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ABSTRACT

As modern manufacturing technology progresses, measurement tools become scarce resources since more
and longer control operations are required. It thus becomes critical to decide whether a lot should be
measured or not in order to get as much information as possible on production tools or processes, and to
avoid ineffective measurements. To minimize risks and optimize measurement capacity, a smart sampling
algorithm has been proposed to efficiently select and schedule production lots on metrology tools. This
algorithm and others have been embedded in a simulator called ”Smart Sampling Scheduling and Skipping
Simulator” (S5). The characteristics of the simulator will be presented. Simulations performed on several
sets of instances from three different semiconductor manufacturing facilities (or fabs) will be presented
and discussed. The results show that, by using smart sampling, it is possible to drastically improve various
factory performance indicators when compared to current fab sampling.

1 INTRODUCTION

Semiconductor manufacturing is a highly capital intensive venture, where maintaining competitiveness
requires high efficiency, tight quality and reduction of cost. Among key factors to reach these objectives
are control measurements and the sampling of lots. Indeed, the manufacturing process of a lot is long
(more than 300 steps) and complex (re-entrant structure). It is therefore important to detect as quickly as
possible defects, to avoid spending time and money to produce wafers that will be scrapped. Moreover,
in modern semiconductor manufacturing facilities (fabs), the increase of the wafer size from 200mm to
300mm combined with the reduction in the size of the transistors lead to a sharp increase of the wafer cost.
More complex production processes require the introduction of numerous controls, sometimes redundant
(Williams, Gudmundsson, Monahan, and Shanthikumar 1999), at different manufacturing steps. It is thus
important to know where controls should be performed and what type. Moreover, because metrology
capacity is expensive and not infinite, not all lots can be measured. Hence, it is necessary to sample the
lots that should be measured.

In the literature, some research has been conducted on static sampling which usually consists of selecting
the lots to control in a systematic way, based on pre-specified rules (Lee, You, and Park 2002), (Lee 2002).
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Such a strategy may lead to missing critical lots that would drastically reduce risks if measured. However,
its main advantage is the ease of its implementation. Another strategy, called dynamic sampling, is based on
sampling a variable number of lots, where the sampling frequency position should be determined (Williams,
Gudmundsson, Nurami, Stoller, Chatterjee, Seshadri, and Shantikumar 1999), (Lee, Lee, Liao, and Chang
2003), (Good and Purdy 2007). This approach is more efficient, since the number of sampled lots depends
on the production state (Boussetta and Cross 2005). However, papers often do not specify how to select
lots to be measured. Furthermore, it is difficult to use rules that are constantly changing. Finally, it is
only very recently that smart sampling has been proposed where the best lots to measure are selected.
Smart sampling consists in determining dynamically and in an intelligent way the best lots to sample for
measurement. Constraints are taken into account, such as the capacity of measurement tools. The goal is
to optimize some objective function such as the minimization of the risk. Smart sampling may include
the possibility of skipping lots that are waiting to be measured, and the scheduling of lots on metrology
tools. This type of studies is relatively recent; see (Holfed, Barlovic, and Good 2007), (Gershwin and Kim
2005), (Colledani and Tolio 2007) and (Dauzere-Peres, Rouveyrol, Yugma, and Vialletelle 2010).

In this paper, we first describe a prototype called ”Smart Sampling Scheduling and Skipping Simulator”
(S5). We then present and analyze the results obtained with S5 on real instances provided by three different
semiconductor manufacturing facilities. A summary of the smart sampling algorithm and other sampling
algorithms can be found in Section 2. The prototype with its characteristics is presented in Section 3. The
numerical experiments are shown and discussed in Section 4. Section 5 concludes the paper and provides
some directions for further research.

2 SMART SAMPLING

Let us recall that the problem consists in deciding which lots should be measured and in which order they
should be measured on metrology tools. Three types of decisions must be taken:

e DI. Sample lots for measurement, i.e., decide whether a lot will continue directly to the next
process step without inspection or should be measured and sent to the metrology tools.
D2. Schedule lots on the metrology tools, i.e. assign and sequence lots on the metrology tools.
D3. Skip lots in the metrology queue if necessary, i.e. avoid measuring a lot and send it to the
next process step.

It must be noted that the order of decisions is not necessarily sequential, i.e., sample, schedule and finally
skip. Decisions can be taken simultaneously, e.g. a lot may be skipped in the metrology queue and replaced
by a lot that is sampled and brings more information than the skipped lot.

In the following, we describe the main features of the Smart Sampling Scheduling and Skipping
Simulator” (S5), and in particular the principles of the Global Sampling Indicator (GSI) algorithm.

2.1 The Global Sampling Indicator (GSI) Mechanism

Parts of this section can be found in (Dauzere-Peres, Rouveyrol, Yugma, and Vialletelle 2010). Decisions
are taken based on the risks incurred by not measuring a lot. The aim is to sample lots in order to minimize
an objective based on risks. To each lot is associated a risk array (same risk type for several tools and/or
several risk types). This array contains the new value of each risk (or of the risk reduction) if the lot is
measured. There are some warning and inhibit limits for each risk. Let us introduce the following notations:

R: Number of risks,

WL,: Warning limit for risk ,

IL,: Inhibit limit for risk r,

RV,: Current risk value for risk r,

G,;: Gain on risk r if lot [ is measured,
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e NRV,;: New risk value r if lot [ is measured, i.e. NRV,; = RV, - G,,.
NRV,.(S): New risk value if lots in set S are measured.

Our first implementation focuses on the defectivity area, where the risk value RV, corresponds to the
Wafer at Risk (W@R) for production tool ». The W@R is the number of wafers processed on tool r since
the process of the latest lot measured in defectivity. This can be seen as the number of wafers which have
been processed on tool r since the latest good defectivity control. In this case, G, is the W@R reduction
of tool r if lot / is measured. The W@R may only be reduced, i.e. G,; can only be strictly positive if ¢
belongs to the set of tools on which lot / has been processed.

Two control parameters are used. The Warning Limit WL, corresponds to the value of the W@R
for production tool r beyond which the situation starts to become critical. The Inhibit Limit /L, is the
maximum number of wafers that can be run between two defectivity inspections for r. Specific action is
needed in order to prioritize or facilitate the control of the considered tool. Otherwise, /L, will be reached
and eventually production will be stopped on tool r.

Sampling a lot will be based on how much is gained when adding the lot to the set of lots already
waiting to be measured. Since a risk array is considered, this is a multi-criteria decision problem. Moreover,
depending on the metrology capacity, it might be interesting to skip a lot that is waiting to be measured
to replace it with the new sampled lot. In this case, sampling a lot and choosing another lot to be skipped
must be done simultaneously.

Hence, when a lot [ is available for measurement and a set S of lots is currently waiting to be measured,
it must be decided whether to include / in S and skip a lot I/ in S, or to skip /. It is thus necessary to
compare the impact on the risks of the following sets of lots: S and {S—1I'}U{l}, VI’ € S.

The Global Sampling Indicator (GSI) used to select the best lots for a given set of lots S is defined
below: X

NRV,(S)
GSI(S) =) ( i

r=1

)(X

The parameter « is used to put more or less emphasis on getting as far as possible from the inhibit
limit for which the current risk value is closer. The set with the smallest GSI value is chosen. The GSI
aims at selecting sets that contain lots that help to reduce risk values that are closer to their inhibit limits.
The GSI has been extended to improve decisions when a W@R of a tool is far from its warning limit, but
the new formula will not be presented in this paper.

3 THE SMART SAMPLING SCHEDULING AND SKIPPING SIMULATOR

In this section, we first present the algorithms that have been implemented in S5 and then describe its main
characteristics.

3.1 Sampling Algorithms

1. The ”Without Sampling or No Sampling” Algorithm. This algorithm gives the theoretical maximal
values of the risk indicators.

2. The”All Sampling” algorithm. It consists in selecting all the lots that can be sampled, and considering
infinite capacity on the metrology tools. There is no waiting time in front of the metrology tools
but the measurement time of each lot is considered. It is important to note that this algorithm is
used to determine theoretical minimal values of the risk indicators.

3. The “Threshold Sampling” algorithm. A lot 1 is only sampled when one of its associated W @R is
above the warning limit and can be decreased, i.e. there is a production tool r such that RVr > WLr
and G,; > 0.

4. The ”GSI sampling” algorithm. The mechanism presented in Section 2.1 is used to evaluate the
impact of measuring all lots in the set, and to decide in real time whether a lot should be sampled,
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i.e. measured or not. It is important to note that the GSI is not only valid for one risk type (W@R
in our first study) on multiple tools, but also for multiple risk types on multiple tools. For the reader
who is interested to understand the the algorithm in more details, see (Dauzere-Peres, Rouveyrol,
Yugma, and Vialletelle 2010).

5. The “Fab Sampling” algorithm. The lots that are sampled are the ones that are actually sampled
in the historical data provided by the semiconductor manufacturers.

3.2 Performance Indicators

Several performance indicators are defined to measure the quality of a solution.

e Number of sampled lots: Number of lots that are chosen to be measured and which are placed in
the metrology queue.

e Number of measured lots: Number of lots actually measured, i.e. the number of lots processed on
a metrology tool.

e Number of skipped lots: Number of lots removed from the metrology queue, i.e. the number of lots
that are sampled but not measured. This is due to the fact that these lots do no longer contribute
to decrease the W@R of at least one tool, or are removed from the queue as they do not bring
enough compared to other lots in the queue.

e Number of lots above a limit (warning or inhibit). This number should be as small as possible.

e Average W@R. This is the sum of the W@R of all production machines divided by the number

of m.achines. It is equal to Z]]Vi’jl‘/l‘”hi"es #ﬂm where W @R; is the .WAR for. ma(fhine Jj-
Maximum W @R;. It corresponds to the maximum W @R on production machine ;.

Average Maximum W @R. This is the sum of the maximum W@R of all production machines

s . : ines MaximumW @R,
divided by the number of machines. It is equal to le}’ i”l”“d””“ %

e Time spent above a limit (Warning and Inhibit). It corresponds to the sum of the times that all lots
spent over the corresponding limit.

For more details of the performance indicators, see (Dauzere-Peres, Rouveyrol, Yugma, and Vialletelle
2010).

3.3 Some Characteristics of S5

The simulator has been implemented in Excel VBA. There is an input interface see Figure 1 where the
parameters of the GSI algorithm and information on the metrology tools must be provided such as the
average measurement time, the Warning and Inhibit limits for the tools, the number of metrology tools and
the queue size. Note that different limits for each tool could be specified in a a data sheet.

To perform a simulation, a file with historical data should be loaded with information on the start
times of lots on production and metrology tools. Moreover, it is also necessary to have the control plans,
i.e. what are the production operations that are validated by a metrology operation. Through a menu,
it is possible to select the sampling algorithms to use before running a simulation. Some statistics and
graphs are provided at the end of the simulation for all or a selected number of tools, and to compare
the performance indicators between the selected sampling algorithms (see Figure 2 and Figure 3). In the
Figure 2, the results of various indicators (lines) for different sampling algorithms (columns) are presented
an actual instance simulation. The Figure 3 shows the changes in the WAR for two different machines.
The behavior of these curves is close to sawtooth. The WAR increases (almost linearly) on each machine
and as soon as a lot is measured, the corresponding WAR decreases abruptly.
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Figure 1: Main input parameters for S5.

A | 8 c D E _ F G H
i WithoutSampling AllSampling ThresholdSampling 1GSSampling FabSampling

2 |Lots Sampled 0 628 9 624 317

3 Lots Measured o 628 = 541 317

4 Lots Skipped 0 0 0 80 0

5 Lots above Inhibit risk 142 ] 0 0 0

6 Lots above Warning risk 433 0 34 0 39

7 'Wafers above Inhibit risk 3548 0 0 0 0

8 Wafers above Warning risk 12418 0 850 0 975

3 Medium war (Average) 1542,230769 136,2307692 909,3076523 140,1538462 332,4615385

10 Max war {Average) 3030,615385 414,2307692 1941,461538 427,6923077 910,6153846

11 | Time past with Warning risk (%) 7,009362536 0 0,308797187 0 0,61224537

12 Time past with Inhibit risk (%) 1,305498573 0 0 0 0

13 |Simu execution Time 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

14 | 5tat execution Time 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

35

16 alpha warning limit | Inhibit Limit Threshold  measureTime nbMetrologyTools queueSizePr

-
-
=]

2500 5000 4 0,041666667 2 4
Figure 2: Some statistics provided by S5.

4 EXPERIMENTS WITH S5 ON DATA FROM SEMICONDUCTOR MANUFACTURERS

We present some of the experiments performed on data from ST Crolles, LFoundry and ST Rousset,
respectively. The results show that, by using a smart sampling approach, and in particular the GSI sampling
algorithm, it is possible to drastically reduce various performance indicators when compared to current fab
sampling.
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Figure 3: Some graphs provided by S5.
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4.1 Experiments on STMicroelectronics Crolles Data

Table 1, 2 and 3 present the results on a set of data from ST Crolles. The following parameters are used
for all tables: o =4, TH = 4% and IL = 4000 for all process tools. There are 3 metrology tools and the
measurement time is 70 minutes. These values are chosen so that the metrology capacity is close to the
actual capacity of the fab in number of measures on the planning horizon.

In Table 1, the Warning Limit WL for all tools is equal to 2000, i.e. half the Inhibit Limit IL, whereas
it is equal to 3000 in Table 2 and 3500 in Table 3 respectively. The results show that all indicators can
be greatly improved by using the GSI algorithm compared to the current fab sampling. Moreover, the
threshold sampling algorithm is very sensitive to the value of the warning limits. Indeed, the results in
Tables 2 and 3 show a strong degradation of the performances of the threshold algorithm, whereas the GSI

algorithm is relatively robust.

25 3

il
i

35

Table 1: Results on data from STMicroelectronics Crolles (WL=2000, IL=4000).

No All Threshold GSI Fab
Sampling | Sampling | Sampling | Sampling | Sampling
No. of sampled lots 0 9701 868 1143 467
No. of measured lots 0 9701 375 437 437
No. of skipped lots 0 0 493 706 0

Lots abobe Inhibit 19697 39 66 64 7597
Lots above Warning 29997 441 3369 2765 16395
Medium WAR (Avg.) 2411 213 713 685 1262
Max. WAR (Avg.) 4836 605 1623 1602 2821
Time above Warning (%) 2.61 0.04 0.25 0.20 1.27
Time above Inhibit (%) 1.27 0.00 0.00 0.00 0.48
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Table 2: Results on data from STMicroelectronics Crolles (WL=3000, IL=4000).

No All Threshold GSI Fab
Sampling | Sampling | Sampling | Sampling | Sampling
No. of sampled lots 0 9701 413 998 467
No. of measured lots 0 9701 260 434 467
No. of skipped lots 0 0 153 564 0

Lots abobe Inhibit 19697 39 39 39 7597
Lots above Warning 24052 203 1511 502 10869
Medium WAR (Avg.) 2411 213 906 665 1262
Max. WAR (Avg.) 4836 605 2050 1605 2821
Time above Warning (%) 1.74 0.01 0.09 0.04 0.74
Time above Inhibit (%) 1.27 0.00 0.00 0.00 0.48

Table 3: Results on data from STMicroelectronics Crolles (WL=3500, IL=4000).

No All Threshold GSI Fab
Sampling | Sampling | Sampling | Sampling | Sampling

No. of sampled lots 0 9701 326 989 467

No. of measured lots 0 9701 219 434 467
No. of skipped lots 0 0 107 555 0

Lots abobe Inhibit 19697 39 67 94 7597

Lots above Warning 21682 119 1082 223 9034

Medium WAR (Avg.) 2411 213 1008 666 1262

Max. WAR (Avg.) 4836 605 2262 1597 2821

Time above Warning (%) 1.47 0.01 0.07 0.01 0.59

Time above Inhibit (%) 1.27 0.00 0.00 0.01 0.48

4.2 Experiments on LFoundry Data

The results obtained on a set of data from LFoundry can be found in Table 4. The following parameters are
used: o =4, TH =4%, WL = 3000 and IL = 5000 for all process tools. There are 2 metrology tools and
the measurement time is 70 minutes. The results show that, as in the case of ST Crolles, all performance
indicators are improved with the GSI algorithm. Additional experiments, not presented here, show that the
increase of the warning limits has the same negative effect on the threshold algorithm than with the ST
Crolles data.

4.3 Experiments on STMicroelectronics Rousset Data

Tables 5 and 6 show the results on a set of data from ST Rousset. The following parameters are used:
a=4,TH =4%, WL = 2500 and /L = 5000 for all process tools. The measurement time is 60 minutes.

Table 5 corresponds to results with two metrology tools, and Table 6 to results with four metrology
tools. It is interesting to see in Table 5 that, with half of the metrology capacity used in the actual fab
sampling (52%), the GSI algorithm provides results that are very good compared to the fab sampling. Table
6 shows that, by increasing the capacity closer to the actual fab sampling (82%), the GSI algorithm is
better than fab sampling on most performance indicators. Again, the threshold algorithm does not perform
so well, and additional experiments, not presented here, show that it is very sensitive to the changes of the
warning limits. Finally, note that, in this case, the GSI algorithm has little freedom to choose different lots
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Table 4: Results on data from LFoundry (WL=3500, IL=5000).

No All Threshold GSI Fab
Sampling | Sampling | Sampling | Sampling | Sampling

No. of sampled lots 0% 144% 100% 112% 100%
No. of measured lots 0% 144% 84% 95% 100%
Lots above Inhibit 239% 83% 85% 85% 100%
Lots above Warning 168% 86% 92% 91% 100%
Medium WAR (Avg.) 313% 95% 97% 97% 100%
Max. WAR (Avg.) 270% 91% 93% 93% 100%
Time above Warning (%) 237% 81% 90% 89% 100%
Time above Inhibit (%)% 382% 80% 83% 83% 100%

than the ones chosen in the actual fab sampling, since ”All sampling” has only 7% additional lots sampled

and measured.

Table 5: Results on data STMicroelectronics Rousset, 2 metrology tools.

No All Threshold GSI Fab

Sampling | Sampling | Sampling | Sampling | Sampling
No. of sampled lots 0% 107% 32% 61% 100%
No. of measured lots 0% 107% 31% 52% 100%
Lots above Inhibit 397% 96% 99% 98% 100%
Lots above Warning 301% 99% 108% 104% 100%
Medium WAR (Avg.) 356% 97% 107% 102% 100%
Max. WAR (Avg.) 303% 97% 106% 102% 100%
Time above Warning (%) 317% 99% 108% 104% 100%
Time above Inhibit (%) 395% 98% 100% 99% 100%

Table 6: Results on data STMicroelectronics Rousset, 4 metrology tools.

No All Threshold GSI Fab

Sampling | Sampling | Sampling | Sampling | Sampling
No. of sampled lots 0% 107% 32% 86% 100%
No. of measured lots 0% 107% 32% 82% 100%
Lots above Inhibit 397% 96% 99% 97% 100%
Lots above Warning 301% 99% 108% 101% 100%
Medium WAR (Avg.) 356% 97% 107% 99% 100%
Max. WAR (Avg.) 303% 97% 105% 99% 100%
Time above Warning (%) 317% 99% 107% 100% 100%
Time above Inhibit (%) 395% 98% 99% 98% 100%

4.4 Summary

On all realized tests, the results on the ST Crolles data show that very large gains can be achieved on all
risk indicators while measuring a smaller number of lots than in fab sampling. The results on the LFoundry
data illustrate the same conclusions. The data from ST Rousset are a bit different from the others, since
only 7% additional lots can be sampled and measured compared to fab sampling. Hence, with the same
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metrology capacity (i.e. number of lots that can be measured), the GSI algorithm has little flexibility to
choose different lots than the ones chosen in fab sampling. This is why experiments were performed where
the GSI algorithm has about half of the metrology capacity used in fab sampling. The obtained results
show that the risk indicators are very close to the ones of fab sampling, and thus that metrology capacity
could be saved with smart sampling. Also, all experiments show that the GSI algorithm is rather robust
with regards to the critical input parameters that are Warning Limits and Inhibit Limits.

S CONCLUSION AND PERSPECTIVES

In this paper, we presented a ”Smart Sampling Scheduling and Skipping Simulator” (S5). It includes
various sampling algorithms, and in particular a smart sampling algorithm called GSI (Global Sampling
Indicator) algorithm that aims at sampling, scheduling and skipping lots based on the evaluation of the
impact of measuring a set of lots. S5 has been implemented on Excel VBA and tested on actual defectivity
data from three different fabs (STMicroelectronics Crolles, STMicroelectronics Rousset and LFoundry),
showing significant gains on various performance indicators, in particular compared to how sampling is
currently performed in the fabs.

Further studies on the means and variance of cycle time have to be done. An interesting research
perspective for smart sampling is to consider the concept of Equipment Health Factor (EHF) which provides
real-time information on the status of production tools. The objective is to extend our approach and S5 to
integrate in smart sampling decisions the information from the EHF and the degree of confidence in the
EHF model.
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