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ABSTRACT 

Most cluster tool scheduling studies assume identical access times between chambers, or do not discuss 
impact of the access times although the optimal scheduling rule and the cycle time can depend on the ac-
cess times or physical configuration of parallel chambers. We examine cyclic scheduling problems for 
cluster tools that have non-identical access times. We first develop Petri net models of tool behaviors and 
analyze the cycle time by identifying the workloads of the process steps. We prove that the conventional 
backward and swap sequencing strategies are still optimal for a single-armed and a dual-armed cluster 
tools, respectively, when a process step is the bottleneck and the tool repeats a minimal cyclic work cycle. 
We also present a closed form formula for the cycle time and identify a co-prime condition on the number 
of parallel chambers for which the cycle time is independent of the order of using parallel chambers. 

1 INTRODUCTION 

Cluster tools have been widely used for semiconductor industry. A cluster tool combines several single-
wafer processing modules (PMs) or chambers and loadlocks (LLs) for wafer loading and unloading with-
in a closed environment together with a wafer handling robot or transport module (TM). The robot may 
have a single arm or dual arms. The angle between the dual arms is generally fixed. A dual-armed cluster 
tool is more expensive than a single-armed cluster tool but is known to have higher throughput (Ven-
katesh et al. 1997). 

Each wafer undergoes a number of process steps. One or more PMs are assigned to each process step. 
A long process step or the bottleneck process step is assigned to multiple PMs in order to reduce the tool 
cycle time (Perkinson, Gyurcsik, and McLarty 1996). Recent fabs tend to reduce the number of process 
steps, down to two or three, that are processed in a cluster tool and instead increase the number of parallel 
PMs for each process step. Figure 1 illustrates a radial-type dual-armed cluster tool with six PMs for a 
wafer flow pattern with four and two parallel chambers for process steps 1 and 2, respectively. Such par-
allelization can also be found in linear-type tools or track systems for coating and developing processes 
for photolithography. In a track system, a process step may have five or more vertically stacked PMs (Oh 
2000). Therefore, the robot’s access times to parallel chambers are significantly different due to vertical 
or linear robot movements. The differences can be more than a few seconds or even more than 10 seconds. 
Radial movements of the robot arms in a radial-type tool are usually short, in the range of a few seconds, 
and hence are often assumed to be identical (Kim et al. 2003, Geismar, Dawande, and Sriskandarajah 
2004, Lee 2008, Paek and Lee 2008). However, even a radial-type tool may have significantly longer ra-
dial movement times when robot movements are controlled to be very slow in order to limit particle gen-
eration for extreme cleanness. Nonetheless, most cluster tool scheduling studies assume identical access 
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times for parallel chambers or do not examine the impacts of non-identical access times in depth although 
the optimal scheduling rule and the cycle time can depend on the access times or physical configuration 
of parallel chambers. When the access times to parallel chambers are significantly different, they should 
be considered in scheduling. Conventional scheduling rules such as backward sequence for radial-type 
single-armed tools and swap sequence for radial-type dual-armed tools, which disregard differences in ac-
cess times to parallel chambers and deal with parallel chambers identically, are well known to be optimal 
and popularly used in the industry. They may be no longer optimal when the access times are significant-
ly different. The access time differences may cause a large deviation in the total flow times of wafers and 
cause excessive quality variation (Oh 2000). 

 

PM1(1)

PM1(2)

PM1(3) PM1(4)

PM2(1)

PM2(2)

 

Figure 1: A dual-armed cluster tool with wafer flow pattern (4,2) 

 In this paper, we examine a cyclic scheduling problem for cluster tools that have non-identical cham-
ber access times. We first develop a Petri net model of the tool behavior and compute the cycle time by 
analyzing the workloads of the process steps. We prove that the backward and swap sequence are still op-
timal for a single-armed and a dual-armed cluster tool, respectively, when a process step is the bottleneck 
and the tool repeats a minimal cyclic work cycle. We then present a closed form formula for the tool cycle 
time. We also identify a co-prime condition on the number of parallel chambers for each process steps for 
which the cycle time is independent of the order of using the parallel chambers. 

2 SCHEDULING PROBLEMS FOR PARALLEL PROCESSING MODULES  

PMs are assigned to the process steps, one or more to each step, according to the wafer processing recipe 
and the process times. In a cluster tool, a wafer unloaded from a LL takes a sequence of process steps by 
going through processing at the PMs according to the recipe, and returns to the LL. A LL is regarded as a 
PM with zero processing time in view of scheduling. A long process step can be assigned multiple identi-
cal PMs to reduce the cycle time for the process step. Therefore, wafer flow patterns are series-parallel. 
Cluster tools mostly process identical wafers continuously, at least 25 identical wafers in a wafer cassette. 
Then, a tool, more specifically the robot and each chamber, mostly repeats identical work cycles. Such 
cyclic scheduling has advantages such as steady operation, simplified scheduling problems, and con-
trolled wafer delays and is used by most tools (Lee 2008). The tool operation cycle, including each PM’s 
work cycle and the robot moves between the PMs, is determined in accordance with a cyclic sequence of 
the robot tasks such as loading and unloading a wafer at a PM or LL. Single-armed tools mostly have 
used a backward sequence that after an operation of transferring a wafer from a PM of process step n to a 
PM of process step n+1 is completed, a similar operation is made from a PM of process step n-1 to a PM 
of process step n. A swap operation for a dual-armed tool unloads a wafer completed in a PM into an 
empty robot arm and loads a wafer on another robot arm into the PM. A swap sequence repeats the swap 
operation for a PM of each process step in the process step sequence. The two sequences do not care 
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about the order in which the parallel PMs are used. Figures 2 and 3 illustrate the two sequences. The 
backward sequence for single-armed tools and the swap sequence for dual-armed tools have been known 
to minimize the tool cycle time. The optimality is proven by assuming identical access times to parallel 
chambers or no parallel chamber (Lee, Lee, and Shin 2004; Paek and Lee 2008). However, when the ac-
cess times are significantly different, the optimality should be verified. In fact, some tools or processes 
require high-level cleanliness within the tool environment. To do this, the tool environment is kept as 
vacuum and the robot movement speed is controlled low to avoid risk of particle generation. Therefore, 
robot movement between PMs takes more than a few seconds. In the case, tool scheduling should consid-
er non-identical robot movement times and count different access times to parallel PMs that have been 
regarded to be identical. 
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Figure 2: Backward sequence for a single-armed cluster tool 
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Figure 3: Swap sequence for a dual-armed cluster tool 

 There are tools that have significantly different access times to PMs and many parallel chambers. A 
track system for photolithography performs photo-sensitive chemical coating on a wafer surface, supplies 
to an attached stepper for exposing a coated wafer surface to the circuit image, and then develops the ex-
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posed image. It has several robots and many PMs. Since the PMs are clustered into each robot, a track 
system can be viewed as a group of several interconnected cluster tools. Each process step tends to have 
many parallel PMs in order to match its throughput rate with that of an extremely expensive stepper. Fig-
ure 4 illustrates a track system that has five or ten vertically stacked PMs for each process step. The han-
dling robot should make vertical movements as well as angular movements for such vertically stacked 
PMs. Vertical movement times tend to be significantly long and different depending on the stack posi-
tions, a few seconds to more than ten seconds. Such variance of access times to parallel PMs creates vari-
ability in the throughput times of wafers or wafer delays within PMs. Such time variability causes varia-
bility in wafer surface quality because coating and developing processes are sensitive to wafer delays and 
times between processes. The order for assigning wafers to parallel PMs affects the variability and even 
the throughput rate or the tool cycle time. Oh (2000) shows that cyclic ordering can reduce the variability 
significantly. We also need to examine whether the backward and swap sequences between the process 
steps are still optimal and how the order of using parallel chambers affects the tool cycle time. 
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Figure 4: A track system with parallel PMs 

Another example is provided by linearly configured cluster tools as seen in Figure 5. A linear cluster 
tool can flexibly extend the number of PMs (Yi et al. 2007), but have significantly different access times 
for the PMs due to linearly-connected chambers. Therefore, different access times to parallel PMs should 
be considered for scheduling. 
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PM3(1)PM4(1)
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Figure 5: A linear cluster tool with parallel PMs 

 We examine cyclic scheduling of tools with distinctive parallel PMs that repeats identical work cycles 
and hence the robot and each PM performs identical sequence of tasks. Consider a wafer flow pattern 
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with parallel PMs, indicated by (m1, m2, … , mn), where mi is the number of parallel PMs for process step i. 
When parallel PMs for each process step are treated identically by assuming identical access times, a cy-
cle can be defined by a pass of each wafer from the first process step to the last process step. It is because 
we do not care which one of parallel PMs is used. Based on the above discussion, we should schedule 
parallel PMs distinctively. Therefore, a cycle should be defined by counting all parallel PMs distinctively. 
A minimum tool cycle is defined by k passes of wafers, where k is the same as the LCM(Least Common 
Multiple) of the mi’s, indicated by LCM[m1,m2,…,mn]. It is because the parallel PMs of each process step 
are used cyclically. Figure 6 illustrates such an LCM cycle. For each LCM cycle, the tool completes k wa-
fers. Since only a single type of jobs or wafers are processed, the sequence of the robot tasks for loading 
and unloading at each PM determines a tool cycle. Therefore, we wish to determine an optimal robot task 
sequence to make an LCM cycle that has the minimum cycle time.  
 

(Robot task sequence between process steps)

(The order of using parallel chamber for each step ) (Total schedule by an LCM cycle)  

Figure 6: An LCM cycle 

3 SINGLE-ARMED CLUSTER TOOL 

3.1 Petri Net Modeling 

For scheduling analysis of cluster tools, we use Petri net models. A Petri net is a mathematical and graph-
ical modeling framework for discrete event dynamic systems (Murata 1989). It consists of transitions, 
places, arcs, and tokens. They are denoted by bars, circles, directed arcs, and dots, respectively. They rep-
resent events or activities, condition or activities, precedence relation, and condition of places, respective-
ly. If a transition has tokens at each input place and the sojourn time of a token at each input place is larg-
er than the token holding time of the place, it becomes enabled. An enabled transition fires after a firing 
delay of the transition, if any. When a transition fires, each input place loses a token and each output 
place gets a new token. 
 A subset of Petri nets in which each place has exactly one input transition and output transition is 
called event graphs (Murata 1989). An event graph is also called a decision-free Petri net in the sense that 
there is no place where a token should be routed to after one of its multiple output transitions. An event 
graph is used for modeling cyclic behavior of a discrete event system such as a cluster tool that repeats an 
identical work cycle. An event graph that has nonzero token holding times at the places or nonzero firing 
delays at the transitions is called a timed event graph (TEG). The cycle time of a TEG is the same as the 
critical circuit ratio, the maximum of the sum of the token holding times and firing delays to the number 
of tokens in each circuit. It can be computed by a linear programming model or a polynomial-time algo-
rithm. When the robot task sequence is given to a cluster tool, the behavior can be modeled by a TEG and 
the tool cycle time is the same as the cycle time of the TEG. We therefore model a tool with non-identical 
parallel PMs by a TEG. Figure 7 shows a TEG model for a single-armed cluster tool with two process 
steps and two parallel PMs for the second process step. The tool is operated by the backward sequence. 
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Transitions Ui and Li represent an unloading task and a loading task at each process step i=1,…,n, respec-
tively. U0 and L3 describe the robot task at a loadlock. The p-th PM of process step i is indicated by PMi(p). 
Places Ti(p)(q) and Pi(p) indicate a wafer transfer task from PMi(p) to PMi+1(q), q-th PM of process step i+1, 
and a processing task at a PMi(p), respectively. For a place Ti(p)(q) for a wafer transfer of two sequential 
process steps, we do not specify process step i+1 for notational simplicity. For example, a place T1(1)(2) 
means a transfer task from first PM of process step 1 to second PM of process step 2. When a process step 
i does not have parallel PMs, we can omit the second index for one of the parallel PM. Place Mi(p)j(q) rep-
resents a movement of the robot with an empty arm from PMi(p) of process step i to PMj(k) of process step j. 
The transitions and places connected by the dotted arcs indicate the robot work cycle. The availability of 
the robot arm is indicated by a token at place Ai(p). The token holding times at the places or the firing de-
lays for transitions are the process times or the robot task times.  

A2(1)

U0 L1 U1

U2L2 L3

U0 L1 U1 U2L2 L3

T0(1)(1) P1 T1(1)(1) P2(1) T2(1)(1)

M3(1)1(1)
M1(1)2(1)

A1

A1

T0(1)(1) P1 T1(1)(2) P2(2) T2(2)(1)

A2(2)

M3(1)1(1)

M1(1)2(2)M2(2)0(1)

M2(1)0(1)

 

Figure 7: A TEG model for a single-armed cluster tool with the backward sequence 

3.2 Workload Analysis 

The workload measure of a resource such as a PM or a robot is defined to be the same as the minimal 
time to complete a wafer at the resource, that is, the sum of all task times for a work cycle of the resource 
(Kim et al. 2003; Lee, Lee, and Shin 2004). We extend the definition to an LCM cycle. 
 
 Definition 1. Suppose an LCM cycle with k wafer passes. The workload of a PM of process step i is 
the sum of the unloading, loading, transporting and processing task times, to produce ki wafers, where ki 

= k/mi and mi is the number of parallel PMs of process step i. The workload of the robot is the sum of all 
robot task times to produce k wafers.  
 

We examine the necessary tasks for completing a work cycle at a PM, PMi(p). A wafer should be un-
loaded from a PM of process step i-1, transported to PMi(p) , loaded into the PM, processed there, unload-
ed from there, transported to a PM of process step i+1, and loaded into the PM, and the freed robot should 
move to a PM of process step i-1. The times for the tasks are u, δi-1,i(p), l, pi, u, δi(p),i+1, l, and δi+1,i-1, respec-
tively. For times δi-1,i(p), δi(p),i+1, and δi+1,i-1, the second index for the parallel PMs is omitted when we do 
not refer to a specific PM. Figure 8 illustrates the tasks for a work cycle for a PM, PMi(p). The tasks are 
required for a PM work cycle regardless of the robot task sequence or the tool work cycle. Of course, dur-
ing processing a wafer at a PM, the robot can do other tasks. Since the actual work cycle can have delays 
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between the tasks, the sum of the task times is the minimum time of the work cycle, and hence defines the 
workload of the PM. By examining the robot movements between parallel PMs of consecutive process 
steps, we obtain the following result. 

 
PMi(p)PMi-1 PMi+1 PMi(p)PMi-1 PMi+1 PMi(p)PMi-1 PMi+1 PMi(p)PMi-1 PMi+1

PMi(p)PMi-1 PMi+1PMi(p)PMi-1 PMi+1PMi(p)PMi-1 PMi+1PMi(p)PMi-1 PMi+1

Process the wafer(pi)Unload a wafer from the previous PM (u) Transport the wafer to the current PM (δi‐1,i(p)) Load the wafer to the current PM (u)

Unload the processed wafer (u) Transport the wafer to the next PM (δi(p),i+1) Load the wafer to the next PM (l) Move to the previous PM (δi+1,i‐1)  

Figure 8: The work cycle of a PM of a single-armed tool 

Lemma 1. The workload of PMi(p) in a single-armed tool with a series-parallel wafer flow pattern is  
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 Corollary 1. If the numbers of parallel PMs for three consecutive process steps, mi-1, mi, and mi+1, 
are co-prime, then the workload of PMi(p) is  
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An LCM cycle makes k wafer passes. It consists of k(n+1) unloading and loading tasks and 2k(n+1) 

wafer transfer or robot move tasks. The sequence between the latter tasks determines the work cycle since 
the former tasks follow the latter tasks. We wish to determine the optimal robot task sequence between 
the latter tasks. A robot task sequence is defined as σ=(σ(1),…, σ(2k(n+1))), where σ(h) indicates the h-th 
robot task. Index  f(c) represents c-th pass of a wafer. The robot’s workload simply follows. 

 
 Theorem 1. The workload of a transfer robot is  
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3.3 Optimal Sequence  

By examining the circuit ratios of the TEG model, we can establish the following theorem. 
 
Theorem 2. The backward sequence minimizes the cycle time for a single-armed cluster tool with a 

series-parallel wafer flow pattern, if the following condition is satisfied: 
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Then the cycle time of a single-armed cluster tool with a series-parallel wafer flow pattern under the 
backward sequence is  
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 The tool cycle time cannot be less than the maximum of the workloads of the PMs and the robot. We 
observe that the cycle time of Theorem 2 is the same as the maximum workload of the PMs. Therefore, if 
the tool is process-bound as in most practical tools, in other words, the workloads of the PMs are more 
than the robot workload, the tool cycle time by the backward sequence is optimal. 
 
 Corollary 2. If the numbers of parallel PMs for three consecutive process steps, mi-1, mi, and mi+1, 
are co-prime, the cycle time of a single-armed cluster tool with a series-parallel wafer flow pattern under 
the backward sequence is  
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 In Corollaries 1 and 2, we can see that the cycle time of a single-armed cluster tool under the back-
ward sequence is invariant to the order in which the parallel PMs are used.

  
 Corollary 3. For a single-armed cluster tool with a backward sequence, the minimum cycle time is 
irrelevant to the order of using parallel PMs if the numbers of parallel PMs of the bottleneck process step 
and the preceding and succeeding process steps are mutually co-prime. 
 

 We also compute the cycle time of a special case where the transfer times are all constant. We con-
firm the known result (Lee, Lee, and Shin 2004). 
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 Corollary 4. If the transfer times are all identical, the cycle time of a single-armed cluster tool with a 
series-parallel wafer flow pattern under the backward sequence is  

max{ ( 2 2 3 ),  ( 1)( 2 )}i
i

k
p u l k n u l

m
       . 

4 DUAL-ARMED CLUSTER TOOL 

4.1 Petri Net Modeling 

We can develop a TEG model for a dual-armed tool with the swap sequence as illustrated in Figure 9. It 
represents the behavior of a dual-armed cluster tool under the swap sequence. The tool has wafer flow 
pattern (2,1). Transitions Ui and Li and place Pi(p) indicate unloading, loading, and processing tasks. Place 
Ti(p)j(q) indicates a robot transfer task from PMi(p) to PMj(q). Thus, Places Ti(p)i(p) represents 180° rotation of 
the dual-arm at PMi(p). All places Ti(p)j(q) are for wafer transfer tasks, except place T3(1)0(1) (=Tn+1(1)0(1)) 
which is an empty moving task from and to the loadlock. The dotted arcs indicate the robot work cycle. In 
this model, the availability place for the robot arms is not necessary because it can be indicated by tokens 
at place Ti(p)i(p). The token holding times for each place Ti(p)j(q) are different depending on how the parallel 
PMs are used. 
 

U0 U1 U2T1(1)1(1)T0(1)1(1) L1 T1(1)2(1) T2(1)2(1) L2

P1(1)

L3 L2 L1T2(1)2(1)T2(1)3(1) U2 T1(2)2(1) T1(2)1(2) U1

P2

P1(2)

T0(1)1(2)

T3(1)0(1) P2

T2(1)3(1)

T3(1)0(1)

L3

U0
 

Figure 9: A TEG model for a dual-armed cluster tool with the swap sequence 

4.2 Workload Analysis 

Similarly as in a single-armed cluster tool case, we examine the workloads of each resource. We examine 
the work cycle of PMi(p) to produce a wafer. It should have each one of processing, unloading, transport-
ing, and loading tasks. In the following task descriptions, the symbol in a parenthesis indicates the task 
time. To achieve the minimum cycle time, a wafer which completes a processing tasks (pi) should be un-
loaded immediately by a robot arm (u). Therefore, there should be another processing wafer on the other 
robot arm at the time, as illustrated in Figure 10. Otherwise, it takes additional time to pick up a newly 
processed wafer. Since the angle of the two robot arms remains 180°, the robot should make a 180° rota-
tional movement (δ i(p), i(p)) for transporting the wafer to the next PM. After loading the wafer to the next 
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PM (l), the cycle of PMi(p) is completed. To produce ki  wafers, similar cycles should be repeated ki times. 
We have the following lemma for the workload of a PM. 

 

PMi(p) PMi(p) PMi(p) PMi(p) PMi(p)

Process the wafer (pi) Unload the processed wafer (u)

Load the wafer to the the PMi(p) (l)A newly processed wafer 

Transport the wafer to the PMi(p) (δ i(p), i(p))

 

Figure 10: The work cycle of a PM in a dual-armed cluster tool 

 
 Lemma 2. The workload of PMi(p) in a dual-armed tool with a series-parallel wafer flow pattern is 

( )( ), ( )
1

( )
i

f c

k

i i i p i p
c

k p u l 


   . 

4.3 Optimal Sequence 

By analyzing the TEG model, we identify the cycle time of a dual-armed cluster tool under the swap se-
quence.  
 

Theorem 3. The swap sequence minimizes the cycle time for a dual-armed cluster tool with a series-
parallel wafer flow pattern if the following condition is satisfied: 

( ), 1 1, ( ){ ( 1) 1}( ) ...      i i i p i i i pp m n u l i          . 

Then the cycle time of a dual-armed cluster tool with a series-parallel wafer flow pattern under the swap 
sequence is 

( )

/

( ), ( )
{1,2,..., }

1

max { ( ) }
i

f c
i

k m

i i p i p
p m

ci

k
p u l

m
 




    . 

 
 The cycle time in Theorem 3 is the same as the maximum workload of a PM. Therefore, the swap se-
quence is optimal when the tool is process-bound. 

Theorem 4. If the robot work cycle is the bottleneck of a dual-armed cluster tool with a series-
parallel wafer flow pattern under the swap sequence, the cycle time is 
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  
   , 1 ( ), ( ) 1,0

1 0 1

1
f c f c

k n n

i i i p i p n
c i i

k n u l    
  

 
      

 
   . 

 
As suggested by Theorem 3, the cycle time of a dual-armed cluster tool under the swap sequence is 

independent of the order of using parallel chambers. Theorem 4 suggests that if the numbers of parallel 
chambers of two sequential process steps are all co-prime, the cycle time is not affected by the order of 
using parallel PMs. 

 
 Corollary 5. For a dual-armed cluster tools under the swap sequence, the minimum cycle time is ir-
relevant to the order of using parallel PMs if the numbers of parallel chambers of two sequential process 
steps are all co-prime.  

 
We also compute a well-known special case where the access times are identical (Paek and Lee 2008). 

 
 Corollary 6. If the access times are all identical, the cycle time of a dual-armed cluster tool with a 
series-parallel wafer flow pattern under the swap sequence is  

max{ ( ),  ( 1)( 2 )}i
i

k
p u l k n u l

m
       . 

 
Most cluster tools in operation are process-bound. It is because PMs are more expensive and create 

higher values on wafers than the robot. Therefore, the throughput should not be lost due to waiting for the 
robot. Therefore, the backward and swap sequences are effective even when the access times for parallel 
PMs are significantly different, only if the tool is process-bound and some conditions on the number of 
parallel chambers are met. Nevertheless, there can be cases of robot-bound. For the cases, we can develop 
mixed integer programming models for determining an optimal robot task sequence in cluster tools with 
non-identical access times to parallel PMs (Jung 2009, Kim 2009).  

5 CONCLUSION 

We identified that the conventional backward and swap sequence are still optimal even when the access 
times for parallel PMs are significantly different only if the tool is process-bound and some conditions are 
satisfied. In the case, we also proved that the order of using parallel PMs is irrelevant. The co-prime con-
ditions on the numbers of parallel chambers for process steps suggest how to configure parallel chambers 
for each process step. The results are most helpful for operating and designing cluster tools. 
 Further issues include scheduling of cluster tools with more complex and realistic requirement such 
as reentrant flows. It is worthwhile to examine dispatching rules for non-identical parallel PMs. In addi-
tion, since the dispatching of the lots from different products waiting in front of a group of cluster tools 
may cause a big impact on the overall cluster tool performance, it would be an interesting research issue 
to study how our internal cluster tool scheduling approaches interact with external  scheduling approaches. 
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