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ABSTRACT 

In this paper, we present an approach to automatically create an analytical process time model for cluster 
tools using real-world data. The proposed model combines advantages of simple throughput models and 
discrete event simulation models. We consider the effect of small lot size and the slow down effect occur-
ring when simultaneously processed lots interfere with each other. Especially the use of Slow Down Fac-
tors depending on a certain recipe combination and start delay adequately mirrors sequential and parallel 
processing mode. We also describe a modeling method that automatically leads to parameterized models 
with high accuracy. This study presents evaluation results gained from models, which we create from and 
test against real-world data gathered from past equipment events. We discuss exemplary processing be-
haviors by means of three examples. We conclude that the proposed analytical cluster tool model is suita-
ble to predict process times with respect to accuracy and prediction coverage.  

1 INTRODUCTION 

Semiconductor manufacturers intensified exploring new approaches in the field of operational resource 
scheduling, which is supposed to replace dispatching systems as state of the art. The application of lot 
scheduling on the shop floor, powered by optimization techniques, promises remarkable improvements in 
reducing lot cycle times as well as increasing lot due date compliance. Lot scheduling solutions require 
equipment models, which enable the simulation of lot schedules and thus their evaluation with respect to 
targeted objectives. 

Modeling experts especially focus on cluster tools because of their wide spread use in manufacturing 
and their complex processing behavior. In practice we either face complex models based on discrete event 
simulation (DES) or those easier throughput models relying on simple formulae and bottleneck condi-
tions. But both approaches do not fit the needs of operational scheduling. DES models perform too slow 
and simple throughput models lack the necessary details. The analytical equipment model seems to be a 
good trade-off between accuracy and speed. Regardless the underlying modeling approach, creating 
equipment models is very time consuming, especially when real-world data serves to parameterize the 
models. 

In this article, we present an analytical process time model for a representative architecture of cluster 
tools as well as a method that automatically leads to parameterized equipment models using real-world 
data. The idea of automated modeling considerably saves time, but requires adequate outlier handling 
procedures. The described equipment model accounts for the effect of lot size as well as for slow down 
effects, which occur when simultaneously processed lots interfere with each other. We use the resulting 
model to predict processing times and completion dates, but not the makespan. We describe observed 
processing behaviors with the aid of three exemplary pieces of etching-equipment. As a result of this 
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study, we make a statement on how the suggested model/method is suitable for equipment simulation, es-
pecially with respect to accuracy of process time predictions. This study aims to lay the foundations for 
practically simulating cluster tools by use of an analytical model under real-world conditions.  

1.1 Cluster Tool Description 

As depicted in Figure 1, a cluster tool effectively combines a number of process chambers to a single ma-
chine, basically composed of mainframe and attached Equipment Front End Module (EFEM). The main-
frame consists of a central wafer handling robot connected to the process chambers and a number of load-
locks offering access to the mainframe. The EFEM comprises a number of loadports and a wafer handler, 
which enables wafer transfer between loadports and loadlocks.  

Figure 1: Cluster tool components  

The procedure performed to process a lot follows a defined sequence of activities. After the carrier is 
put on the loadport, the EFEM’s handler sequentially transfers the wafers in atmosphere to the loadlock, 
which then pumps to vacuum. Thereafter the mainframe’s handling robot transports one wafer after an-
other to a free process chamber.  According to the recipe, a wafer possibly visits more than one chamber 
before it eventually returns to the loadlock. At the time, when the last wafer of a lot returns to the load-
lock, the loadlock vents to atmosphere. Lastly the EFEM’s handler transfers processed wafers back to the 
carrier. Finally the carrier is removed from the loadport in order to continue with next operation. 
 Obviously cluster tools were made to process lots in parallel, since they comprise multiple loadlocks 
and several chambers, which may offer different processes. But strictly speaking, the internal processing 
mode, either sequential or parallel, is firstly determined by the combination of lot’s recipes performed and 
secondly depending on the internal wafer scheduling policy (see subsection 2.4). The recipe defines the 
internal wafer routing, meaning the sequence of specific chambers to visit. Different recipes commonly 
represent different process setups, either manifesting in different wafer routing sequences or at least in the 
same wafer routing sequences with differing chamber process times.  

However, in the case of an unequal set of process chambers assigned for processing lots in parallel, 
the equipment operates in parallel mode in order to prevent idle chambers. In contrast, in the case of equal 
sets of process chambers lots competing for, the process mode is determined by the internal wafer sched-
uling policy applied. A fair scheduling policy, treating available wafers (from different lots) the same and 
therefore mixing them up during processing leads to parallel processing mode. In contradiction an unfair 
scheduling policy, commonly preferring the first available wafers, leads to sequential processing mode. 
We summarize that a cluster tool performs in sequential mode if the set of chambers (to be visited by 
competing lots) is the same and the scheduler treats the lots unfairly, otherwise in parallel mode. 

Since we deal with real-world data, we focus on equipment events immediately beamed to the Manu-
facturing Execution System (MES) when fired. For our analysis aimed at producing results to parameter-
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ize the model, we focus on the Raw Tool Time (RTT) of processed lots.  The RTT is commonly defined 
as the time between start of processing the first wafer of a lot until finish of the processing of the last wa-
fer. The pieces of equipment chosen in this article as examples, fire the RTT starting event before pump-
ing the loadlock and the RTT finishing event after venting the loadlock (see Figure 2). 

Figure 2: Raw tool time definition 

1.2 Related Work 

The origin of analytical cluster tool models is traceable to Wood (see Wood, Tripathi, and Moghadam 
(1994) and Wood (1996)), who first introduced an analytical modeling approach used for throughput 
modeling and process time estimations. Wood proposed a set of formulae and bottleneck conditions, 
which describe the cluster tool’s throughput. Wood considered internal wafer handling and chamber pro-
cessing times as well as different processing modes. Almost at the same time Perkinson (1996) presented 
an analytical cluster tool modeling approach, similar to Wood, used for throughput estimations. 

Schmidt, Weigang, and Rose (2006) and Hosoe, Knanamori, and Yoshida (2007) also used analytical 
models for process time estimation, particularly focusing on the effect of lot size. Both identified and 
classified common lot processing behaviors with regard to lot size. In the field of automated modeling, 
Lange et al. (2008) published an approach for automated generation of equipment throughput models by 
analyzing internal equipment events, basically combining the approaches of Wood and Perkinson. We 
formerly presented a method in Kohn, Werner, and Rose (2010) to automatically estimate capacity-
related equipment parameters as well as a process time model, taking the effect of lot sizes into account. 
We presented first thoughts on automated modeling based on the analysis of MES events. 

According to the idea of using Slow Down Factors mirroring dynamic interrelationships inside a clus-
ter tool, Niedermeyer and Rose (2003, 2004) presented a simulation-based analysis of process times. 
They observed the influence of recipe combinations and the impact of start delays, while stating first 
thoughts on how to use Slow Down Factors for cluster tool modeling. In a following effort, Unbehaun 
and Rose (2006, 2007) continued developing the idea (of using slow down factors) and presented a model 
as well as a method to predict process times at cluster tools. Both efforts using Slow Down Factors evalu-
ated their results by use of DES models mirroring the ideal equipment behavior in real world.  

2 RAW TOOL TIME MODELING 

In this section, we present the analytical model used for predicting the RTT. Beside the model structure 
and its components, we describe the modeling steps that lead to an automatically parameterized model de-
rived from real-world data. We picked up already presented approaches (see subsection 1.2) and modified 
the ideas; some were simplified, some were evolved. Simplifications and extensions both enter into a new 
RTT model. The resulting model enables RTT prediction in combination with the prediction method de-
scribed in section 3. We assume that the RTT mainly depends on the performed recipe R. Thus the model 
relies on the default Raw Tool Time (RTTDEF), which is then adjusted by additional factors according to 
process characteristics. The proposed model takes the effect of lot size (LS) into consideration, since 
small lot size results in reduced RTT. Therefore we introduce a Lot Size Factor (LSF) depending on the 

Loadport
Loading

EFEM
Handling

Loadlock
Pumping

Wafer
Processing

Loadlock 
Venting

EFEM
Handling

Loadport
Unloading

Loading Time Raw Tool Time (RTT) Unloading Time

Lot A
Lot B

Lot C
Lot D

Lot E
Lot F

1810



Kohn and Rose 
 

),()()(),,,( SDRCSDFLSLSFRRTTSDRCLSRRTT DEF 

lot size. In addition to that, the model takes account of possibly extended lot’s RTT processed in parallel 
mode, referred to as slow down effect. The slow down effect occurs when lots processed in parallel com-
pete for internal resources at the same time and consequently slow each other down. As a consequence the 
RTT of each lot is extended, while the overall makespan is reduced. Regarding that effect, we involve a 
Slow Down Factor (SDF) that depends on the recipe combination RC of simultaneously processed lots as 
well as on the start delay SD, arising when overlapping lots start consecutively. We predict the RTT using 
the following formula: 

 

 
with the following parameters: 

 The default Raw Tool Time RTTDEF serves as reference without any disturbing impacts, only de-
pending on the specific recipe R, which defines the process and consequently the wafer routing 
and chamber processing times. 

 The Lot Size Factor LSF represents a corrective factor depending on the lot size, given in number 
of wafers. The LSF describes how much faster a process is performed in the case of small lot size. 
Thus the LSF ranges between a value higher than zero and one in the case of standard lot size. 

 The Slow Down Factor (SDF) represents the already mentioned slow down effect. The SDF de-
pends on the recipe combination (RC) as well as on the start delay (SD) and ranges between one 
and two.  

2.1 Default Raw Tool Time Estimation 

We use the RTTDEF as the model’s reference value that is independent from lot size and slow down ef-
fects, only depending on a certain recipe. The value RTTDEF states an adequate estimation for the RTT, 
when both the lot size factor and the slow down factor were set to default, respectively to one. For the au-
tomated value estimation, we focus on historical jobs with maximal lot size and processed in single mode, 
without any other lots in parallel. We basically summarize jobs processed under equal conditions, which 
then lead after analysis to a value for the RTTDEF for each recipe separately (see Error! Reference source 
not found.). Therefore jobs in history are collected, adequately filtered and categorized and then com-
pressed by use of simple statistics. We describe the steps to proceed in the following. 

Table 1: Default Raw Tool Times (example) 

Recipe RTTDEF [min] 

Recipe_A 15 

Recipe_B 20 

Recipe_C 30 
 

1. Job Filter - In order to provide historical jobs for analysis, which meet the above mentioned con-
ditions regarding lot size and process mode, the collected jobs are filtered. Jobs are filtered out, if 
they do not have the maximal lot size or were not processed with exclusive access to the machine. 
As a result there exists a subset of observed jobs suitable to represent the processing of a certain 
recipe without any disturbing interference. 

2. Job Categorization - We assume that the recipe implies the course of visiting process chamber 
inside the tool, and consequently the resulting RTT. Since the RTT firstly depends on the lot’s 
recipe, the remaining partial quantity of jobs is then categorized according to the recipe executed. 
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As a result we obtain groups of jobs, where each group is uniquely assigned to a certain recipe 
processed in history. 

3. RTTDEF Calculation - After filtering and categorizing the jobs, we assume that each group con-
tains jobs processed under same conditions. In spite of that, there still exist differences in ob-
served RTT within a group of jobs due to captured process failures or other exceptions. In order 
to decrease the influence of these outliers, the statistical median of observed RTT is calculated 
within each group, which finally represents the RTTDEF. 

2.2 Lot Size Factor Estimation 

We use the LSF to approximate the effect of small lot size causing a shorter RTT, since the cluster tool 
separately processes the wafers in a single chamber each. In contrast to most approaches in literature that 
comprise multiple internal equipment parameter, for example internal wafer handling times and pro-
cessing intervals (see subsection 1.2), we propose a more general approach. We use the LSF as a function 
of the lot size. The LSF ranges between zero and maximal one at default, in the case of carriers utilized to 
capacity. For LSF estimation we focus on jobs solely processed in single mode, because they were not ac-
companied by slow down effects. We state that the relationship between lot size and corresponding LSF 
is almost linear with offset for the focused type of cluster tool. The proposed estimation method handles 
outlier as well as the difficulty of possibly non-continuous data points, where the LSF function is auto-
matically derived from. We describe a sequence of steps that automatically lead to a reasonable LSF func-
tion representing the elementary behavior of cluster tools with regard to lot size. 

1. Job Filter - First the collected jobs are filtered to create a subset of jobs that is suitable to clearly 
represent the lot size effect for analysis. We focus on jobs that are not associated with the slow 
down effect. Therefore we exclude jobs that were not processed in single mode, and respectively 
show an overlap in RTT with another lot processed in parallel. The remaining set of jobs provides 
records of RTTs that exclusively depend on the recipe performed as well as on the lot size. Other 
influences, for example the slow down effect, are assumed to be neglected due filtering.  

2. Job Categorization - In order to prepare a data set suitable for automated estimation of the LSF 
function, the remaining jobs are categorized by their lot size. Therefore jobs with equal lot size 
were grouped together. Consequently subsets of jobs emerge, where each subset embodies the 
processing of the same number of wafers.  

3. LSF Calculation - After filtering and categorizing jobs collected from history, a representative 
LSF is calculated for each lot size specific subset of jobs. Since the jobs of each subset probably 
refer to different recipes, their RTT values differ, too. In order to neglect the effect of the recipe 
and to make the job’s RTT comparable, the value of RTT is normalized. For that reason, each 
RTT value is divided by the previous calculated RTTDEF (see subsection 2.1). Note, that the cal-
culated quotients now represent the LSF assumed to exclusively depend on the lot size.  

 We observed that despite filtering, categorizing and normalizing the values, statistical post-
processing is necessary due to partly widely varying resulting LSFs per subset. This is why the 
statistical median of LSFs is calculated within each subset, reducing the influence of outliers and 
compressing the samples to a single LSF value for each lot size, as far as observed in the data set. 
The resulting LSFs range between a value higher than zero and maximal one. A LSF value higher 
than one indicates an erroneous model. Finally a data set is created, where each data point repre-
sents a LSF value related to a specific lot size.   

4. Interpolation and Outlier Removal - The resulting data set is then used to estimate a functional 
relationship between LSF and lot size. In this context, two challenges impede the estimation of a 
reasonable lot size function. To begin with, the data set does not continuously provide LSF sam-
ples for each lot size, because the observed jobs  do not cover the whole range of possible lot siz-
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es. Furthermore, there are still remaining outliers, which may falsify the estimated function or 
even prevent a reasonable estimation of the lot size function, at worst. Therefore a multi-step es-
timation method is cyclically applied, where each cycle consists of three steps: 

(a) The samples are linearly interpolated in order to handle missing samples for some lot sizes. 

(b) The resulting interpolation is smoothed with moderate intensity. The smoothing effect is 
achieved by reassigning each value with the average of its neighboring values. 

(c) The most distant data point compared to previously smoothed interpolant is removed. 
 
The algorithm stops if the most distant point is within an acceptable range near the interpolation. Oth-

erwise the algorithm continues with a new cycle, interpolating the remaining data points. This method 
leads to a reasonable LSF function most of the time, while effectively reducing the influence of outliers. 
We admit that a lack of data samples and a high number of outlier prevent a successful reconstruction of a 
reasonable LSF function. Figure 3 depicts the resulting interpolations at the end of the first three cycles. 

Figure 3: LSF interpolation and outlier removal  

2.3 Slow Down Factor Estimation 

We use the SDF to reflect the dynamic interrelationship between simultaneously processed jobs. Jobs 
processed in parallel possibly slow each other down, when competing for the equipment’s internal re-
sources, like wafer processing chambers or robots. The proposed concept of using SDFs involves two as-
pects of processing. On the one hand, a certain combination of lots, more exactly the combination of their 
recipes, determines the SDF in a specific situation (Niedermeyer and Rose 2003, 2004). On the other 
hand, the start delay between consecutively started lots impacts the value of the SDF. The start delay in 
this study represents the start time offset as a measure between successively occurring start events on an 
equipment.   

Contrary to the studies presented by Niedermeyer and Rose (2003, 2004) and Unbehaun and Rose 
(2006, 2007), we derive SDFs from MES history instead of discrete event cluster tool simulation studies. 
The proposed method, described in the following steps, automatically leads to a recipe combination spe-
cific SDF function depending on the start delay.  

1. Job Filter - We intend to isolate the slow down effect by choosing jobs with characteristics suit-
able for analysis. For that reason, the jobs were filtered according to two sorts of conditions. 
Firstly, to neglect the influence of small lot size, the jobs were filtered out that do not stand for a 
lot with the maximal amount of wafer possible. Secondly, we only focus on jobs that were simul-
taneously processed with exactly one other lot during their period of processing. Note that the 
studied type of cluster tool usually process lots continuously, meaning that a lot may interfere 
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with two different lots at the beginning and/or at the end of processing (see Figure 2). These con-
straints on jobs used for analysis remarkably simplify or even enable the deduction of the SDF 
characteristic from real-world data samples. 

2. Job Categorization - The remaining jobs are now double categorized according to the two input 
parameter of the SDF function, respectively recipe combination and start delay. First the jobs be-
longing to equal recipe combinations were grouped together. For instance, every job of recipe A 
processed in parallel with a job of recipe B somehow, belongs to the same group. Secondly the 
resulting recipe combination specific sets of jobs were subsequently categorized to their start de-
lay. In conclusion, there exist a number of subsets of jobs, where each subset relates to a specific 
start delay within a specific recipe combination. We assume that each subset comprises jobs de-
scribing equal processing situations with respect to the recipe combination and start delay. 

3. SDF Calculation - After filtering and categorizing the jobs to groups as described, we calculate 
the SDF for each job. Analogous to the LSF estimation, the observed RTT values are normalized 
by calculating the quotient of RTT and previous calculated RTTDEF. Thereby the job’s RTTs 
change into SDFs after division. Next, the statistical median of SDFs is calculated within each 
subset of jobs, in order to infer a single value from the samples, while reducing the effect of outli-
ers. As a result, there exists a single SDF for specific start delays, additionally depending on a 
certain recipe combination. 

4. Interpolation and Outlier Removal - Analogous to the estimation of the LSF function, there is a 
need to handle the difficulty of non-continuous data samples with outliers. Both were addressed 
by use of the multi-step estimation method cyclically applied, analogous to the LSF estimation. A 
linear interpolation is created, which is then moderately smoothed, followed by the removal of the 
most distant outlier, compared to smoothed interpolation. As result, the SDF function depending 
on the start delay is obtained for specific recipe combinations. In contrast to the case of LSF 
modeling, in this case, the remaining data volume for each subset is considerably smaller due to 
double categorization. Thus, it is much harder to derive a reasonable SDF function for each recipe 
combination in presence of lack of data samples. That is why the resulting model may not contain 
a SDF function for every recipe combination observed. 

5. Finalization - The proposed SDF estimation method goes along with additional error handling 
actions assuring a more failure tolerant prediction model. The extensive use of filtering and cate-
gorizing computation leads to lower volume data subsets. As a consequence, statistical methods 
or interpolations to derive reasonable SDFs are not always applicable.  For instance, a consid-
erable lack of job samples for specific recipe combinations prevents recognition of a reasonable 
relationship between SDF and start delay. Having the goal to provide a robust model, we simplify 
the use of SDFs. Thus, we use the SDF no more depending on a certain start delay, but only de-
pending on the start delay’s algebraic sign. Consequently the model provides two SDFs per low-
sampled recipe combinations, one for positive and one for negative start delays. For those occa-
sions, a simplified SDF function is derived and then used for prediction. 

2.4 Slow Down Factor Interpretation 

In this section, we discuss the manifestation of the two mentioned cluster tool’s processing modes, 
sequential and parallel processing, on SDF functions observed as a result of our analysis. We present 
characteristic lot processing behaviors, recognized for three pieces of equipment. The chosen pieces of 
equipment represent three different types of equipment, but all of them with the earlier described cluster 
tool architecture (see subsection 1.1). Based on an extensive analysis, applying the proposed automated 
modeling method, among several tens of cluster tools, mainly two SDF schemes stand out, which repre-
sent the slow down effect between possibly interfering lots. On the one hand, we recognize the parallel 
processing mode, on the other hand we identify the sequential processing mode. We chose three pieces of 
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equipment suitable to demonstrate the SDF characteristics, where equipment A shows parallel processing 
mode, equipment B stands for sequential mode and equipment C merges both modes. 

For the diagrams depicted in Figure 4, Figure 5, and Figure 6, we only executed the first three steps of 
the described SDF estimation method, without interpolation and outlier removal (step 4). This way the 
reader gets a better idea of existing outliers and missing samples. Note, that the RTT prediction is based 
on the interpolated function with decreased influence of outlier.  

The diagrams show the calculated SDFs dependent on the start delay for a specific recipe combina-
tion. For sake of simplicity, we choose the four most frequent recipe combinations. Moreover the start de-
lays range between minus one and plus one, since they are normalized by the value of the relating RTTDEF 
in order to make different equipment models easier to compare. A negative start delay represents a job 
started first, while a positive start delay is assigned to the lot, which started later. 

We chose the equipment A as an example for parallel processing at cluster tools (see Figure 4). The 
simultaneously processed lots slow each other down. The SDF is considered as axially symmetric to the 
Y-axis, where an increased start delay results in a lower value for the SDF. We come to the conclusion 
that the less the start delay is, the more the lots compete for internal resources and thus slow each other 
down, and vice versa.  

In contrast, the equipment B represents an example for sequential processing mode (see figure 5). In 
this case, lots were processed in parallel with regard to equipment events, but do not slow each other 
down as observed at equipment A. In fact, the succeeding lot waits for the preceding lot to finish. The 
SDF equals one for all negative start delays, which refer to the first lot. Consequently the precedent lot is 
not affected by the succeeding one, and respectively preferred in processing. For positive delays, which 
represents lots that start second among simultaneously processed pairs, the SDF decreases with increasing 
start delay. One can say that lower start delays, meaning smaller proportions of completed wafers of the 
first lot, result in higher waiting times for the second lot. We summarize that the preceding lot is always 
preferred, while the lot starting second is strictly forced to wait. 

The third example (equipment C) supports the assumption, that sequential and parallel processing 
mode coexists on a single machine (see Figure 6). Obviously, there is a need for recipe combination spe-
cific sets of SDF’s, precisely because the combination of recipes predetermines the processing mode, ei-
ther sequential or parallel. 

Figure 4: SDF Function (A) Figure 5: SDF Function (B) Figure 6: SDF Function (C) 

2.5 Real-World Automated Modeling Challenges    

Since we use real-world data records for automated modeling, we deal with multiple challenges aris-
ing in the real world. We face a high complex manufacturing system offering irregularities that compli-
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cate the modeling process substantially. The following list provides some of the most common difficulties 
we deal with. 

 Process Stability - Semiconductor manufacturers commonly integrate research and development 
activities into daily routine of production. Engineers try varying equipment setups, aiming to in-
troduce improved processes. Those engineering activities often result in varying data records that 
show up as outliers during the modeling procedure, particularly in the analysis of processing 
times. In addition to engineering, technical difficulties at high complex equipment types also lead 
to outliers due to unexpected machine failures.  

 Equipment Events - Semiconductor factories commonly comprise hundreds of machines from 
various suppliers at times with decades between their dates of construction. For this reason a spe-
cific equipment event, extracted from the MES, does not necessarily relate to the same physical 
activity at each type of equipment. In spite of efforts for standardization, unequal equipment 
event firing policies make it harder to create an equipment independent modeling approach. 

 Recipe Definition - For our analysis we assume that the recipe unambiguously relates to a specif-
ic process, and accordingly to the way of processing on the equipment. However, a specific recipe 
on a certain machine may be processed in different modes, which are not consistently traceable in 
data records. For example, an equipment comprising several chambers is often capable of per-
forming a certain process in multiple modes, which need differing number of chambers. As a con-
sequence, these uncertainties lead to variations in data, which in turn lead to unpredictable pro-
cessing behaviors particularly when the uncertainties occur frequently. 

 Temporal Changes - We also assume that the equipment’s processing behavior does not signifi-
cantly change over time. But, we face a highly dynamic production environment, in which con-
tinuous changes take place. These changes range from mounting new hardware components to 
minor changes in process setups, and these modifications may considerably affect processing 
times. 

 Data Volume - The success of the described modeling method significantly depends on the vol-
ume of data available for analysis. Due to the extensive use of data filtering and categorizing 
computations, the size of resulting data subsets possibly falls below a critical limit. An increasing 
level of detail in the model directly leads to a decreasing amount of data records for specific pro-
cessing situations. In order to reasonably apply statistical methods, there is a need for a sufficient 
amount of data records. The challenge is to define a suitable level of model detail that allows for 
applying (statistical) outlier reduction methods.  

3 RAW TOOL TIME PREDICTION 

In this section, we present an algorithm deploying the proposed cluster tool model in order to simulate 
RTTs based on real-world data. Therefore, we apply the cluster tool models created without any addition-
al corrections done by hand. We primarily use the proposed algorithm to evaluate both, the model’s suita-
bility as well as the prediction method’s ability to predict RTTs. Moreover, the capability to simulate 
RTTs offers the possibility to quickly predict completion dates, possibly feeding look-ahead applications. 
We describe the algorithm used for prediction and consequently for evaluation as well as the results 
achieved with respect to accuracy. To evaluate the whole concept, comprising model and method, we 
compare simulated RTTs to RTTs collected in real-world. Therefore we simulate the processing for each 
job in history and then calculate the resulting relative errors for further evaluation. 

Let’s briefly describe the evaluation environment. The focused timeframe spans approximately 6 
months of processing, equating to several thousand jobs per equipment. We deploy the same dataset for 
automated model generation as for evaluation with the aim to reduce negative effects that arise when ana-
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lyzing a highly dynamic system over a long period of time. These conditions enable us to draw significant 
conclusions showing the potential of the described modeling approach under real-world conditions. 

3.1 Prediction Method 

We present an algorithm that simulates the processing, via predicting RTTs and completion dates, using 
the actual starting times (from history) and the proposed process time model. This algorithm, based on the 
prediction method presented by Unbehaun and Rose (2007), relies on real starting times to ensure that the 
start delays truthfully contribute to the prediction.  

Unbehaun and Rose’s approach underlies the understanding that each finish event is directly followed 
by a start event, resulting in continuous lot processing without gaps between process time slots. Based on 
the observations we made during real-world data analysis, we explicitly include these gaps into the pre-
diction method. This modification is necessary to apply the method to the real-world data sets we use. 

The algorithm takes into account that a lot’s process may be subject to changing slow down situation 
due to starting and finishing other lots during a certain lot’s process. More precisely the completion date 
is adjusted in the case of a changing recipe combination. 

1. Event Selection - Within this simulation concept, there only exist two events triggering subse-
quent activities. On the one hand, the next event in time is the start of a lot from queue as given in 
the original data set from history. On the other hand, the next event is determined by the prior 
predicted completion date of a currently processing lot. Anyhow the simulation time T is set to 
the time of the next event. Depending on the type of the next event, the algorithm continues with 
step 2 or step 3, either starting a queued lot or finishing a currently processing one. 

2. Lot Start - A new lot taken from the queue is started at the appointed time T and for that reason 
added to the list of lots in process. Then the contributory factors are determined as described in 
the model. The RTTDEF is assigned according to the relating recipe as well as the LSF depending 
on lot size. Taking these factors into account the estimated completion date is calculated using 
following formula: 

3.  Lot Finish - The focused lot, for which completion date is predicted to current simulation time T, 
is removed from list with lots in process. Hence the finally simulated RTT is stored for analysis. 

4. Completion Date Adjustment - Regardless of whether a new lot is started or a finished one is 
removed, the situation changed. Thus for every lot within the list of lots in process, the proper 
SDFNEW is set according to the arising combination of recipes as well as to the start delay detect-
ed. A (re)calculation of SDFNEW is necessary, because the previous SDFOLD (if existent) might be 
no more valid since last event. With respect to a newly started lot, the (not yet existing) CDOLD 
equals to the previous CD and the SDFOLD is set by default to one. Finally, the completion date is 
revised according to the new situation using the following formula:  

5. Termination - The algorithm terminates if no more lots exist in the queue and no lot is in process 
at time T. If one of these two conditions is not fulfilled, the algorithm continues with the first step 
determining the next event. 

3.2 Prediction Results  

For evaluation, we simulate the processing of jobs in history and compare predicted RTTs with the corre-
sponding originals. Therefore we apply the prediction method previously described (see section 3.1.). We 

NEW
OLD

OLD
NEW SDF

SDF

TCD
TCD 



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remember that the presented results refer to several thousand jobs simulated per equipment without ex-
ceptions.  

We separately focus on the three model’s components constituting the RTT calculating formula. By 
separated examination, we determine single factor contribution to the accuracy of simulation results. Ta-
ble 2 shows the relative RTT errors relating to the 50%-percentile and the 90%-percentile. DEF stands for 
the prediction using RTTDEF only. LSF labels simulation results achieved by use of RTTDEF extended by 
LSFs. SDF is designated to the entire model including all factors as proposed. 

Table 2: Relative RTT Error Percentiles 

4  
Default (DEF) Lot Size Factor (LSF) Slow Down Factor (SDF) 

DEF50% DEF90% LSF50% LSF90% SDF50% SDF90% 

Equipment A 20% 46% 18% 43% 5% 32% 

Equipment B 7% 45% 6% 42% 2% 32% 

Equipment C 7% 43% 7% 42% 4% 34% 
 
We assess considerable improvements in accuracy for the use of the proposed model, especially for 

equipment A (parallel mode). The median for the relative RTT error observed for the use of SDFs  is 
strictly less than 5% (SDF50%). Compared to the exclusive use of a static value like RTTDEF, simulating 
RTTs using SDFs leads to positively left shifted error distribution with decreased range. We observed 
small increase of prediction accuracy when involving LSFs. The reason for this is that approximately 5% 
of all lots relate to a remarkably smaller lot size only. 

The diagrams depicted in Figures 7, 8 and 9 show the histograms of relative RTT errors simulated for 
DEF, LSF and SDF. These diagrams show that approximately 70% of predicted jobs, slightly varying for 
different equipment types, come along with a relative error smaller than 10% for SDF. Figures 10, 11 and 
12 show relative RTT errors as bars for most frequent recipe combinations (RCs) processed. Each bar re-
lates to the 50%-percentile at its lower edge and to the 90%-percentile on the top of the bar. 

Figure 7: Error Histogram (A) Figure 8: Error Histogram (B) Figure 9: Error Histogram (C) 

5 SUMMARY 

In this paper, we present an analytical cluster model used for RTT prediction involving the effect of 
lot size and simultaneously processed lots interfering with each other. We state that the proposed analyti-
cal cluster model is suitable to predict RTTs with respect to accuracy and prediction coverage. Especially 
the use of Slow Down Factors depending on a certain recipe combination and start delay adequately mir-
rors sequential and parallel processing mode. Unfortunately we were not able to prove the approach’s ap-
plicability to predict the makespan with desired accuracy. For further research, we intend to evolve the 
model in order to be capable of simulating an entire lot schedule using ordered job queues as input. 

1818



Kohn and Rose 
 

 

 
 Moreover, the idea of automated model parameterization using real-world data leads reasonable 

models, but depends on volume of data and quality. Preliminary experiments using regression to derive 
functional relationships from raw data showed promising results. We expect that fast and accurate lot 
schedule simulation, quickly performed, will enable optimized lot scheduling on operational level. 
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