003, Soebarto and Williamson 2001). 
As a result, these software programs cannot be used to evaluate energy conservation interventions. There-
fore, a new type of energy modeling tools is needed that is capable of modeling occupants in a dynamic 
way, accounting for different energy consumption patterns, and allowing for changes in occupants’ ener-
gy use characteristics over time.  
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4 METHODOLOGY 

Three main steps were required to achieve this study’s objectives: (1) study different simulation tech-
niques and choose the most appropriate one to model occupants behavior, (2) determine different levels of 
energy consumption in buildings, and (3) build a computational model to predict energy use and simulate 
the impact of energy conservation interventions on building energy use and cost. 

4.1 Choose a Simulation Technique/Software 

Three main simulation techniques were identified in literature that are capable of modeling the social be-
havioral aspects of occupants:  Discrete Events (DE), System Dynamics (SD), and Agent-Based Model-
ing (ABM). While DE and SD are considered to a certain extent as centralized structures requiring the us-
er to define the global system behavior (systems), ABM is decentralized where the modeler defines 
behavior at an individual level. In this ‘bottom-up’ modeling method, the global behavior emerges as a 
result of many individuals (each following its own behavior rules) interacting with each other and with 
their environment (Gilbert 2008; Edmonds, Hernández, and Troitzsch 2007; Borshchev and Filippov 
2004). More specifically, agent-based models consist of individual agents, commonly implemented in 
software as objects. Agent objects have states and rules of behavior. Running such models simply 
amounts to instantiating an agent population, letting the agents interact, and monitoring what happens 
(Axtell 2000). These simulation characteristics led to the choice of ABM as the simulation framework for 
this research, where building occupants can be modeled as agents with specific attributes (e.g., energy 
consumption behaviors) who might be subjected to energy conservation interventions that change their 
attributes over time (e.g., reduce energy consumption). 

The Agent-Based Modeling platform that was chosen for this research is the widely used simulation 
software Anylogic (XJ Technologies 2009; Borshchev and Filippov 2004). The choice of Anylogic was 
mainly due to its Java-based environment that allows the user to develop custom Java codes, and integrate 
them in pre-built simulation blocks (XJ Technologies 2009). This was essential in this research to opti-
mize and customize the proposed model in order to simulate the complex behavioral aspects of building 
occupants. Before building the model, it was necessary to determine different energy consumption levels 
of building occupants. This is key to translating the change in behavior of occupants due to energy con-
servation interventions to a change in building energy use. 

4.2 Determine Levels of Energy Use 

The goal of this section is to determine different occupants’ energy use patterns to represent the different 
and changing occupants’ energy characteristics over time. Therefore, three different types of occupants 
energy behavior were considered: Medium Energy Consumers (MEC), High Energy Consumers (HEC), 
and Low Energy Consumers (LEC). First, MEC represent building occupants that consume energy at 
normal rates without being influenced by factors that induce decreases (e.g., feedback, energy conserva-
tion education), or increases in energy use (e.g., rebound effect). Second, LEC represent occupants that 
were successfully influenced to reduce their energy consumption, or occupants that initially are energy ef-
ficient and do not need incentives to adopt energy saving practices. Finally, HEC represent the other ex-
treme with occupants that over consume energy. These assumptions were made based on a study by Ac-
centure (2010) that classified energy consumers in different countries around the world into eight 
different categories based on their attitude toward energy management programs. However, after discus-
sions with industry professionals, it was assumed in this paper that three categories of occupants are ade-
quate to observe differences in energy consumption levels. These categories also help understand the 
maximum and minimum energy consumption levels that a building under study could reach. For instance, 
to represent a typical building with average energy consumption rates, all of its occupants can be assumed 
MEC. Then, by applying energy conservation techniques, some of the building occupants might change 
behavior and become LEC. This could lead to a drop in energy consumption, reaching a minimum when 
all of the occupants become LEC.  

819



Azar and Menassa 
 

 Ideally, the energy use rates for the three categories of occupants should be determined on a case by 
case basis, depending on building characteristics, weather conditions, building operations, etc. However, 
national buildings energy use averages were used in this study to estimate the rates of energy use for 
MEC, HEC, and LEC. These rates are summarized in Table 1, which was adapted from ‘2003 Commer-
cial Buildings Energy Consumption Survey’ of the US Energy Information Administration (US EIA 
2003). This portion of the survey was based on data collected from 4,859 office buildings, resulting in 
statistical significance for the numbers presented in Table 1. The ‘Median’ values were first assumed to 
represent MEC, who typically have an average (non-extreme) energy consumption behavior. The ‘25th 
percentile’ values represent the lower segment of the collected energy data, and were therefore associated 
with LEC. Finally, the ‘75th percentile’ represent high energy use rates, and were assigned to HEC. 

Table1: Energy consumption rates 

Type of Office 
Building 

Annual Electric Consumption 
[kWh / person] 

Annual Gas Consumption 
[Btu / person] 

25th  
Percentile 

Median 
75th  

Percentile 
25th  

Percentile 
Median 

75th  
Percentile 

LEC MEC HEC LEC MEC HEC 

Administrative /  
Professional 

2,901.1 4,763.0 6,495.0 8,093,376.2 15,830,999.6 26,147,830.8 

Bank/Financial 6,873.0 10,522.8 13,983.0 6,961,211.4 11,537,112.6 27,358,047.6 

Government 3,102.3 4,098.1 7,391.9 9,007,508.9 14,946,958.0 20,335,729.7 

Other Office 2,067.8 4,262.2 6,541.0 6,544,249.4 14,605,377.8 24,226,724.6 

4.3 Build a Computational Simulation Model 

The next step was to build an agent-based model that allows the user to model a certain office building, 
schedule energy conservation interventions that the building occupants will be subjected to, and finally 
predict and quantify the impact of these interventions on building energy use while calculating the associ-
ated monetary costs. In this section, the model inputs are first presented, followed by the model’s 
flowchart or the simulation engine, and finally the model outputs showing the type of information gener-
ated by the proposed model. 

4.3.1 Model Inputs 

Three levels of inputs are required by the user to run the proposed agent-based model. The first level is 
the building/occupants level where the user is required to specify the type of office building under study 
(e.g., Administrative, bank/financial, government ,etc.), and enter the average number of people occupy-
ing the building. By default, it is assumed that the building occupants are initially MEC, showing no ex-
treme (high or low) energy consumption patterns. However, depending on the level of information availa-
ble about the occupants, the user can specify their specific energy consumption characteristics by 
determining how many of them are MEC, HEC, and LEC. It is important to note that these numbers can 
change throughout the simulation due to energy conservation interventions as discussed later. These 
building/occupants related inputs, in addition to the energy use rates of Table 1, are used to calculate the 
average, the maximum, and the minimum energy consumption levels of the building under study. 

The second level of inputs is used for the energy cost calculation. At this stage, the user is required to 
enter the cost per energy unit of electricity and gas, in addition to the ‘opportunity rate of return’ which is 
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the discount rate that could be earned from some alternative investment opportunity (Dell’Isola and Kirk 
2003). 

The third and final level of inputs is related to the type, frequency, effectiveness, and cost of energy 
conservation interventions. This is where the user can schedule events that typically induce changes in 
occupants energy use behavior. More specifically, four types of energy behavior changing techniques can 
be modeled: (1) Feedback, (2) Occupants energy education, (3) Energy social marketing campaigns, (4) 
Rebound effect. While the first three methods typically induce reductions in energy consumption, the re-
bound effect represents a possible counter-reaction of occupants with an increase in energy use (Refer to 
the ‘Background’ section for more details). 

In the developed model, default values were set for all of the above-mentioned parameters to help the 
user run the model without necessarily knowing the values of all the required inputs. So, the user can cus-
tomize the model by specifying his/her own parameters, or use the default suggested values. These values 
result from the extensive literature review that was performed for this study to gather information from 
national energy databases in addition to academic works/research. For instance, the default prices of elec-
tricity and gas that were used are $0.1011/kWh and $6.04/10^6 Btu, which were obtained from the Power 
Monthly Report of the US Energy Information Administration (US EIA 2011). Another example is the 
effectiveness of feedback interventions techniques, which was obtained from the studies of Carrico and 
Reimer (2011) and Faruqui, Sergici, and Sharif (2010) that both observed an average reduction in energy 
use by 7 percent when applying these feedback methods. 

4.3.2 Model’s Flowchart 

The model flowchart is shown in Figure 1 where a four-step iterative process was defined to ultimately 
generate energy consumption estimates and associated costs. In step 1, the energy consumption rates for 
MEC, HEC, and LEC that were shown in Table 1 are imported into the model to be used at later stages. In 
step 2, the model checks if an energy conservation intervention was scheduled by the user for this specific 
time step such as feedback, occupants energy education, or energy social marketing campaigns. In that 
case, the model calculates the changes in occupants’ behavior expressed by the conversion of occupants 
towards less energy consuming categories. More specially, a portion of HEC become MEC, and a portion 
of MEC become LEC. It is important to note that the actual number of occupants changing behavior de-
pends on the efficiency of the specific energy conservation intervention occurring. This parameter is spec-
ified by the user before the start of the simulation as was discussed in the previous section. At the end of 
Step 2, the model updates the number of MEC, LEC, and HEC in the building under study. In step 3, the 
model checks if a rebound effect is occurring at this time step, leading to an change in behavior and an in-
crease in energy consumption. In this case, the conversion of occupants occurs towards the high energy 
consumption categories, where some LEC become MEC and some MEC convert to HEC. Here again, the 
occurrence time and the impact of  the rebound effect is previously specified by the user. In step 4, the 
model combines the updated number of MEC, LEC, and HEC and applies the energy use rates that were 
entered in Step 1 in order to calculate and plot the total building energy use for this time step. Then, the 
model generates the corresponding energy costs using the financial-related inputs that were entered by the 
user (Refer to section 3.3.1 for more details). Finally, the model moves to the next time-step by going 
back to Step 2, and keeps repeating this cycle until the total simulation time is reached. 

4.3.3 Model’s Outputs 

A case study example was used in this section to illustrate the proposed model’s capabilities. The building 
that was modeled is a 5-story 647,000 sq. ft. (approximately 60,000 sq. m.) commercial office building 
located in Pittsburgh, PA, and accommodating on average 1,800 occupants. These building characteristics 
were obtained from the US DOE’s ‘Buildings Database’ (US DOE 2011). 
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Figure 1: Proposed model flowchart 

 In this example, two energy behavioral changing events were scheduled to show how the model simu-
lates the potential changes in occupants behavior and the resulting impacts on energy use and cost. More 
specifically, one ‘Feedback’ event was scheduled at month 12, which is expected to reduce energy con-
sumption, and one ‘Rebound Effect’ was scheduled at month 24 showing the opposite case of potential 
increases in energy use. So, the first intervention occurs at month 12 and involves installing energy feed-
back tools to inform occupants about their energy consumption levels (e.g., big screen with real-time en-
ergy use data). The capital cost of installing these tools was estimated at $40,000 for this example, and the 
effectiveness of the ‘Feedback’ and the ‘Rebound effects’ at 7 percent and 4 percent respectively (Refer 
to section 3.3.1 for more details about the model inputs). It was also assumed in this example that build-
ing occupants are initially MEC, reflecting average energy consumption rates. However, once subjected 
to the above-mentioned events, some of these occupants are expected to change behavior and convert to 
the LEC or HEC categories. The total simulation time for this example was 36 months. 
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Figure 2 shows the proposed model output interface with four different graphs. Graph A illustrates 

the number of MEC, HEC, and LEC over time, representing the energy consumption behavior of the 
building occupants. Graph B plots the total monthly energy consumption level for the building. Graph C 
shows the estimated costs paid by the building owners including the energy costs in addition to the capital 
cost of implementing the ‘Feedback’ tools. Finally, as shown in Graph D, these monthly costs are dis-
counted to the present time (2011) to show the net present value of the total costs in 2011 equivalent dol-
lars. Two key moments can be identified in Figure 2 where occupants’ behaviors have changed. These 
variations were specifically triggered by the two energy conservation events scheduled for months 12 and 
24. 

 

 

Figure 2: Proposed Model Output 

 First, the ‘Feedback’ event at month 12 caused the conversion of some MEC to LEC (Refer to Graph 
A of Figure 2). This change in behavior resulted in a drop in the total energy consumption by 7 percent as 
shown in Graph B. The initial cost of $40,000 associated with the ‘Feedback’ implementation caused a 
sudden increase in the total costs at month 12, followed by the decrease in monthly costs due to the reduc-
tion in energy use (Refer to Graph C). 

Second, the ‘Rebound Effect’ that was scheduled at month 24 caused in this case an increase in the 
number of HEC (Graph A). This change in behavior provoked an increase of 4 percent in the building en-
ergy consumption (Graph B), and a corresponding increase in the monthly and total energy costs paid by 
the building owner (Graphs C and D respectively). 

4.3.4 Sensitivity Analysis 

This section shows an example of the sensitivity analyses that were performed to test the model’s reaction 
to changes in input parameters. In accordance with the study’s objectives, a specific emphasis was put on 
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the role of occupants by varying parameters related to their behavior and interactions, and ultimately 
tracking the resulting changes in energy use and costs. The analysis was performed on the same building 
used in the previous section, with one base case and four different scenarios considered. A summary of 
the input parameters that were varied for this analysis in addition to the output results can be found in Ta-
ble 2. First, the base case represents the case with no energy behavioral changing methods. Therefore, all 
of the occupants in this case were assumed to remain MEC throughout the simulation time. Scenario 1 
has a ‘Feedback’ conservation intervention scheduled at month 12. The second scenario is similar to the 
first one but with a capital cost of $40,000 for the ‘Feedback’ intervention. Scenarios 3 and 4 have an ad-
ditional ‘Rebound Effect’ scheduled from month 24, with respective effectiveness of 2 and 5 percent. 

Table 2: Sensitivity Analysis 

Input Parameters Base Case Scenario 1 Scenario 2 Scenario 3 Scenario 4 

‘Feedback’ Occurrence None Month 12 Month 12 Month 12 Month 12 

‘Feedback’ Effectiveness None 7 percent 7 percent 7 percent 7 percent 

‘Feedback’ Initial Cost None $0  $40,000  $40,000  $40,000  

‘Rebound Effect’ Occurrence None None None Month 24 Month 24 

‘Rebound Effect’ Effectiveness None None None 2 percent 5 percent 

Output Results Base Case Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Total Energy Consumption 
(36 months) [Btu x 10^6] 

173,245 165,185 165,185 166,247 167,863 

Net Present Value Cost 
[$ x 10^3] 

2,585 2,478 2,512 2,524 2,543 

  
As expected, the addition of a ‘Feedback’ intervention for scenarios 1 and 2 resulted in a drop in en-

ergy consumption from the base case. Energy consumption increased in scenarios 3 and reached a maxi-
mum in scenario 4 when ‘Rebound Effects’ were added with 2 and 5 percent efficiencies respectively. 
Similarly for the net present value cost, the minimum value was observed in scenario 1 where a ‘Feed-
back’ intervention occurred with no initial implementation costs. This cost increased for scenario 2 where 
an implementation cost of $40,000 was considered for the ‘Feedback’ intervention. The total cost kept in-
creasing in Scenario 3 by adding a rebound effect with a 2 percent efficiency. Finally, the highest cost 
was observed in Scenario 4 where a ‘Rebound’ effectiveness was increased to 5 percent. 

The results from Table 2 confirmed that the model is responding in a logical manner to changes in the 
above input parameters. This is just one example of the several sensitivity analyses that were performed 
to verify the model and validate its technical/computational performance. As part of future research, real 
data will be collected and used to improve the model, and ultimately validate its generated outputs. 

5 CONCLUSION 

In conclusion, reducing energy consumption in commercial buildings has become a major objective for 
the US government, as part of a national and global effort to reduce greenhouse gases emissions (ARRA 
2009, UNEP 2007, EPA 2005). Most of the efforts that have been put so far to reach this goal have fo-
cused on ‘technological’ solutions, overlooking ‘behavioral changing’ options that have also proven to be 
effective (Carrico and Riemer 2011; Dietz et al. 2009; Henryson, Hakansson, and Pyrko 2000). These en-
ergy conservation interventions include, but are not limited to: Feedback techniques, energy social mar-
keting campaigns, occupants energy education, and financial incentives (Peschiera, Taylor, and Siegel 
2010; Jackson 2005; Staats, Harland, and Wilke 2004; Staats, van Leeuwen, and Wit 2000). 
 The aim of this research was to present a new framework to study and evaluate the impact of these 
energy conservation techniques on commercial buildings. To achieve this goal, a computational agent-
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based model was developed, which allows the user to model a certain commercial building environment, 
and test the impact of different energy conservation interventions on its energy use and associated costs. 
This life-cycle cost approach can mostly benefit decision-makers such as building owners or energy poli-
cy makers to make more informed decision about investing in different energy conservation methods, and 
ultimately reaching their energy saving goals. 

The proposed agent-based model presents a good foundation for an eventual software program that 
can be disseminated for real-life applications. The model has so far been verified but still needs validation 
to ensure an accurate and reliable representation of the buildings under study. Future research also in-
cludes expanding the model to include more types of commercial buildings, additional and more detailed 
energy conservation interventions, and finally more advanced economic evaluation methods. 
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