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ABSTRACT 

Two radically new discrete-event simulation modeling technologies are introduced: Activity Interaction 
(AI), a general approach for modeling system dynamics, and Self-Simulating Systems (S3), where AI 
models are integrated with information systems to generate correct, current, and credible real-time 
simulations. The research and development paths taken with these new technologies constitute a meta-
experiment on the two fundamental historical approaches to developing new simulation modeling 
methodology: academic and commercial. Examples in production and service system settings are 
presented.   

1 INTRODUCTION: TWO NEW METHODS FOR SIMULATION MODELING  

This paper introduces two new methods for discrete-event simulation modeling: Activity Interaction (AI) 
and self-simulating systems (S3). Examples of their application in production and service systems are 
presented.  
 This paper also contrasts the two fundamental ways new simulation modeling methodologies have 
historically been developed: commercial software where research and development are driven by the 
market, and academic research where peer-review is the driving force. Both these research approaches are 
supported by different branches of the National Science Foundation, and by other research institutions 
including the Center for Information Technology Research in the Interest of Society (CITRIS), but with 
very dissimilar missions.  
 The Activity Interaction modeling methodology was created using the non-academic approach of 
implementing the ideas in commercial software and developing them in the marketplace. Basic research 
on AI is supported in part by the Small Business Innovative Research (SBIR) program of the National 
Science Foundation (phases A and B), but has largely been self-supporting. While the AI software 
implementation is completely general, the focus has been exclusively on real problems in the critically 
important and highly complex processes and systems in biopharmaceutical manufacturing and supply 
chains where the life-saving therapies based on biologics are discovered, produced, and delivered to 
patients. The firm that implemented AI, The Bioproduction Group Inc (Bio-G.com), has been profitable 
from the beginning and has grown organically (without venture capital). Bio-G has among its customers 
the world’s top biopharmaceutical firms and has saved its clients hundreds of millions of dollars (and in 
turn, saving lives), while outperforming all competitors in every confrontation in the marketplace. Bio-
G’s products include Crosswalk for general information system interoperability, and the Real-Time 
Modeling System (RTMS a.k.a. “Artemis”) implementing the AI modeling methodology.   

Research on self-simulating systems (S3) has followed the usual academic route of initial testing, 
writing proposals, and after peer-review, successfully being supported by CITRIS. CITRIS is funding the 
basic research on the fundamental theory of S3 along with controlled testing on simple examples. Current 

2900978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Schruben 
 

proof-of-concept implementation is underway for integrating AI into the state-of-the-art real-time 
information system at the new Emergence Department and the University of California, Davis, with Dr. 
Aaron Bair as co-principal investigator. An integrated real-time modeling system would vastly improve 
the utility of the ED information system, providing correct, current, and credible simulation for improving 
operations as well as evaluating policy or facility changes and disaster response strategies.  

2 ACTIVITY INTERACTION 

Activity Interaction (AI) is a new methodology for developing simulation models based on activity 
objects. A novel aspect of AI is that the elements of the system being modeled do not need to be 
connected by a simulation modeler. This contrasts with current simulation methodologies that require 
modelers to create connected entity processing flow paths (commonly used in commercial simulation 
software) or connected networks or di-graphs like Petri nets or Event Graphs (Seila et. al. 2003). The AI 
modeling methodology allows very large-scale, complex systems to be modeled where the number of 
system element connections is beyond the ability of a single person or even an experienced simulation 
modeling team to consider. 

 The most compelling reason for the commercial proliferation of the entity process flow 
methodology (sometimes referred to as a process interaction world view) is that it maps directly into 
animations of straightforward, small-scale, queueing-type systems. However, increased software 
animation capabilities come invariably at the expense of analytical power, limiting the simulations to 
“what if” descriptive runs and limiting its utility for prescriptive analysis. Major shortcomings of the 
process flow approach include that it can be hard or impossible to model some common real-world 
occurrences, like resource contention and concurrence, usage-based failures, jockeying to shorter queues, 
or time-bound processing sequences. More importantly, this approach does not scale efficiently to model 
highly-congested systems (arguable the very systems where simulations are most useful) or to highly 
state-dependent systems that indirectly share many common elements. Petri Nets are easy to create and 
understand (see Mueller et. al. (2007) for a novel application) and can draw on a large number of 
analytical methods, but do not scale to huge systems, and cannot easily model many of the real-world 
phenomena just mentioned. Event Graphs, while completely general (they have been proven to be Turing 
Complete) and scale efficiently to model huge systems, are abstract, and can become unwieldy in the 
hands of inexperienced or unskilled modelers. Since most complex real-world systems where simulation 
is of critical value are highly inter-dependent and can become congested, these conventional approaches 
are all limited in applicability.  

Traditional discrete-event simulation of a dynamic system entails executing events in time order, 
beginning at some initial simulated time and progressing forward in time. In AI, a basic activity object is 
used to model system element concurrency and contention. Time sequencing is controlled by dynamic 
state/time-dependent activity interaction matrices. An activity object is instantiated when system elements 
interact concurrently. There are conditions for an activity to commence, continue, and terminate that are 
associated with state changes and time intervals in the system elements.  

Since in real systems, many activities typically occur in parallel, time advance with the AI approach 
can be done very efficiently. Using this approach, RTMS can simulate an entire year’s operations of a 
biopharmaceutical production facility at almost any level of detail in approximately 1 second on a laptop 
computer (this competes with other simulation models that run orders of magnitude slower). Such things 
as indirect labor (supervision and accounting) can be included easily without altering other activities, such 
as production or equipment changes. Indirect labor is one of the critical cost components of production 
systems that no conventional simulation software has previously modeled very well; an example 
illustrating why indirect labor is hard to model in the conventional manner is presented later in this paper.  

The sequence of screen shots on the next few pages illustrates how different layers of detail are 
automatically simulated using AI. The system modeled here is part of a biopharmaceutical production and 
supply chain system. Only the model in Figure 1 is created using activity objects – the details in the next 
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two figures are automatically generated by the software, allowing users to drill down to any level of detail 
without explicitly modeling it.  

The most important feature of the AI model in Figure 1 that most of the “blocks” – here representing 
activity objects - are not connected to other activity objects.  Their interactions are indirect (dependent on 
system state/time conditions). In fact, none of these blocks here need to be connected! The arcs shown in 
Figure 1 are included only to illustrate product flow (or could be used to represent resource cycles, etc.) 
and do not control the execution of the simulation model.   

 

 
Figure 1: Top level Activity Interactions representing part of a biopharmaceutical factory. 

The next two figures drill down into the detailed activity interactions the Production Media 
Pasteurization (PMP) activity object highlighted in Figure 1.  In Figure 2 the conditions that might 
instantiate a PMP activity object or may be triggered by it are shown.  

 

 
Figure 2: Conditions that may instantiate a PMP Activity object in Fig. 1. 
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In Figure 3, the system elements where state changes might occur during a PMP activity are shown.  
 

 
Figure 3: System elements whose activities might interact during the PMP activity in Fig 1. 

The key point illustrated by Figures 1, 2 and 3 is that only the high-level activity objects in Figure 1 
need to be defined; the activity interactions shown in Figures 2 and 3 are generated automatically by the 
RTMS software.  

Figure 4 illustrates the activities of a different element in the same biopharmaceutical production 
system – the people. Figure 5 shows the activities that an employee (here a supervisor) might initiate, 
continue, or terminate. Figures 4 and 5 are both generated automatically from high-level activity objects. 
The point (dramatically) illustrated here is that modeling indirect labor at this level of detail using 
conventional modeling methodology would have required that all of the arcs in Figure 5 be specified by 
the modeler, in RTMS this is automatic. Clearly the complexity of modeling indirect labor at the level of 
detail in Figure 5 in using conventional simulation methods would be nearly impossible to do correctly. 
With RTMS using the AI methodology, it is straightforward and automatic. Only the high-level activity 
objects like in Figure 1 need to be defined. Using RTMS, it is nearly impossible not to do this correctly.  

 

 
Figure 4: System elements that interact with an activity object. 
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Figure 5: Activities that may be instantiated by FTE_CCM (here a person) activities  

Since activity objects can be specified by anyone involved in the system it does not necessitate an outside 
team of simulation experts to develop the simulation model.  This leads to the next, more ambitious part 
of this research. Designing a self-simulating system where a real-time information system automatically 
creates activity objects, and thus its own simulation. The terminology “information system” has caused an 
unfortunate confusion between data and information, they are not the same. Most real-time information 
systems are in fact a set of data collection systems. An integrated self-simulating information system 
would become truly informative by including a correct, current and credible simulation as part of its 
design. An ongoing research project on this topic is discussed next (results of which will be reported at 
the WSC 2011 conference, six months from the writing of this paper.)  

3 SELF-SIMULATING SYSTEMS 

Using the AI approach, it is conceptually possible for systems to simulate themselves.  This should not be 
confused with “automatic simulation generation” or “simulation by questionnaire” proposals (Mueller et. 
al. 2007) or with common special-purpose simulators. (Miller et. al. 2004) A self-simulating system does 
what these do, but much more – it is integrated into the IT system design and adapts itself to system 
changes. A self-simulating system would have the advantages of being correct, current and credible since 
an outside team of simulation experts did not impose their system view on the domain experts. The 
modeler and the modeled are the same.   

The system where this concept is being developed is the UC Davis Medical School Emergency 
Department. This is one of the largest and the most modern ED training facility in the world with the only 
accredited Virtual ED training programs. The system has an extensive state-of-the-art, real-time 
automated data systems where all resources are RFID tagged (including all equipment and personnel). 
Communication between staff through the numerous ED pods is instantaneous. A screen shot of one of 
the ubiquitous status boards in this system is shown in Figure 6.  
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Figure 6: Status board of the UC Davis ED department 

The data system can be drilled down to any level of detail at any time by authorized personnel including 
automatic patient medical records. Any piece of equipment can be instantly located and its activity 
monitored. Two-way or multiple radio communications between and among staff is instantaneous 
throughout the hospital. 

Self-simulation involves the conceptually straightforward task of identifying activity objects, multiple 
system elements (staff, equipment, patients, etc) interacting concurrently and the state changes of the 
simulation elements involved. This involves detecting and confirming concurrencies of system elements 
in the information system.  

For example: when an ultrasonograph machine, a sonographer, and a patient are at the same place and 
the ultrasonograph is recording an scan, then the activity of taking a ultrasound scan is occurring. This is 
confirmed by the earlier physician order and the subsequent scan results appearing in the patient’s 
electronic medical record. Since each activity object is created independently (and linked by the RTMS 
software), the system can add or modify activity objects at any time without corrupting the activity 
objects already included in the simulation. The posterior distributions of the activity durations,  
conditioned on their continuation and termination conditions can be updated as these activities occur. It is 
unrealistic to expect that a perfect self-simulating system can be created this first try. It is the objective of 
this research project to create such a simulation with minimal interaction with the actual system and 
determine how information systems can be re-designed to make S3 an effective and efficient reality.  
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4 A CONVENTIONAL EMERGENCY DEPARTMENT SIMULATOR 

A simulation of the UC Davis emergency department was created in the conventional manner by an 
undergraduate team using Sigma (free for education and research at sigmawiki.com). This model is to be 
used for partial verification of the self-simulation. The conventional simulation is shown in Figure 7. 

 

 
 

Figure 7: Data-driven general ED model in SIGMA 

The ED simulation model in Figure 7 is data driven, scalable, flexible, and includes details such as 
state/time-dependent patient triage, legal nurse/patient ratio enforcement (according to California law) 
and all major equipment and staff. The Sigma engine automatically created from this model is run from 
an easy-to-use dynamic Excel spreadsheet interface. However, the point here is that the model was 
created by an outside simulation team (Berkeley undergraduates), and the modeling blocks are connected. 
Activity objects using RTMS do not need to be created by outsiders, and do not need to be connected by a 
simulation modeling team. Activity objects can be added or removed without destroying the logic of the 
simulation. Furthermore, by taking advantage of the fact that in the real world, many activities occur 
simultaneously, RTMS executes considerably faster than other commercial simulation software.  

5 LESSONS LEARNED 

One of the lessons learned (finally) in the meta-experiment with the two different approaches to modeling 
methodology research used here is that academics with new ideas should consider implementing them in 
commercial software, identifying their strengths, and using the marketplace to guide the research and 
development. This is a lesson first given to (and lost on) me by Alan Pritsker several decades ago when he 
left his professorship at Purdue (we were squash partners at the time) to form Pritsker and Associates, Inc. 
(P&A).  P&A developed and integrated QGERT and GASP with continuous-time Systems Dynamics to 
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create SLAM that was then rebranded as SIMAN and combined with CINEMA into ARENA, which is 
now being re-incarnated with 3-D animations as Simio.  

Over the years, this has proven to be much more efficient path to improved simulation methodology 
than the academic research algorithm: (1) submit proposals until funded, (2) train graduate students, (3) 
present papers to peers, (4) hope a vendor will implement your methods, and (5) repeat indefinitely.  It is 
a recurring theme of WSC panels why academic research has had almost no impact on simulation 
practice.  Compare the two WSC panels a decade apart in Glynn et al. (1995) and Andridottir et al. (2005) 
where the issues discussed are almost identical (the author was on both panels). This perhaps is due to the 
fact that academics and software vendors have incompatible values: the first needs important unsolved 
simulation problems for research, and the second needs to convince their customers that they have solved 
all of them. Practitioners are trapped somewhere in the middle with less-than-optimal tools. This does not 
seem a problem in other fields like optimization or statistics – it is reasonable to ask why.   

The other lesson is that radical notions like (S3) need fundamental academic research as well as actual 
implementations beyond the toy models typically presented in journal papers. The two research 
environments are worlds apart, but their synergies are necessary for success.  
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