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ABSTRACT

An efficient method for the smooth estimation of the arrival rate of non-homogeneous, multi-dimensional
Poisson processes from inexact arrivals is presented. The method provides a piecewise polynomial spline
estimator. It is easily parallelized, and it exploits the sparsity of the neighborhood structure of the underlying
spline space; as a result, it is very efficient and scalable. Numerical illustration is included.

1 INTRODUCTION

This paper presents an efficient method for the smooth estimation of arrival rates of non-homogeneous, multi-
dimensional Poisson processes from inexact arrivals, using polynomial splines. The approach combines
efficient methods of convex optimization with linear and semidefinite (more specifically, sum of squares)
constraints, and decomposition methods of convex optimization. Its main advantages include the following:
(1) it provides a smooth (not piecewise linear) estimator, (2) it exploits the sparsity of the neighborhood
structure of the spline, leading to a very efficient method, (3) it is fully parallelizable, which further
improves its scalability, and (4) it can easily be modified to incorporate various arbitrary constraints,
including periodicity in one or several variables, and bound constraints.

While in this paper we concentrate only on arrival rate estimation, many of the ideas presented are
also applicable for other function approximation and estimation problems, too. For further applications of
similar techniques in monotone and concave regression, density estimation, and binary classification, see
the thesis (Papp 2011).

The structure of this paper is as follows. The mathematical formulation of the problem is introduced
in the next section, where the objective function of our optimization model is also derived, along with an
observation of possibly independent interest: the expected number of arrivals of the maximum likelihood
estimator (under very general conditions) agrees with the observed number of arrivals. In Section 3 we turn
our attention to multivariate nonnegative splines. This functional cone is NP-hard to optimize over, hence,
we consider two families of inner approximations, in which a maximum likelihood estimator can be found
in polynomial time. The first approximation leads to optimization models with semidefinite constraints via
“weighted-sum-of-squares” polynomials, the second one uses polynomials with nonnegative coefficients
in a nonnegative basis, and results in a linearly constrained optimization model. We prove that (similarly
to the cone of nonnegative splines) these spline cones are dense in the cone of nonnegative continuous
functions. In Section 4 we adapt a decomposition algorithm of Ruszczyński designed for sparse convex
optimization problems, which, as we demonstrate, particularly favors spline estimation problems with their
sparse neighborhood structure. Combining the inner approximation ideas with this decomposition algorithm
leads to an efficient, parallel algorithm for the maximum likelihood arrival rate estimation problem. An
illustrative numerical example is provided in which the arrival rate of accidents on the New Jersey Turnpike
is estimated.

2777978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Papp and Alizadeh

2 MAXIMUM LIKELIHOOD ESTIMATION WITH
INEXACT ARRIVALS

We consider the following problem. We observe (inexact) arrivals x1, . . . ,xN ∈ ∆⊆ [0,1]d assumed to have
been generated by a non-homogeneous Poisson process with arrival rate λ : ∆→R+. We assume that λ is
continuous, and we seek a sufficiently differentiable estimator λ̂ for it, hence we use piecewise polynomial
splines of sufficiently high order of differentiability to approximate the arrival rate. Furthermore, we may
require λ to be periodic in any or all of its variables.

In most applications the arrivals are inexact (rounded). With sufficiently many arrivals, this means
that a coordinate of multiple arrivals may appear to coincide, invalidating the Poisson assumption. Hence,
the effect of rounding cannot be neglected, but a model for rounded arrival times is necessary. Such an
approach is outlined next. The range of possible arrivals ∆ is divided into small regions (representing the
arrivals that would be rounded to the same point), and the data are the number of arrivals within each
region. Suppose the arrivals are aggregated in regions ∆i, i ∈I , and let the number of arrivals recorded
in region i be ni. (Naturally, ∆ =

⋃
i∈I ∆i and N = ∑i∈I ni.) Then in the non-homogeneous Poisson model

the likelihood associated with the arrival rate λ is

Ln(λ ) = Pr(number of arrivals = N |λ ) ·Pr(distribution of exactly N arrivals = n |λ )

=
IN

N!
e−I · N!

∏i∈I ni!
∏
i∈I

(∫
∆i

λ

I

)ni

=
e−I

∏i∈I ni!
∏
i∈I

(∫
∆i

λ

)ni

, where I =
∫

∆

λ ,

whenever all the integrals in the above formulae exist (which they do, of course, if λ is a polynomial
spline). Hence, maximizing the likelihood function is equivalent to maximizing

f (λ ) def
= ln

((
∏
i∈I

ni!

)
Ln(λ )

)
=−

∫
∆

λ + ∑
i∈I

ni ln
∫

∆i

λ . (1)

This is the objective function of our optimization model. Extending the above arguments to obtain maximum
penalized likelihood models is straightforward.

Some optimization methods may benefit from a further simplification that is made possible by our next
observation.
Lemma 1 Let K be a cone of nonnegative functions over ∆ whose restrictions to each ∆i are integrable.
Define f : K → R as in (1), and assume that there exists a λ0 ∈K satisfying

∫
∆

λ0 > 0. Then every
function λ̂ ∈ argmaxλ∈K f (λ ) satisfies

∫
∆

λ̂ = N. Thus, the expected number of arrivals corresponding to
the maximum likelihood estimator from K equals the observed number of arrivals.

Proof. Suppose λ̂ is an optimal solution (implying
∫

∆
λ̂ > 0), and consider feasible solutions cλ̂ with

c > 0. We have f (cλ̂ ) =−c
∫

∆
λ̂ +N lnc+∑i∈I ni ln

∫
∆i

λ , and by assumption d
dc f (cλ̂ )

∣∣
c=1 = 0. The last

equation gives
∫

∆
λ̂ = N, in which case c = 1 indeed maximizes f (cλ̂ ).

Lemma 1 allows us to remove the first term of the objective function f in (1), if we add the equation∫
∆

λ = N to our constraints. This, along with the constraint λ ≥ 0 over ∆, renders the set of candidate
arrival rate functions bounded. In this paper we concentrate on splines, that is, the optimal λ is chosen
from a subset of piecewise polynomial functions nonnegative over ∆.

3 OPTIMIZATION OVER MULTIVARIATE NONNEGATIVE SPLINES

The maximum log-likelihood function f in (1) is a concave function with easily computable derivatives,
whose optimization over reasonably “well-behaved” closed convex sets is straightforward via a number of
different convex optimization methods. The same holds for maximum penalized likelihood models that can
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be derived analogously. However, the set of multivariate polynomials nonnegative over a given domain,
even though it is convex, is not an easy set to optimize over – in fact, as it is rather well known, even the
recognition of nonnegative polynomials is difficult.
Proposition 2 (Boros and Hammer 2002) Deciding whether a k-variate polynomial is nonnegative over
[0,1]d (equivalently, minimizing a d-variate polynomial over the unit cube) is NP-hard, even for multilinear
polynomials of degree two.

Similar statements can be made for polynomials nonnegative over other polyhedral sets (including
simplexes), as well as for everywhere nonnegative polynomials. This shows that optimization over piecewise
polynomial splines is difficult even if the shape of pieces is simple, and the the degree of the spline pieces
is low. The overcome this difficulty, we shall consider inner approximations of the set of nonnegative
polynomials: weighted-sum-of-squares polynomials.

3.1 Weighted-sum-of-squares Polynomials

We say that a polynomial is a sum-of-squares (or SOS) polynomial, if it is expressible as a sum of perfect
squares. Obviously, d-variate SOS polynomials are nonnegative over the entire Rd . If the domain is a
semi-algebraic set ∆ = {x |wi(x) ≥ 0, i = 1, . . . ,m}, where w1, . . . ,wm are polynomials, then a sufficient
(but not necessary!) condition for a polynomial p to be nonnegative over ∆ is that p is expressible as

p(x) = ∑
I⊆{1,...,m}

(
∏
i∈I

wi(x)

)
sI(x), (2)

or simply as

p(x) =
m

∑
i=1

wi(x)si(x), (3)

where the polynomials si and sI are SOS polynomials. Generally, polynomials expressible in the form
∑i∈I wisi, (I finite), where wi are fixed polynomials (“weights”) and si are SOS polynomials, are called
weighted-sum-of-squares polynomials, or WSOS polynomials for short.

An implication of a theorem of Nesterov (2000) is that WSOS polynomials admit a good characterization,
also suitable for optimization, as long as the set of weights {wi, i ∈ I} and the spaces of the underlying
SOS polynomials are both finite.
Theorem 3 (Nesterov 2000) Let W = {wi | i ∈ I} be a finite set of polynomials nonnegative over ∆⊂Rd ,
and consider finite-dimensional linear spaces of polynomials Vi, i ∈ I. Then the set of WSOS polynomials

Σ =

{
∑
i∈I

wi ∑
j

p2
i, j

∣∣∣∣∣ pi, j ∈Vi

}

is a closed convex cone that is representable as the Minkowski sum of |I| linear images of the cone of
positive semidefinite matrices of order maxi(dim(Vi)).

Therefore, the maximization of the log-likelihood function f in (1) over sets defined by linear equations
and constraints of the form Ak(λ ) ∈ Σk, where each Ak is a linear operator and each Σk is a WSOS cone
satisfying the conditions of Theorem 3 is a semidefinite programming problem (Wolkowicz, Saigal, and
Vandenberghe 2000) with a convex objective function – a tractable optimization problem (Renegar 2001).

The approximability of nonnegative polynomials over semi-algebraic sets by WSOS polynomials is a
well-studied problem. Unfortunately, to achieve good approximation of p, the SOS polynomials sI and si
in (2) and (3) need to have considerably higher degree than the degree of p itself, which is not practical
for the large-scale optimization models of our interest. Since we are only interested in the approximation
power of the piecewise polynomial spline estimator, we shall choose a different approach, and investigate
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the approximation power of piecewise WSOS polynomial splines. In what follows, to keep the discussion
simple, we assume ∆ = [0,1]d , and confine our discussion to tensor product splines, defined as the tensor
product of (linear) spaces of univariate splines with free knots. (For an introduction to these basic concepts
in splines, see (Schumaker 1981).)

As with every nonparametric method, we must address the issue of overfitting that may result from
using splines with too many pieces. Due to space limitations we shall avoid a lengthy discussion on knot
point selection, but we remark that all standard methods can be directly applied in connection with the
approach proposed in this paper. In particular, the subdivision of the domain can be iteratively refined, and
cross-validation, such as k-folding, or information criteria, such as AIC, AICc, and BIC, can be used to
find the optimal subdivision. Additionally, a maximum penalized likelihood approach may be developed
completely analogously, by adding a penalty term for non-smoothness to the objective function (1). If f
is a piecewise polynomial function, standard penalties such as

∫
∆
( f ′)2 and

∫
∆
( f ′′)2 are convex quadratic

functions of the coefficients, and the computational effort required to optimize the resulting penalized
likelihood function is the same as required by the maximum likelihood approach without smoothness
penalty. The penalized likelihood approach introduces an additional parameter (the coefficient of the
penalty term), which can also be set using cross-validation. For the numerical illustration in Section 5 we
used the likelihood function (1), without any penalty terms.

3.2 Piecewise Weighted-sum-of-squares Splines

3.2.1 Terminology and Notation

Let us assume that ∆ is the d-dimensional interval [0,1]d , and consider splines over a rectilinear subdivision
of ∆. Such a subdivision can be given by a list of vectors (of possibly different dimensions) A = (ai, j), i =
1, . . .d, j = 1, . . . `i such that the knot point sequence (ai,1, . . . ,ai,`i) defines the subdivision of ∆ along the
ith axis. Then each region of the subdivision is affinely similar to ∆, and we can represent a spline by the
coefficients of its polynomial pieces scaled to ∆.

Formally, for each dimension i = 1, . . . ,d we fix a basis {u(i)0 , . . . ,u(i)mi} of univariate polynomials of
degree mi, with domain [0,1]. The spline s is then given piecewise; for each multi-index j = ( j1, . . . , jd),
s over the j-th piece is given by

s(x) = q(j)(x) ∀x = [a1, j1 ,a1, j1+1]×·· ·× [ad, jd ,a1, jd+1].

Each polynomial piece q(j) is represented by the coefficients p(j)k , k ∈ {0, . . . ,m1}× · · ·×{0, . . . ,mk}, of
its affinely scaled counterpart p(j) : [0,1]d → R satisfying

q(j)(x) = ∑
k

p(j)k

d

∏
i=1

u(i)ki

(
xi−ai, ji

ai, ji+1−ai, ji

)
. (4)

Note that each p(j) has the same domain, [0,1]d . It is clear that s(x) ≥ 0 for every x ∈ ∆ if and only if
p(j)(x) ≥ 0 for every j and x ∈ [0,1]d . We refer to this representation of s by the coefficients p(j)k as the
scaled representation of s.

3.2.2 The Approximation Power of Piecewise Weighted-sum-of-squares Splines

The nonnegativity of a spline s over ∆ reduces to the nonnegativity of each polynomial p(j) over ∆ = [0,1]d ,
and our goal now is to identify proper subsets of polynomials nonnegative over ∆ that give rise to piecewise
polynomial splines with good approximation power. First, we need to introduce some more notation.

Let the subdivision of ∆ be defined by a list of vectors A, as above, and the mesh size of such a
subdivision be defined as ‖A‖ = maxi, j(ai, j+1−ai, j). We say that a sequence of subdivision is nested if
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each subdivision in the sequence refines the previous one. A sequence of subdivisions is asymptotically
nested if each of its elements is included in an infinite nested subsequence.

Let us denote by Σ a fixed cone of WSOS polynomials with weights nonnegative over ∆. Finally, let
P(Σ,A) denote the set of piecewise WSOS polynomial splines over the subdivision A whose pieces (in
their scaled representation) all belong to Σ. We have the following theorem.
Theorem 4 Assume that 1 ∈ intΣ, where 1 denotes the constant one polynomial. Furthermore, let
A1,A2, . . . be an asymptotically nested sequence of subdivisions of ∆ = [0,1]d with mesh sizes approaching
zero. Then the set

⋃
i P(Σ,Ai) is a dense subcone of the cone of nonnegative continuous functions over ∆.

We shall not prove this theorem; instead, we prove a stronger assertion below.
A special case of the above approach is the following. A sufficient (but obviously not necessary)

condition for a polynomial p to be nonnegative over ∆ is that p has nonnegative coefficients in a basis
U = {u0, . . . ,um} that consists of polynomials nonnegative over ∆, that is, p ∈ cone(U) for a nonnegative
polynomial basis U . Similarly to the piecewise WSOS polynomial splines above, we can define a piecewise
U-spline as a piecewise polynomial spline whose pieces, in their scaled representation, belong to cone(U).
The set of piecewise U-splines with subdivision A is denoted by P(U,A).
Theorem 5 Consider a basis U = {u0, . . . ,um} of d-variate polynomials of multi-degree m = (m1, . . . ,md)
such that each ui is nonnegative over ∆ = [0,1]d , and assume that 1 ∈ intcone(U), where 1 denotes the
constant one polynomial. Furthermore, let A1,A2, . . . be an asymptotically nested sequence of subdivisions
with mesh sizes approaching zero. Then the set

⋃
i P(U,Ai) is a dense subcone of the cone of nonnegative

functions over ∆.

Proof. First we show that for every polynomial p of degree m, strictly positive over [0,1], there exist
nonnegative constants Ci such that p+Ci ∈P(U,Ai) for every i, and limCi = 0.

Fix i, and consider a piece in the subdivision from the knot point sequence Ai:

[a1, j1 ,a1, j1+1]×·· ·× [ad, jd ,ad, jd+1].

The polynomial p can be represented as a piecewise polynomial spline of degree m with knot point sequence
Ai; its scaled representation is

p(j)(x1, . . . ,xd) = p((a1, j1+1−a1, j1)x1 +a1, j1 , . . . ,(ad, jd+1−ad, jd )xd +ad, jd ).

Collecting terms in the standard basis, we see that every coefficient in the above expression is of order
O(‖Ai‖), except for the constant term, which is p(a1, j1 , . . . ,ad, jd ). By assumption, this constant term is
positive, because p is strictly positive on [0,1]. By the assumption on U , ∑

m
k=0 αkuk ≡ p(a1, j1 , . . . ,ad, jd ) for

some positive α0, . . . ,αm. Now, if we express p(j) in the basis U : p(j) =∑ p(j)k uk, we have that p(j)k =αk−δ
(j)
k

with |δ (j)
k |=O(‖A‖), consequently p(j)+ p(a1, j1 , . . . ,ad, jd )maxk(|δ

(j)
k |/αk) has positive coefficients in the

basis U . Applying the same argument for every j, we obtain that p+Ci ∈P(U,Ai) for

Ci = max
j

(
p(a1, j1 , . . . ,ad, jd )max

k
(|δ (j)

k |/αk)
)
.

Finally, as |δ (j)
k |= O(‖A‖) and p is bounded, Ci→ 0 as ‖Ai‖→ 0.

The same argument also proves that for every strictly positive spline over [0,1], with knot point
sequence A, and for every sequence {Ai} consisting of subdivisions of A satisfying lim‖Ai‖ = 0, there
exist nonnegative constants Ci such that s+Ci ∈P(U,Ai) for every i, and limCi = 0.

Consequently,
⋃

i P(U,Ai) is a dense subset of nonnegative splines of multi-degree m.
Now our assertion follows from the fact that tensor product splines (of every given order of differentia-

bility) in ∆ = [0,1]d are dense in the space of continuous functions over ∆; see (Schumaker 1981, Theorem
13.21).

2781



Papp and Alizadeh

Note that the conditions 1 ∈ intΣ and 1 ∈ intcone(U) are sufficient and necessary for the desired
conclusion. For example, the cone of polynomials with nonnegative coefficients in the standard monomial
basis is a WSOS cone with weights nonnegative over [0,1]d . It does not satisfy the condition, as the constant
1 is on the boundary of this polynomial cone. Incidentally, the corresponding spline cones P(U,A) consist
of functions that are monotone nondecreasing and convex in every variable, hence the union of such cones
cannot be not dense in the cone of nonnegative continuous functions over [0,1]d .

We shall clarify in what sense the second, polyhedral approximation, approach is a special case of
the WSOS approach. Using the notation of Theorem 3 the cone cone(U) for a nonnegative polynomial
basis U can be considered a WSOS cone Σ with weights in U , whose spaces Vi are the one-dimensional
linear spaces consisting only of constant polynomials. Furthermore, for every WSOS cone satisfying the
conditions of Theorem 4 one can find a basis U such that the corresponding polyhedral spline cone satisfies
the conditions of Theorem 5. Hence, Theorem 5 implies Theorem 4.

As a final remark, we must mention that, unlike the use of piecewise WSOS splines, the above polyhedral
approach to the arrival rate estimation problem (and other shape-constrained estimation problems) is not
completely new in the statistical and function estimation literature, even though the most common approach
is somewhat different: typically a nonnegative basis of spline functions is chosen, such as B-splines, and
the optimization is carried out over the nonnegative linear combination of this basis. However, as shown in
(Papp 2011), cones generated by (univariate) B-splines of degree m≥ 2 and given subdivision of ∆ = [0,1]
form a proper subcone of piecewise U-splines with nonnegative coefficients in their scaled representation
(4) corresponding to the Bernstein polynomial basis given by U = {u0, . . . ,um}, ui(x) =

(m
i

)
xi(1− x)m−i.

This inclusion extends to the corresponding tensor product splines. Hence, we do not consider B-splines
in this paper.

4 A DECOMPOSITION METHOD FOR MULTIVARIATE
SPLINE ESTIMATION

The size of the optimization models involving multivariate splines prohibits the solution of models of high
dimension or small mesh size. On the other hand, these problems have a very regular and sparse structure
that makes them potentially amenable to decomposition methods. In this section we outline an augmented
Lagrangian decomposition method with particularly good convergence properties for spline estimation
problems. We illustrate it, in the next section, by estimating the (two-dimensional) weekly arrival rate of
car accidents on the New Jersey Turnpike.

There is a vast literature on decomposition methods for both linear and nonlinear convex optimization
problems, an area initiated by Dantzig and Wolfe (Dantzig and Wolfe 1960) and Benders (Benders 1962),
which we can hardly summarize in the space available.

The method we propose is a simplified version of the augmented Lagrangian-based method from
(Ruszczyński 1995) specifically designed for sparse problems. Since some of the details of our specific
estimation problem might obscure the main ideas of the algorithm, we shall discuss the method in a slightly
more abstract form than necessary for our purposes.
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4.1 Augmented Lagrangian Decomposition for Sparse Problems

Let L ≥ 2, and let Xi (i = 1, . . . ,L) be a nonempty compact subset of Rni . Finally, let fi : Xi → R be
convex. With these given, we consider the convex optimization problem

minimize f (x) def
=

L

∑
i=1

fi(xi) (5a)

subject to
L

∑
i=1

Aixi = b (5b)

xi ∈Xi i = 1, . . . ,L. (5c)

As a specific example, we can model arrival rate estimation problems in this framework: the optimality
of the estimator is defined piecewise, and so are the nonnegativity constraints, which are replaced by
constraints that the scaled representation of each pieces belongs to a WSOS cone. (In the rest of the paper
we will refer to these constraints as “the WSOS constraints” for short. The WSOS constraints are translated
to semidefinite constraints via Theorem 3 or linear constraints if the polyhedral approach and Theorem 5
are used.)

Thus, we can set L to be the number of pieces, (5c) are the WSOS constraints, and (5b) includes the
continuity of the estimator and its derivatives, as well as periodicity constraints, as needed for the problem.
See (Papp 2011) for models of various shape-constrained estimation problems in the same framework.

Alternatively, if the estimator is a polynomial spline over a rectilinear grid we can set L = 2, since all
constraints connect only pieces of two disjoint class, following a chessboard-like pattern. The same is true
for some other regular subdivisions as well, including a regular simplicial subdivision. This property can
be exploited by some methods. We shall focus on a direct consequence of this observation: that in our
arrival rate estimation model all of the coupling constraints in (5b) involve variables corresponding to only
two different Xi. (Note that this is specific to the arrival rate estimation problem. The apparently similar
problem of estimation of probability density functions can also be posed as an optimization problem over
nonnegative functions, but these also include the constraint that the estimator integrates to one, which is a
single linear equation that involves every variable.)

The condition that the sets Xi be bounded is a rather technical condition, as one can always find
reasonable bounds on the spline coefficients based on the data. In our arrival rate estimation model we
do not need such assumptions, since the optimal estimator is a piecewise nonnegative polynomial function
whose integral is given by Lemma 1 – the set of such polynomials is obviously bounded.

The method proposed in (Ruszczyński 1995) associates multipliers π to the linear coupling constraints,
and considers a separable approximation Λapx of the augmented Lagrangian of (5),

Λ(x,π) = f (x)+ 〈π,b−Ax〉+ ρ

2
‖b−Ax‖2,

in which the bilinear terms in the quadratic penalties are linearized around a point x̃ ∈ R∑
L
i=1 ni :

Λapx(x, x̃,π)
def
=

L

∑
i=1

Λi(xi, x̃i,π)
def
=

L

∑
i=1

fi(xi)−〈AT
i π,xi〉+

ρ

2

∥∥∥b−Aixi−∑
j 6=i

A jx̃ j

∥∥∥2
. (6)

The approach then is to fix a set of multipliers, and find an approximate minimizer of the augmented
Lagrangian Λ(·,π) by iteratively minimizing Λapx(·, x̃,π) and updating x̃ so as to approximate the optimal
solution better. The components Λi of the approximate Lagrangian can be optimized separately, and even
in parallel (in a Jacobi, rather than a Gauss–Seidel, fashion), which is a very desirable property when
infrastructure for massively parallel computations is available. Once an approximately optimal solution
to the augmented Lagrangian is found, the multipliers are updated as in the classic multiplier method
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Algorithm 1: Simplified augmented Lagrangian decomposition
parameters: ρ > 0,τ > 0

1 initialize π /* arbitrary initial value */
2 repeat
3 π ← π +ρ(b−Ax)
4 foreach i = 1, . . . ,L do solve minxi∈Xi Λi(xi, x̃,π) /* parallel */
5 if Aixi 6= Aix̃i for any i = 1, . . . ,L then
6 x̃← x̃+ τ(x− x̃)
7 go to step 4
8 end if
9 until Ax = b

10 return x

(Rockafellar 1976). The formal definition of the method is given in Algorithm 1, which requires two
parameters: the augmented Lagrangian coefficient ρ , and a step size parameter τ .

It can be shown that for every ρ > 0 and 0 < τ < 1/(N−1) Algorithm 1 is convergent. For the inner
loop this is a special case of Theorem 1 in (Ruszczyński 1995), and for the outer loop this follows from
the convergence of the method of multipliers (Rockafellar 1976). Perhaps the most attractive feature of
Algorithm 1 is that its speed of convergence depends very highly on the largest number N of variable
blocks xi linked by a coupling equality constraint, favoring problems with a sparse neighborhood structure.
Let us measure the progress of the algorithm by the difference

∆
(k) def

= Λ(x̃(k),π(k))−min
x∈X

Λ(x,π(k)),

where the superscript k refers to the number of times the outer loop of Algorithm 1 has been executed.
The following theorem establishes the rate of convergence under a technical assumption.
Theorem 6 Assume that there is a γ > 0 such that for every π and every x ∈X ,

Λ(x,π)−min
x∈X

Λ(x,π)≥ γ dist(x,argmin
x∈X

Λ(x,π))2,

and let α = maxi ‖Ai‖2. Then for every ρ > 0 and 0 < τ < 1/(N−1),

∆
(k+1) ≤

(
1− τ(1− τ(N−1))

1+2ρα2(N−1)2γ−1

)
∆
(k). (7)

Proof. This is a special case of Theorem 2 in (Ruszczyński 1995).

We remark again that in our arrival rate estimation model we have N = 2, implying that the decomposition
method is particularly suited for our problem.

The first condition of the theorem is the quadratic growth condition of (Ruszczyński 1995), and is
satisfied by the log-likelihood objective. Theorem 6 also suggests a way to set the parameter τ: minimizing
the coefficient on the right-hand side of (7) we obtain that τ = (2(N−1))−1 is the recommended choice,
regardless of ρ . (The theory does not provide guidance in the selection of ρ .)

5 NUMERICAL ILLUSTRATION – NJ TURNPIKE ACCIDENTS

We consider the two-dimensional point process of car accidents on the New Jersey Turnpike (NJTP). The
two dimensions are time (with an assumed weekly periodicity) and location along the road. It is not entirely
clear whether this is indeed a Poisson process, as accidents may change the traffic pattern, which in turn
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affects the distribution of the accidents. Furthermore, coincidences in the location (a number of drivers
hitting the same tree, or pedestrians or animals at the same crossing) have likelihood zero in every Poisson
model. However, as the accidents are relatively rare (serious accidents that change the traffic pattern for
a long period of time are even more so), and major highways are assumed to have no easy-to-hit objects,
a Poisson model may be a reasonable approximation. The fact that accidents may occur more frequently
close to exits does not contradict the non-homogeneous Poisson model.

The data. We obtained car accident data from the New Jersey Department of Transportation. The
raw data contained information on every car accident in 2009 recorded at the accident locations by police
officers. The time of the accident is rounded to the nearest minute, but it is not clear whether the recorded
time is the approximate time of the accident, the time the police were notified of the accident, or the
time the officers attended to the accident. Hence, we can consider this as noisy data, despite the apparent
precision of the time data. The location is given by the Standard Route Identifier of the road segment and
an approximate milepost reading (variably rounded, apparently to the nearest 0.05 mile or to the nearest
mile).

We removed all entries from the data that corresponded to accidents in roads other than the NJTP
segment marked I-95. This is an approximately 78-mile-long segment stretching between two state borders
(with Pennsylvania and New York, respectively) with no forks or joins. We also removed entries with
missing milepost information. (Date and time were present for every entry.) While we could take these
accidents into account directly in a maximum-likelihood approach (and their time and date information
we shall not discard), such incomplete entries were few, and it is reasonable to assume that accidents
whose milepost is not recorded follow the same milepost and time distribution as the entries with complete
information, and hence, the removal of this data should not introduce biases. We can then simplify our
model, and estimate the arrival rate based only on the entries with specified milepost, which we can finally
multiply with the appropriate constant to account for the discarded accidents. Finally, we removed all
accidents that happened on ramps while entering or leaving the highway, as they are confounding in multiple
ways. (Unfortunately, this binary flag was missing for most accidents; we assumed that the flag was false
every time it was missing.) Finally, this left us with 4138 accidents.

Numerical results. In our example ∆ = [0,T ]× [0,X ]; T = 1 week, X = 77.96 miles. Taking into
consideration how the data are rounded, the regions I in the objective function (1) can be rectangles no
smaller than 1 minute by 0.1 miles, but even considerably larger rectangles are reasonable.

Figure 1 shows a biquadratic spline estimator, obtained using the polyhedral inner approximation,
with 28× 13 pieces (so each piece corresponds to 6 hours and roughly 6 miles), the regions I were 1
minute by 1 mile rectangles. The estimator was obtained using an AMPL (Fourer, Gay, and Kernighan
2002) implementation of Algorithm 1, in which the subproblems were solved by the nonlinear solver
KNITRO (Ziena ). In this problem there was no clear difference between the biquadratic polyhedral and
non-polyhedral WSOS approximations.

6 CONCLUSION

We have presented an efficient approach for the spline estimation of non-homogeneous, multi-dimensional
Poisson processes from inexact (rounded) arrivals. The key idea behind the approach was to consider
piecewise polynomial splines whose pieces are from a polynomial cone possessing two properties: that it
admits a good characterization suitable for optimization, and that the splines built from it can uniformly
approximate every continuous function. Two variants of this approach were considered: one that uses
weighted-sum-of-squares polynomials and leads to optimization models with semidefinite constraints, and
one that uses polynomials with nonnegative coefficients in a suitable fixed basis, and results in linearly
constrained optimization models. A characterization of polynomial cones possessing the desired density
property was provided for both the polyhedral and the non-polyhedral variant.
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Figure 1: A piecewise biquadratic sum-of-squares spline estimator of the NJTP accident rate obtained
using Algorithm 1. Left: three-dimensional plot. Right: contour plot. The horizontal axis shows the time
(Monday–Sunday), the vertical axis is location.

The approach was then combined with a decomposition method whose worst-case running time explicitly
depends on the neighborhood structure defined by the coupling constraints between the subproblems. This
neighborhood structure is the sparsest possible for the spline estimation problems of our interest.

Several questions and future research directions emerge. While in this paper we concentrate only on
arrival rate estimation, many of the ideas presented are also applicable for other estimation problems as
well. Many of these ideas appear in the thesis of the first author (Papp 2011), but research in this area is
far from complete. Another observation worthy of further investigation is the fact that most splines have
a bipartite structure: their pieces can be partitioned into two disjoint classes such that only pieces from
different classes are adjacent. This makes the arrival estimation model considered in this paper amenable
to a number of other iterative decomposition methods, including alternating direction methods. Comparing
these approaches and the one presented, especially on a parallel architecture, would be interesting.
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Ruszczyński, A. 1995, August. “On Convergence of an Augmented Lagrangian Decomposition
Method for Sparse Convex Optimization”. Mathematics of Operations Research 20:634–656.
doi:10.1287/moor.20.3.634.

Schumaker, L. L. 1981. Spline Functions: Basic Theory. Wiley-Interscience.
Wolkowicz, H., R. Saigal, and L. Vandenberghe. (Eds.) 2000. Handbook of Semidefinite Programming:

Theory, Algorithms, and Applications, Volume 27 of International series in operations research &
management science. Norwell, MA: Kluwer.

Ziena. “KNITRO Documentation”. http://www.ziena.com/documentation.htm.

AUTHOR BIOGRAPHIES
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