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ABSTRACT 

We present a simulation model constructed in collaboration with Intel Corporation to measure and gauge 

the interaction of non-linear supply chain phenomena (such as waste, uncertainty, congestion, bullwhip, 

and vulnerability).  A representative model that mimics part of Intel’s supply chain from fabrication to de-

livery is modeled using discrete-event simulation in ARENA. A “phenomena evaluation” framework is 

proposed to link model inputs and supply chain phenomena in order to evaluate supply chain configura-

tions. Using a sample supply chain decision (safety stock level determination) we follow the “phenomena 

evaluation” framework to illustrate a final recommendation. Results show that our supply chain pheno-

mena evaluation approach helps better illustrate some trade-offs than an evaluation approach based only 

on the traditional metrics (cost, service, assets etc.).  

1 INTRODUCTION 

Over the last 20 years, supply chain management has been recognized as an important source of competi-

tive advantage. A significant body of knowledge has been developed to describe multiple dimensions of 

detrimental performance of supply chain systems.  

 Several authors describe sub-optimal performance of supply chain systems and opportunities for im-

provement by viewing the supply chain in a holistic manner (Bechtel and Jayaram 1997; Cooper et al. 

1997; Lee and Billington 1992). Simchi-Levi et al. (2008), for example, describes the inherent supply 

chain trade-offs between cost and customer service and how the impact of these trade-offs can be elimi-

nated or, at least, reduced through the use of advanced information technology and appropriate supply 

chain design. Sheffi (2005) discusses the trade-offs between inventory level and disruption vulnerability, 

as well as the impact of the postponement strategy in developing supply chain resilience. Christopher 

(2005) illustrates the inherent trade-offs of global logistics. In summary, firms are constantly looking for 

new practices, or combinations of old ones, that help eliminate or reduce existing trade-offs to create sus-

tainable competitive advantage (Hewitt 1994; Porter 1996).  

 One of the challenges of developing new practices is the multi-dimensional nature of trade-offs re-

quired to evaluate supply chain design decisions. Blanco et. al. (2009) and Barros et. al (2010), as part of 

the “Tailored Supply Chains” project supported by Intel Corporation, identified “Seven Non-Linear 

Supply Chain Phenomena” and argued that this framework allows for better understanding – and ulti-

mately better design – of supply chains. These phenomena are: the bullwhip effect, vulnerability, uncer-

tainty, congestion, waste, diseconomies of scale and self-interest. 
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Table 1: The seven non-linear supply chain phenomena 

Phenomena Description 

Waste Use of resources without creating value 

Vulnerability Inability to recover from disruptive events  

Uncertainty 
Inability to predict the future due to incomplete knowledge or chang-

ing environment 

Congestion  Excessive accumulation of products, processes, or information 

Bullwhip Upstream amplification of demand signals  

Diseconomies of Scale Increase of unit cost as output increases 

Self-interest Reduction of system wide profits, due to individual profit focus 

  

 The goal of our research is to develop analytical models that enable us to measure and gauge the inte-

raction of the seven supply chain phenomena. This research will also increase our understanding of key 

supply chain metrics and their relationships with overall supply chain performance. 

2 THE MULTI-TIER SUPPLY CHAIN DYNAMICS SIMULATOR 

2.1 Model Overview 

A multi-tier supply chain simulation model (MTSCSM) was developed, inspired by the dynamics of Intel 

“low cost” products. The goal of this model was to study how supply chain decisions could be evaluated 

from the seven-phenomena perspective.  

 In our study, phenomena are ways to classify the observable effects of the structure of the supply 

chain and the decisions made to operate it. For example, the congestion phenomenon may be observed in 

several ways in the supply chain:  amount of queuing time in a factory, excess inventory levels in various 

points in the supply chain, and so on.  

 The model was developed in Arena (Version 12.00.00). Microsoft Excel is used to read and write da-

ta. When running multiple experiments, Excel Macros are used to help generate various experiments, set 

up Arena readable format inputs, and store all outputs. 

 In the MTSCSM model, some phenomena are configured by the input data and some phenomena are 

outputs that we can measure. Others must be measured using scenarios: for example, assigning a disrup-

tion to the resources with deterministic occurrence and duration to study vulnerability.   

2.2 Functional Components 

There are four functional components in the MTSCSM model: order generation, forecast, production, and 

delivery shown as four green blocks in Figure 1. 

 In the order generation component, original equipment manufacturer (OEM) orders are generated at 

the beginning of the simulation. All generated orders have a product type, order quantity, arrival time, 

change time, and due time. The orders are held until the time they should arrive in the system. In other 

words, the generated orders will not be “seen” by the model until they enter the system at their arrival 

time.  

 In each week, a stochastic forecast of OEM orders is generated (forecast component of the model). 

The forecast is generated around a forecast mean (which is the maximum between total orders generated 

and total “units ordered” that are visible to Intel), using a bias and standard deviation specified in the in-

put parameters. This approach captures the uncertainty nature of forecasts experienced by Intel during the 

planning process. 
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Figure 1: Four functional components in the simulation model 

 

 All production related activities occur in the production component where we mainly consider four 

processes – fabrication (Fab), assembly/test (AT), finish line (FL), and shipping. In Figure 2, blue blocks 

are production processes, and green triangles are the inventories held after completing each production 

process. In each production process, we model both the control/planning and execution phases. As in Fig-

ure 1, red blocks represent the control/planning phase, and blue blocks are the execution phase in the 

model.  
 

 
Figure 2: Production processes of fabrication, assembly/test, finish line, and shipping 

 

 As shown in Figure 2, the first stage of the production line is to fabricate silicon wafers and saw them 

into individual devices called die. The die then goes through the process of assembly/test, in which two 

product families A’ and C’ are produced. The two product families are referred to as semi-finished goods 

(SFGs) in the simulation model. SFGs then go through the finish line to be produced into finished goods 

(FGs). There are four types of FGs in the simulation model – products A, B, C, and D. At the end, FGs 

are transferred to the shipping process where the excess FGs are stored as hub inventory (Hub).  

 As orders become due (as assigned in the order generation component of the model), OEM orders are 

fulfilled from the Hub. In the delivery component of the model, filled orders are removed from Hub in-

ventory, and orders that cannot be filled are held until additional Hub inventory is available. On-time and 

late orders are recorded. Perfect order percentage (which is the ratio of on-time orders to total orders) as-

sociated with each product type is calculated and written into model outputs file in Excel.  

2.3 Inputs and Outputs 

As in all discrete event simulation models, there are a large number of configuration elements that deter-

mine system performance. We focused on a set of 81 model inputs that represent the key supply chain de-

cision parameters: Products and product families (2 parameters), forecast management (12 parameters), 
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demand configuration (28 parameters), inventory control (21 parameters) and manufacturing execution 

(18 parameters). 

 The simulation model is configured to output a wide range of data after terminating each run. Model 

outputs are stored in an Excel output file. Some of the most useful outputs and their statistics are listed in 

Table 2.  

Table 2: Selected  model outputs. 

 Outputs Statistics 

Order Statistics   

 Perfect order percentage Avg/Max/Min 

 Hours late (late orders) Avg/Max/Min 

Production Statistics   

 ADi, SFGi, FGi, Hub inventory Avg/Max/Min/std 

 Total cycle time Avg/Max/Min/std 

 Processing cycle time Avg/Max/Min/std 

 Queuing time Avg/Max/Min/std 

 Number in queue Avg/Max/Min/std 

 Quantity "Sold" Avg 

 Quantity produced to FGi, Hub Avg 

2.4 Baseline Configuration 

We configured a baseline model based on the data provided by Intel and our assumptions on some model 

inputs. All experimental runs are generated by modifying the input parameters in the baseline configura-

tion. The setting of the baseline experiment is shown in Table 3. All numbers have been changed to pro-

tect Intel confidential information.  

3 SUPPLY CHAIN PHENOMENA EVALUATION FRAMEWORK 

The supply chain phenomena evaluation framework is constructed to abstract various types of supply 

chain performance into the undesirable phenomena and to evaluate supply chain performance from a sys-

tematic perspective. Due to the inherent difficulty in capturing diseconomies of scale and self-interest 

phenomena from the modeling perspective, we only formulate the simulation model so that five supply 

chain phenomena (waste, uncertainty, congestion, bullwhip, and vulnerability) can be captured and ana-

lyzed.  

 Traditional metrics (cost, service, assets etc.) have been used to evaluate supply chain decisions and 

measure performance for many years. For example, selecting the transportation mode may require a cost-

benefit analysis, and it may also require the consideration of sustaining satisfactory customer service lev-

el. However, due to the complexity of supply chains, supply chain decisions made merely based on tradi-

tional metric considerations may not capture some undesirable supply chain phenomena. Therefore, we 

propose a “supply chain phenomena evaluation framework” to link a supply chain decision/scenario to the 

presence and intensity of the undesirable/deadly phenomena in the supply chain. Figure 3 shows the pro-

posed supply chain phenomena evaluation framework.  
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Table 3: Baseline model input setting. 

Baseline Simulation Parameters           

p (total products)  4     

f (total products per family)   2       

Order and Forecast(Hypothetical Numbers)          

OEMs   A B C D 

True average weekly demand units/week 10,000 2,000 2,000 1,000 

Weekly forecast error stdev percent 0.4 0.4 0.4 0.4 

Weekly forecast error bias units 0 0 0 0 

Average order size units 1,000 200 200 100 

Stdev (%) order size percent 0.1 0.1 0.1 0.1 

Average order lead time weeks 4 4 4 4 

Stdev (%) order lead time percent 0.1 0.1 0.1 0.1 

Average lead time for order changes weeks 2 2 2 2 

Stdev (%) for order change lead time percent 0.1 0.1 0.1 0.1 

Order change amount: stdev (% order size) percent 0.05 0.05 0.05 0.05 

Process Control Parameters(Hypothetical Numbers)           

By Product   A B C D 

Target ADi Safety Stock (WOI) weeks 1 1 1 1 

Target SFGi Safety Stock (WOI) weeks 1 1 1 1 

Target FGi Safety Stock (WOI) weeks 1 1 1 1 

Target Hub Safety Stock (WOI) weeks 1 1 1 1 

By Stage           

ADi Review Period weeks 1     

SFGi Review Period weeks 1     

FGi Review Period weeks 1     

Hub Review Period weeks 1     

Fab Lot Size units (large)     

AT Lot Size units (medium)     

FL Lot Size units (medium)     

Shipping Lot Size units (small)     

Fab Capacity lots (medium)     

AT Capacity lots (medium)     

FL Capacity lots (low)     

Shipping Capacity lots (high)     

Fab Cycle Time days (long)     

Fab CT Stdev percent 0.05     

AT Cycle Time days (medium)     

AT CT Stdev percent 0.05     

FL Cycle Time days (short)     

FL CT Stdev percent 0.05     

Shipping Cycle Time days (short)     

Shipping CT Stdev percent 0.05     

AT_FixedProductFamilyRatio ratio 0.8     

Early Processing Factor percent 0     

AT_FixedProductFamilyRatio_Stdev percent 0.00001       
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Figure 3: Supply chain phenomena evaluation framework 

 

When there is a supply chain scenario or decision to be evaluated, the stakeholders start by looking at 

the traditional metrics and make a decision based on these metrics such as cost, service and so forth. The 

supply chain phenomena evaluation framework serves as an additional evaluation layer to guide through 

higher level interactions in the supply chain decision-making process. The MTSCSM simulation model is 

designed to link model inputs and outputs to the phenomena of waste, uncertainty, congestion, bullwhip 

and vulnerability in the supply chains. Once the phenomena evaluation process is finished, the process al-

lows for a final recommendation based on both traditional metrics and phenomena evaluation. We pro-

vide a sample supply chain phenomena evaluation report in Section 4.  

4 PHENOMENA EVALUATION OF A SAMPLE DECISION 

In this section, we will demonstrate how to make a supply chain decision by following the “evaluation 

framework” (as shown in Figure 3) to quantitatively evaluate the presence and intensity of five supply 

chain phenomena. 

4.1 A Sample Decision 

In every supply chain, it is important to set up the right safety stock level because of its associated in-

vestment (money, time etc.). Most of the time, making such a decision can be difficult and time-

consuming. Moreover, there may be many unforeseen consequences (for example, waste) if we only con-

sider the cost of a candidate decision. Hence, we use the safety stock decision as the illustration of our re-

search findings hereafter, and follow the proposed supply chain phenomena evaluation process to reach a 

recommendation.  

 The simulation model has features that enable the observation of supply chain phenomena from vari-

ous perspectives: some phenomena are captured by model inputs and outputs, while others must be meas-

ured using scenarios or multiple experiments. A supply chain decision, which could involve one or more 

model input parameters, needs to be configured at the beginning of the evaluation process (i.e. baseline 

setting). A number of experiments representing alternative decisions can be generated by varying the in-

puts from the baseline setting. After running all generated experiments, we can compare these decision 

alternatives and their supply chain performance, and understand the trade-offs among different decisions 

from the supply chain phenomena perspective.  

4.2 Phenomena Analysis 

We will now follow the sequence of the framework evaluation in Figure 3 to study the relationship be-

tween a safety stock decision and the supply chain phenomena.  
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4.2.1 Waste 

Initially, 26 experiments were generated from the baseline model with changes in safety stock levels. The 

safety stock level for each product at each stage in the supply chain was changed from 0 to 5 weeks of in-

ventory, increasing by 0.2 in each experiment. Table 4 shows the key parameters changed in these 26 ex-

periments. 

Table 4: Key parameters changed in the 26 experiments. 

Key Parameters Changed Experiment Baseline Value (wk) Change (wk) New Value (wk) 

ADi Safety Stock_A, B, C, D 

SFGi Safety Stock_A, B, C, D 

FGi Safety Stock_A, B, C, D 

Hub Safety Stock_A, B, C, D 

1-26 1 0.2 0-5 

 

We first look at the perfect order percentage of all 26 experiments in order to capture the phenomenon 

of waste in the supply chain. As shown in Figure 4, the service levels (in terms of perfect order percen-

tage) increase as the safety stocks increase. The first week of safety stock is able to achieve an acceptable 

supply chain performance (which is around 95%). But the service levels improvements increase slowly 

until the safety stocks reaches a particular level which is 1.4 weeks of inventory.   

 

 
 

Figure 4: Safety stock levels and perfect order percentage 

 

Figure 4 clearly shows that adding more safety stock does not necessarily yield a higher perfect order 

percentage. For example, keeping 1.4 weeks of the safety stock can reach 99.68% perfect orders, while 

keeping 2 weeks of safety stock yields 99.81% perfect orders. This illustrates that waste may be present in 

the supply chain due to marginal improvements in service levels. In other words, by linking alternative 

safety stock decisions to the outputs of perfect order percentage, potential inventory waste can be ob-

served.  

4.2.2 Uncertainty 

In practice, one and two weeks of safety stock are both reasonable decision candidates. In order to eva-

luate viable safety stock alternatives from an uncertainty perspective, we choose one and two weeks of 

safety stock in the remaining phenomena evaluation process. (One week of safety stock achieves, on av-

erage, 95% perfect order percentage, and two weeks of safety stock achieves 99.81% perfect order per-

centage.) We generate 13 experiments for both one and two weeks of safety stock by varying weekly de-
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mand (Table 5). Since demand is the only parameter being changed in each of these experiments, the sys-

tem utilization varies from 40% to 90%. Our goal is to understand how consistently the system performs 

regarding both perfect orders and lateness.  

Table 5: Key parameters changed in the 13 experiments. 

Key Parameters Changed Experiment Baseline Value (unit) Change (unit)  

Average weekly demand_A 1-13 High 1000 

Average weekly demand_B 1-13 Medium 200 

Average weekly demand_C 1-13 Medium 200 

Average weekly demand_D 1-13 Low 100 

 

In Figure 5, when using one week of safety stock, the system can achieve relatively good perfor-

mance regarding perfect orders but with the risk of falling down to low service levels. The perfect order 

percentage ranges from 87% to 93%; this quantifies the effect of uncertainty in the supply chain. If the 

safety stock is increased to two weeks, the perfect order percentage is centered on 95% which clearly de-

monstrates a sustained robustness of service levels. Thus, with two weeks of safety stock the system be-

comes less uncertain with “safer” settings (more safety stocks across all echelons in the model). Similarly, 

Figure 6 shows that the range of lateness is relatively high with one week of safety stock compared to two 

weeks of safety stock. From the uncertainty perspective, we learn that even though the system achieves 

90% perfect orders with one week of safety stock, it cannot sustain such performance when demand va-

ries; thus risk is identified. With two weeks of safety stock, the system consistently shows superior per-

formance regarding both perfect orders and lateness.  

 In the following steps, we study more trade-offs between these two alternatives (one week and two 

weeks of safety stock) from different perspectives as described in  the “phenomena evaluation frame-

work”.  

 

 
Figure 5: Safety stock levels (one and two weeks) and perfect order percentage 
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Figure 6: Safety stock levels (one and two weeks) and lateness 

4.2.3 Congestion 

A cycle time ratio is defined as the ratio of processing time over total cycle time at each stage (total cycle 

time is the sum of processing and queuing time). The ratio can be any value between 0 and 1. On this de-

finition, if the queuing time is 0, the cycle time ratio is 1, which shows no congestion in the system. If the 

queuing time is very large, the cycle time ratio goes to zero, which shows significant congestion. As a re-

sult, the larger the cycle time ratio, the better the system performs.  

In Figure 7, two weeks of safety stock shows more congestion than one week of safety stock. This is 

because there is more excess inventory waiting /queuing in the system. The most congestion occurs at the 

finish line, since the cycle time at this stage is set to be short (as shown in Table 3).  

 

 
 

Figure 7: Safety stock levels (one and two weeks) and cycle time ratio at four supply chain stages 

4.2.4 Bullwhip 

In order to capture the bullwhip effect in the MTSCSM model, we observe system performance in terms 

of weeks of stock (WOS) at different supply chain stages (Figure 8). It shows that the downstream fluctu-

ation (due to demand changes) is amplified towards upstream of the supply chain (except in the fab, be-

cause our model assumes unlimited material supply).  
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Figure 8: Safety stock levels (one and two weeks) and weeks of stock at four supply chain stages 

4.2.5 Vulnerability 

To study the vulnerability phenomenon, we design a “failure” with deterministic occurrence and du-

ration in the simulation model. The failure occurs three weeks after the warm-up period (60 weeks) and 

lasts for eight weeks. The failure can be assigned to different production processes, such as fab, finish line 

and so on. Unlike the study of other phenomena using a set of experiments, we only use two experiments 

with one and two weeks of safety stock. We run the two experiments with no failure, failure at fab, and 

failure at finish line; thus, there are 6 experiments to study vulnerability. We mainly observe the accumu-

lated numbers out of the system in each experiment to identify the system reaction and recovery to the 

disruption. Table 6 summaries some statistics of both Fab and FL failures with one week of safety stock. 

Better illustrations of accumulated numbers out of the system are shown in Figures 9 and 10. 

Table 6: Statistics of Fab and FL failures for one week of safety stock. 

Safety Stock= 

1 week 

Disruption 

Start (wk) 

First 

Drop 

(wk) 

Recovery Be-

gin (wk) 

Second 

Drop (wk) 

Second Recov-

ery (wk) 

Recovery 

Finish (wk) 

Fab Disruption 63 75 79 80 81 90 

FL Disruption 63 67 70 72 73 82 

 

 
 

Figure 9: Accumulated number out of the system with Fab disruption 
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Figure 10: Accumulated number out of the system with FL disruption 

 

 In Figures 9 and 10, the most noticeable observation is that with two weeks of safety stock the system 

reacts well to the disruption (even though the disruption lasts for eight weeks). We also observe the reac-

tion (first drop) to disruption occurs weeks after the disruption, and the recovery takes a long time to be-

come steady. The “non-steady” recovery period is one week for the Fab disruption and two weeks for the 

FL disruption. When the failure occurs at the FL, the first drop occurs faster than with a failure at the Fab, 

because the FL is closer to downstream supply chain activities. Therefore, the numbers out of the system 

hurt more than the failure occurring at the upstream of supply chains. 

 In order to quantitatively evaluate the inventory loss associated with each failure, inventory “lost” is 

defined and measured in terms of weeks of inventory (the underneath area in both figures). There are 31 

weeks of inventory lost for Fab Disruption and 20 weeks of inventory lost for FL Disruption. And for 

both cases, one week of safety stock loses more than using two weeks of safety stock.  

5 CONCLUSION  

We choose a sample decision and follow the supply chain phenomena evaluation framework to under-

stand the trade-offs among decision alternatives. After evaluating many candidates of safety stock levels 

from the waste perspective, we narrow down the candidates to one and two weeks of safety stock, then 

analyze these candidates from other supply chain phenomena perspectives (uncertainty, congestion, 

bullwhip, and vulnerability). As shown in Table 7, both one week and two weeks of safety stock have ad-

vantages and disadvantages from different supply chain phenomena perspectives.  

Table 7: Summary of supply chain phenomena evaluation and recommendation. 

Phenomena SS=1 week SS=2 weeks 

Waste  Achieves target with minimal inventory 

investment 

 Superior service level with unnecessary inven-

tory investment 

Uncertainty  Risk of lower performance; out-of-range 

order lateness 

 Consistently superior service level 

Congestion  Normal behavior  Increased waiting time across all supply chain 

stages 

Bullwhip  Acceptable inventory propagation  Significant upstream inventory variability 

Vulnerability  High risk to disruption  Resilient 

 

In conclusion, supply chain phenomena analysis is a systematic approach to complement the tradi-

tional metric evaluation approach. With the help of using discrete-event simulation models, the supply 

chain phenomena evaluation framework could serve as a strategic-level decision support tool to illustrate 
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the trade-offs among alternative decisions from the perspectives of waste, uncertainty, congestion, 

bullwhip, and vulnerability. A final recommendation can be given based on traditional evaluation ap-

proach as well as phenomena evaluation approach.  
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