
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

INTERACTION-BASED HPC MODELING OF SOCIAL, BIOLOGICAL,
AND ECONOMIC CONTAGIONS OVER LARGE NETWORKS

Keith Bisset
Jiangzhuo Chen

Chris J. Kuhlman
V. S. Anil Kumar

Madhav V. Marathe

Network Dynamics & Simulation Science Laboratory
Virginia Bioinformatics Institute, Virginia Tech

Blacksburg, Virginia 24061, USA

ABSTRACT

Modeling large-scale stochastic systems of heterogeneous individuals and their interactions, where multiple
behaviors and contagions co-evolve with multiple interaction networks, requires high performance computing
and agent-based simulations. We present graph dynamical systems as a formalism to reason about network
dynamics and list phenomena from several application domains that have been modeled as graph dynamical
systems to demonstrate its wide-ranging applicability. We describe and contrast three tools developed in
our laboratory that use this formalism to model these systems. Beyond evaluating system dynamics, we
are interested in understanding how to control contagion processes using resources both endogenous and
exogenous to the system being investigated to support public policy decision-making. We address control
methods, such as interventions, and provide illustrative simulation results.

1 INTRODUCTION

Contagion is used here broadly to mean transmitted phenomena such as diseases, opinions, fads, trends,
norms, packet diffusion, worm propagation in computer networks, database replication in sensor networks,
spread of social movements, and influence among peers to purchase music videos or go to movies
(Granovetter 1978, Halloran et al. 2008, Easley and Kleinberg 2010, Channakeshava et al. 2011). The
spread of contagions over large populations includes complex problems such as: (i) pandemics, such as
H1N1 and swine influenza outbreaks in recent years, in which the spread of the flu virus is often modeled
by stochastic processes, such as the SIR process (Eubank et al. 2004, Germann et al. 2006), and (ii) spread
of information on online social media, such as Twitter and Facebook (Easley and Kleinberg 2010), which
are often modeled by stochastic and threshold based models (Kempe et al. 2005). A key observation from
numerous studies shows that the underlying network structure has a significant impact on the dynamics
(e.g., Gould 1993, Siegel 2009), and as in the case of the 2003 blackout, this could span multiple networks
(Newman 2003).

Though these examples involve very diverse phenomena on different kinds of networks, they often
involve very similar and fundamental questions from a dynamical systems perspective. In the case of
epidemics, the key challenges include understanding the disease dynamics (e.g., what is the likely attack
rate, and who might be vulnerable), detecting its onset and peak, and developing and evaluating strategies
(e.g., vaccinations, school closures) to control the spread of the disease—these have to be translated (often
in real time) into policies to be implemented by local and national public health agencies (e.g., Germann
et al. 2006, Halloran et al. 2008). In the case of the spread of information and viral marketing, it is often

2938978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Bisset, Chen, Kuhlman, Kumar, and Marathe

of interest to identify the most influential spreaders to initiate the diffusion process, so that the size of the
population that gets influenced (to change and adopt a new product, for instance) is maximized (Domingos
and Richardson 2001, Kempe et al. 2003). In the case of coupled infrastructures, understanding the impact
of cascading failures and identifying criticality of different network elements is a very important issue.
Thus, the key questions underlying diverse contagion phenomena can be related to fundamental dynamical
systems problems of control and optimization via exogenous and endogenous resource allocation.

Simple contagion processes, such as percolation, have been studied extensively and are well understood
on simple regular graph families (Grimmett 1989) and complete mixing models, which allow interactions
among the whole population (Newman 2003). Analytical closed form results for such models have been
obtained for many important questions using elegant techniques that include stochastic processes, random
graphs, and probabilistic methods and techniques originating in statistical physics. However, these models
do not capture aspects of realistic social networks, and are inadequate for general public health analysis. In
contrast to traditional mean field analysis, individual-based models make explicit the idea of “interaction”
and macro-level emergent properties are caused by the local interactions of millions of individual agents
(Mitchell 2009). However, these techniques do not easily extend to large-scale realistic networks, because
of the absence of independence and symmetry and the inclusion of heterogeneity. Further, many of the
underlying problems related to dynamical properties become computationally intractable (e.g., the probability
of a specific individual becoming infected is #P-complete, in general) – thus, high performance computing
(HPC) agent-based modeling and simulation (ABMS) techniques become a natural choice. Developing
computational models to reason about these systems is complicated and scientifically challenging for at
least the following reasons.

First, often the size and scale of these systems is extremely large (e.g., pandemic planning at a global scale
requires models with 6 billion agents). Further, the networks are highly unstructured and the computations
involve complicated dependencies, leading to high communication cost and making standard techniques
of load balancing and synchronization ineffective. Second, individuals are not identical – this implies
that models of individual behavioral representation cannot be identical. Behavior depends on individual
demographic attributes and the interactions with neighbors (Granovetter 1978, Monge and Contractor
2003). Third, the contagion, the underlying interaction network (consisting of both human and technical
elements), the public policies and the individual agent behaviors co-evolve, making it nearly impossible
to apply standard model reduction techniques that are successfully used to study physical systems. For
instance, in the case of epidemics, as disease spreads, people reduce their interactions, thereby sparsifying
the network, which in turn slows the disease dynamics. Finally, in many cases, as we discuss below, we
are faced with modeling multiple networks that are coupled, with possibly multiple contagions evolving
in each network.

Additionally, in contrast to many large physics simulations, the outcome of a single run of a socio-
technical simulation is not interesting by itself. For example, simulations of infectious disease outbreaks are
run not for their own sake, but to investigate specific questions about prevention and mitigation. Answering
these questions requires analyzing the interdependent effects of many different parameters, each with many
different possible settings, in a stochastic process. The stochastic nature of the simulation, the uncertainty
in the initial conditions, and the variability of reactions require many replications to develop a bound on
the range of results of the simulation. Also, the simulations are not meant to be predictive, but to provide
comparative results over a range of simulation inputs. For example, the outcome of an infectious disease
propagation experiment is not that a particular number of people will fall ill, but that intervention A is
generally more effective than intervention B over the range of expected disease manifestations and initial
conditions (Germann et al. 2006). Efforts to devise effective policies from simulation experiments is also
gaining traction in other domains, such as financial services; e.g., (Haldane and May 2011).

Typically, overall time-to-solution is one measure of simulation effectiveness: stakeholders need answers
as soon as possible. Indeed, many policymakers are forced to use inaccurate, but fast executing, tools
in place of accurate but slower tools. Efficient experimental design is a crucial part of reducing the

2939

Bisset, Chen, Kuhlman, Kumar, and Marathe

time to solution. A complete factorial design is often infeasible, and a partial factorial design applied
to such a complex, nonlinear system can miss important interdependencies. Hence, adaptive designs are
usually required. Even with an adaptive design, however, there may still be thousands of experimental
cells to explore. The computational burden of a simulation should be considered in the context of such
an experiment, and resources should be allocated optimally over hundreds or thousands of runs, each run
requiring tens or hundreds of thousands of computational cores. To this end, pending work is to exploit
the close coupling of a petascale machine, as opposed to a collection of terascale machines, to obtain
efficiencies by combining the calculations of multiple replicates, and, potentially, multiple cells, thereby
reducing the total amount of computation needed.

In this paper, we overview the mathematical concepts of graph dynamical systems (GDS) that we
use to reason generally about dynamical processes. We demonstrate its versatility by itemizing practical
problems that have been evaluated using GDS. We then present a suite of scalable simulation tools for these
processes, including the susceptible-infectious-recovered (SIR) model of disease propagation, malware
spread on communication networks, and complex social contagions. We contrast three tools with respect
to their ranges of applicability and their performance in terms of execution speed. We show how tailoring a
tool to a particular problem domain enables results to be generated quickly, which is crucial for short-term
hard deadlines. We also present illustrative results and demonstrate how they are useful to application
domain decision-makers.
Limitations and scope. While the GDS theory allows for very general dynamical processes, the following
kinds of processes result in a high overhead in our current parallel framework: (i) reaction diffusion
processes in which more than two agents come together (e.g., of the form “A+B+C→ D+E +F”) –
such processes arise in various applications, such as ecological modeling and chemical reaction networks
(Colizza, Pastor-Satorras, and Vespignani 2007); (ii) context-dependent birth processes, in which an agent
is transformed into multiple agents; and (iii) the underlying network varies dynamically at time-scales
comparable to the dynamical process itself (e.g., in the case of disease transmission, edges change at
rates comparable to the spread of infection). As will be discussed in Section 4, the parallel optimizations
underlying two of our tools (EpiSimdemics and EpiFast) rely on semantics of the stochastic diffusion
processes, and cannot be easily extended to incorporate such processes, without significant additional
overheads. However, some of these can be handled in InterSim, since these can be expressed as a GDS.

2 GRAPH DYNAMICAL SYSTEMS

In this section, we present an abbreviated formal description of GDS and then itemize application domains
that have been modeled as GDS in order to illustrate its utility. For a more in-depth discussion of GDS,
see (Barrett et al. 2006, Mortveit and Reidys 2007).

A GDS is an abstract representation of a group of entities (agents), modeled as nodes, and abstract
interactions, modeled as edges. This representation provides a sound basis to develop simulations of
diffusion processes in such systems. The generality of GDS is reflected in the fact that it is a universal
model of computation and can therefore simulate a Turing machine. Note that the theoretical universality
of GDS does not imply that all practical problems can be solved expeditiously with a GDS. We present
the basic elements of a GDS and then briefly discuss generalizations.

A graph dynamical system (GDS) S , is a 4-tuple S = (G,B,F ,R) consisting of a graph G(V,E)
whose node set V represents the collection of agents and whose edge set E represents the set of agent
interactions. Let n= |V | denote the number of nodes in G. Each node has a state, a value from a finite setB of
all possible state values. (More complex state representations are described later.) Further, there is a family
F of functions that describe state transitions. Specifically, each node vi ∈V , 1≤ i≤ n, has an associated
local transition function fi ∈F which determines the next state of the node. In general, fi may depend on
several parameters including the history of the current and previous states of vi and those of its neighbors
in G. For example, a local transition function for the state of vi at time (t +1), si(t +1), may depend on
parameters over a time window of duration T , si(t +1) = fi(si(θ),N[i](θ),E[i](θ)), t−T +1≤ θ ≤ t,

2940

Bisset, Chen, Kuhlman, Kumar, and Marathe

where N[i](θ) represents the states of the neighbors of vi at time θ and E[i](θ) represents the states of the
edges incident on vi at time θ . Further, each GDS has an associated update scheme R that determines the
order in which the local transition functions are computed and states of nodes are updated. For example,
a synchronous (i.e., parallel) update scheme is often utilized, where all fi are executed in parallel, to
make the best use of parallel processing. However, some applications demand other update schemes, such
as sequential update, where a permutation of the nodes vi is used to identify the single node whose fi
is executed at one time, in order to ensure particular algorithmic behavior, such as solution convergence
(Karaoz et al. 2004). (GDS with synchronous update are often called synchronous dynamical systems
(SyDS) and GDS with sequential update are often referred to as sequential dynamical systems (SDS).)
At any time t, the configuration C (t) of a GDS is a vector (s1(t),s2(t), . . . ,sn(t)), where si(t) represents
the state of node vi at time t. The time evolution of a GDS is represented by the sequence of successive
configurations of the GDS.

A concrete example of location transition functions are threshold functions (Granovetter 1978). Consider
the two-state system B= {0,1} for nodes of a connected graph G, where the only permissible state transition
is from state 0 to state 1. A node in state 1 remains in state 1. Given a threshold τi for each node, node vi
in state 0 will transition to state 1 if at least τi neighbors of vi are in state 1. Otherwise it remains in state
0. Threshold models account for peer influence, which is known to be a significant factor in the spread
of the three greatest public health concerns (Sturm 2002): obesity (Christakis and Fowler 2007), smoking
(O’Loughlin et al. 2009), and excessive drinking (Borsari and Carey 2001). Many common “everyday”
examples of threshold behavior are given in (Schelling 1978, Granovetter 1978). Moreover, (Watts 2002)
argues that threshold behaviors are often used by people in place of more complicated reasoning mechanisms,
and provides illustrative examples.

The basic GDS model described above can be generalized and extended in a number of ways. Among
these are: (i) probabilistic state transitions; (ii) multiple contagions ci, each with its own interaction
graph Gi; (iii) evolving contagions, such as virus mutations or changes in information content such as
that occurring in the childhood “telephone” game where an initial message given to the first child is
substantially changed by the time it is passed to the last child; (iv) for each node, state can be represented
by an arbitrary vector of different types of values (e.g., integers, doubles); (v) directed edges to model
asymmetric interactions (e.g., information flow via broadcast media); (vi) time-varying existence of nodes
and edges; (vii) multiple mechanisms of state transition to describe any number of mechanistically-driven
state changes; (viii) heterogeneity of node and edge properties and individualized evolution of properties
and states, which may be history-dependent (i.e., non-Markovian); and (ix) interventions that alter the
network or node or edge properties (i.e., labels) based on some criterion that is beyond the scope of local
transition functions. Many of these features fall within the domain of GDS (Mortveit and Reidys 2007),
but we will refer to these extensions as constituting a generalized GDS.

A concrete example incorporating many of the above ideas is the spread of a disease across a population.
In addition to the disease contagion on a human contact network, multiple forms of information about its
progression, such as television news, word-of-mouth, and online social networks—each a contagion on a
possibly different network—could be propagated and affect people’s actions, which in turn might affect
who they contact. Finally, fear may be another contagion, to model an agent’s propensity to withdraw from
everyday activities, or overuse pharmaceutical interventions. Clearly, these contagions affect each other,
and we have co-evolution of contagions and possibly networks.

Table 1 provides a set of models for reaction-diffusion processes in application domains ranging from
epidemiology to social behavior to economics that have been modeled as generalized GDS. This list is not
exhaustive; its purpose is to demonstrate the far-reaching applicability of GDS.

Beyond these models, other works describe influence networks of agents that strongly suggest GDS
models could be constructed. An example is financial contagions and their effects on global markets (May
et al. 2008). Furthermore, there are many models focused on determining equilibria of systems (e.g., Allen
and Gale 2000). While many such models are formulated as optimization problems, it may be possible to

2941

Bisset, Chen, Kuhlman, Kumar, and Marathe

recast them as transient phenomena in terms of GDS; see (Epstein 2007) for an interesting discussion on
modeling of dynamical and equilibrium phenomena. A short discussion of recent papers in agent-based
computational economics (ACE) is provided in (Markose et al. 2007), which has a close association with
game theory (e.g., Easley and Kleinberg 2010); these are possible domains for GDS modeling.

Table 1: Published diffusion models for social, epidemiological, economic, biological, and physics problems
that can be modeled as generalized GDS.

Model Application Domains
Collective action, ratcheted thresholds (Epstein
2002, Centola and Macy 2007, Dreyer and
Roberts 2009, Siegel 2009).

Economics (e.g., purchasing high-cost items); crowd behavior
(e.g., strikers, leaving a social occasion); civil disobedience;
politics.

Revolutions (Kuran 1989, Gould 1993) Revolutions come about owing to subtle, latent changes in a
population; social movements.

Cascades (Goldenberg et al. 2001). Social behavior (e.g., adoption of fads, peer pressure to join
a club).

Threshold (Choi et al. 2010). Diffusion of innovations.
Thresholds, cascades (Easley and Kleinberg
2010).

Social diffusion (e.g., fads, rumors).

Thresholds (Kempe et al. 2003, Kempe et al.
2005, Kuhlman et al. 2010).

Generic social diffusion; influence maximization.

Generalized contagion (Dodds and Watts 2005). More sophisticated epidemiological and social behaviors, in-
corporating a quantitative measure of each “interaction” be-
tween two entities (i.e., a dosage).

Diffusion of warnings (Hui et al. 2010). How alarming warnings are spread through a population.
Diffusion of information (Mertsalov et al. 2008). Effect of (information) diffusion for dynamic networks.
Spread of information (Gruhl et al. 2004). Spread of information via internet communication.
Diffusion of trust (Guha et al. 2004). Trust propagation.
Spread of marketing information (Domingos and
Richardson 2001, Easley and Kleinberg 2010).

How (product) marketing can be modeled and hence improved.

Spread of malware (Channakeshava et al. 2011). Propagation of malware through a network of wireless devices.
Epidemiology (Halloran et al. 2008). Virus diffusion in humans and other animal populations.
Blocking diffusion (Habiba et al. 2008, Kuhlman
et al. 2010)

Blocking the spread of social contagions such as fads or
marketing campaigns.

Statistical physics (Castellano et al. 2009) Many models used in statistical physics, such as the Ising
Model.

Language evolution (Cangelosi and Parisi 2001) Spread and evolution of languages.
Biology (Karaoz et al. 2004) Identifying biological functions of genes.
Economics and electric power (Atkins et al. 2009) Market power of suppliers of electricity.

3 RELATED WORK

Modeling references are provided in Sections 1 and 2 and are not repeated. Here, we address two types of
simulators: epidemiological-focused and more general simulators. We choose epidemiology as a special
case because it illustrates how large scale HPC agent based simulation (ABS) methods are combined with
detailed population representations and interventions, which is uncommon. Owing to space limitations,
this section is not exhaustive.

There are many epidemiological ABS platforms. The system described by Ferguson et al. (2003) is
implemented to be executed on a shared memory platform and is limited by the amount of available shared
memory. The work of Longini et al. (2005) is a parallel simulation that uses a very simple and structured
social contact network. The locations in these social contact networks are not real but simply surrogates

2942

Bisset, Chen, Kuhlman, Kumar, and Marathe

for simple location types such as school, home, etc. This results in a structured social contact network that
is more amenable to efficient parallel computation, but which, arguably, is less representative of real-world
social networks. The simulator described in (Parker 2007, Parker and Epstein 2011) is implemented in
Java and involves numerous optimizations. It is a combination of spatial model (dividing the region into
pixels) and agent model with randomly constructed contact networks. While it quite efficiently simulates
very large populations, it currently does not support necessary interventions required in practical public
health studies.

There has also been a wealth of recent work on general-purpose simulators that utilize a range of
dynamics models. Among these are AnyLogic, Aurora2, BRACE, µsik, NetLogo, Repast SC++, SASSY,
and Swarm (Perumalla 2005, Hybinette et al. 2006, Park and Fujimoto 2009, North and Macal 2009, Wang
et al. 2010). These simulators span the range of smaller-scale ones with accompanying visual tools (e.g.,
NetLogo) to some of the largest simulations in terms of computing resources used (as many as 65000
processing cores (Carothers and Perumalla 2010, Perumalla and Seal 2011)). Graphics processing units
(GPU) have also been used (D’Souza et al. 2007, Aaby et al. 2010, Hwu 2011), simulating hundreds of
millions of agents. Two of the three codes described here, EpiSimdemics and EpiFast, also readily handle
hundreds of millions of agents. We refer the interested reader to the following sources for more details
and references (Perumalla 2005, Aaby et al. 2010, Kuhlman et al. 2011).

4 NDSSL TOOLS

4.1 Overview

In this section, we describe three simulation tools developed at NDSSL, starting with the most general tool
that can be used for any GDS and ending with the most specific one, which is highly tuned for a class of
diffusion problems. We then present comparative performance data for the three tools on four networks,
showing how tailoring simulation codes for a more targeted problem space has the payoff of improved
computational performance. We then present illustrative results. The first tool is a framework, and requires
user-supplied functionality to quantify the population dynamics, while the latter two are self-contained
simulation codes where the population dynamics are provided. Also, the first and third tools are based on
agent-to-agent interaction graphs, while the second uses agent-to-location graphs where agents are located
at particular places at particular times, and those agents that are co-located interact. These graphical
representations are each well-suited to incorporate particular types of interventions. In particular, the latter
two tools have sophisticated intervention capabilities that the first tool lacks.

4.2 InterSim

InterSim (Kuhlman et al. 2011) is a framework that can simulate any GDS. It is driven by two needs:
(i) expressiveness in agent behaviors and (ii) fast turn-around time. The approach taken is to provide a
software framework that handles all aspects of distributed simulation except agent behaviors and to enable
users to write and plug in software called node interaction models (NIM) for these behaviors. Agent
behavior is implemented in software that contains the local transition functions and aspects of the GDS
extensions listed in Section 2. The second need, fast turn-around time, measures the time from problem
specification until useful simulation results are being generated, and is the sum of times for software
design, construction, and verification of the NIM (i.e., the dynamics model). Turn-around times on the
order of 1 to 4 hours are routinely realized. This compares favorably with the several weeks (if not
months) generally required to alter and validate a focused simulator for a different diffusion process. The
susceptible-exposed-infected-recovered model (SEIR Newman 2003), for example, was implemented with
a four-hour turn-around time. The two needs, taken together, illustrate the motivation for InterSim: we
want a user to be able to implement quickly any GDS-based network dynamics that they desire.

The InterSim framework is implemented in C++ and uses the Message Passing Interface (MPI) for
distributed processing. An instance of InterSim is run on each processing element (PE) (e.g., core) of a

2943

Bisset, Chen, Kuhlman, Kumar, and Marathe

compute node. InterSim contains data structures for storing and manipulating node and edge properties.
There can be any number of integer, double, and character variables that describe node and edge properties,
including state. Control flow is managed in InterSim as described below. It also provides communication
patterns among worker PE, and between worker PE and the outputting PE. Finally, it provides interfaces
for connectors, described next.

The most important connector from a user standpoint is the interaction model connector. This connector
provides a completely general interface for agent behaviors, implemented through NIM. (Note that a NIM
does not require an explicit FSM or PTTS for state transitions, permitting more varied system dynamics.)
A NIM is implemented by the user and is compiled and linked with the framework. Each agent is
associated with a unique instance of a NIM so that internal state and intermediate quantities can be evolved
individually (edge properties and other local variables can also be evolved). This versatility comes at
the price of a greater memory footprint. We have implemented various NIM for the SEIR model, many
different threshold models, generalized cellular automata (Mortveit and Reidys 2007), and computer network
communication algorithms, some of which contain multiple contagions and networks, as well as multiple
dynamics mechanisms. The framework also provides a set of methods and objects that the NIM uses to
retrieve properties for nodes and edges and to set the NIM results that will in turn be used by the framework
to update new states of nodes across PE and to output quantities to file.

At a high level, the code operates as follows. Initially, the set of networks, agent and edge properties,
dynamics model parameters, the number of diffusion instances to run (a diffusion instance is called an
iteration), the maximum time for each diffusion instance, and base states of all agents and edges are read.
For each iteration, all variables associated with the dynamics models and node and edge states are reset,
and then states of selected seed agents, NIM properties, and other parameters are read in (e.g., seed states
overwrite the base states of the agents, and enable variations among iterations). Time marches forward in
discrete increments until the maximum time is reached. At each time, depending on update scheme, one or
more agents (and one or more diffusion mechanisms and contagions) are evaluated for state update by MPI
PE. Note that internal variables may be updated for an agent without a state change resulting. State updates
are passed among PE and new state values are written to file. If a state update occurs, the parameters of
the dynamics models for the new state of that agent are reset in a user-specified manner because the FSM
may have cycles, so states can be entered multiple times. There are stopping criteria in the framework that
permit early termination of an iteration; e.g., if no more state transitions can take place.

Two illustrative cases studies that use the framework are presented in (Kuhlman et al. 2011). The
first examines multiple information-based contagions and multiple networks to model individuals divesting
themselves of stocks during a financial downturn. Network structure effects are also examined and we
show that as the fraction of network edges that are randomly rewired increases, the probability of a cascade
(i.e., widespread divestiture) decreases, but the size of the cascade, if it occurs, increases. The second case
study examines how members of a population change their minds back and forth between two alternatives.
The two choices represent adoption of competing ideologies or opinions, and multiple states for each
choice represent different degrees of conviction. For each state, there are three different mechanisms for
state transition: (i) increase conviction, (ii) decrease conviction, and (iii) change opinion. We show how
different prioritizations of the three mechanisms and how deterministic and probabilistic diffusion yield
vastly different behaviors.

InterSim has a number of limitations. First, this implementation lacks the sophisticated intervention
capabilities of EpiSimdemics and EpiFast discussed later. Local interventions, such as an agent extricating
itself from a network based on its local neighborhood conditions, can be employed, but interventions based
on global system state are not currently implemented. For example, an intervention such as “when the
disease spreads through 5% of the population, all children stay home from school” is currently not possible.
Also, because of the generality of the local transition functions, a change of state can require a lot of data
to be passed among worker PE, degrading performance. Since each agent has its own instance of a C++

2944

Bisset, Chen, Kuhlman, Kumar, and Marathe

object to evolve its state (including the local transition function), a large memory footprint may result.
Finally, if a dynamics model is very complicated, then longer turn-around times will result.

4.3 EpiSimdemics

EpiSimdemics (Barrett et al. 2008) is an interaction-based, HPC, highly resolved modeling and simulation
system for representing and reasoning about large scale epidemics (Barrett et al. 2008, Bisset et al. 2009,
Bisset et al. 2011). We describe programming abstractions and models that allow us to extend EpiSimdemics
to better reason about real-world situations and to study the joint evolution of policy, disease dynamics,
human behavior and social networks as an epidemic progresses.

At a high level, the simulator sends agents to locations based on their schedules (i.e., activity lists),
and agents that are co-located interact at these locations. The set of all locations occupied by an agent in
one time increment is called a set of visits. A time increment, often a day, is called a phase. Hence, we
see that the implicit person-to-person interaction network changes by the second (if we are simulating by
days) according to agents’ schedules.

The computation structure of this implementation consists of three main components: persons, locations,
and message brokers. We assume a parallel system consisting of N cores, or PE. Processing proceeds in
the following manner:

1. Partitioning: Persons and locations are partitioned into N groups denoted by P1,P2, . . . ,PN and
L1,L2, . . . ,LN respectively. Each PE then executes the EpiSimdemics algorithm on its local data
set (Pi,Li).

2. Computing Visit Data: The first step consists of computing a set of visits for each individual, Pi
for the current day (or phase). This also involves computing any health state changes and applying
events such as infections and interventions. A light-weight “copy” of each person (called a visit
message) is then sent to each location (which may be on a different PE).

3. Computing Infections: Each location receives the visit messages and forms a discrete event simulation
(DES) by collecting the messages into a time-ordered list of arrive and depart events. Using this
data, each location computes contagion transmission for each individual at that location. Outcomes
of these computations are then sent back to the “home” PE of each person.

4. Collecting Infection Messages: Infection messages for each person on a PE are merged and processed,
and the resulting health state of each infected person is updated.

The EpiSimdemics model is used to explore the impact of agent behavior and public policy mitigation
strategies on the spread of contagion over extremely large interaction networks (106–109 agents). To
determine their local behavior, individual agents may consider their individual state (the contagion model),
their demographics, and the global state of the simulation. Contagion and behavior are modeled as coupled
probabilistic timed transition systems (PTTS), an extension of the well known finite state machine with
two additional features: the state transitions are probabilistic and timed. A PTTS is a set of states. Each
state has an id, a set of attribute values (the same attributes for each state of a given PTTS), a dwell
time distribution, and one or more labeled sets of weighted transitions to other states. The label on the
transition sets is used to select the appropriate set of transitions. The attributes of a state describe features
possessed by an agent when in that state (e.g., infectivity, symptoms exhibited, or level of fear). Once an
individual enters a state, the amount of time that they will remain in that state is drawn from the dwell
time distribution. There may be several independent PTTS. An agent has a separate state and dwell time
for each PTTS. As an optimization, there is only one copy of each PTTS in each parallel process. Each
agent carries the state id and next transition time for each PTTS.

The PTTS and the interaction network are co-evolving, as the progression of each one potentially
affects the other. In simple terms, who you meet determines whether you fall sick, and the progression
of the disease may change who you meet (e.g., you stay home because you are sick). The co-evolution

2945

Bisset, Chen, Kuhlman, Kumar, and Marathe

can be much more complex, as an individual’s schedule may change depending on information exchanged
with others, the health state of people they contact even if no infection takes place (e.g., more people than
usual are sick at work), or even expected contacts that do not happen (e.g., coworkers who are absent
from work). Activities may also be affected by an individual’s demographics (e.g., a person’s income
affects their decision to stay home from work). The interaction network can represent different types of
interactions such as physical proximity or telephone communication.

Each individual agent has a set of schedules for different purposes. Examples include a normative
schedule, one for school closures, one to use while staying home when sick, etc. Currently, all of the
schedules must be precomputed. Ongoing work will add the capability to generate schedules on demand.
Some schedules, such as self isolation at home, can be dynamically created as needed to save memory
and decrease startup time. Others, such as going to the nearest medical facility, depend on an individual’s
location when the schedule change is invoked, and need to be computed during execution.

The scenario specifies the behavior of individuals (e.g., stay home when sick), as well as public policy
(e.g., school closure when a specific proportion of the students are sick). There are two fundamental changes
that can be made that will affect the spread of a contagion in a social network. All behavior and public
policy interventions can be implemented through these changes. First, the probability of transmission of a
contagion can be changed by changing the infectivity or susceptibility of one or more individuals. Second,
edges can be added, removed, or altered in the social network, resulting in different individuals coming
into contact for different amounts of time. The individual behaviors and public policy interventions in
EpiSimdemics, collectively referred to as the scenario, expose these two changes in a way that is flexible,
easy to understand for the modeler, and computationally efficient.

There are several restrictions on the type of problems that EpiSimdemics can efficiently handle. First,
individuals can only affect other individuals through interactions that occur when they are co-located in
space and time, and the interactions can be computed pair-wise. The results of all interactions involving an
agent during a visit can be applied to that agent in any order. Second, an individual’s PTTS state changes
can be precomputed for an iteration. Third, changes to the network or individual agent state must be based
on either local (to the agent) information, or global measures (e.g., the total number of infected agents
in the system). Measures based on the local network (e.g., state of neighbors in the network) cannot be
computed efficiently. Fourth, there is a minimum latent period, Dmin. This is the amount of time that must
pass between an agent’s state changing due to an interaction, and that state change affecting other agents.
Problems where the minimum latent period approaches 0 cannot be computed efficiently. Examples of
such problems are computer malware, where an infected device is immediately able to infect other devices,
and the physical spread of contamination, such as a virus, where one agent contaminates a surface that can
then spread the virus to other agents.

4.4 EpiFast

EpiFast (Bisset et al. 2009) is a high-performance implementation of a subset of GDS S = (G,B,F ,R)
extended with interventions I , with the following differences from the other two tools:

1. The graph G is explicitly given (as in InterSim), unlike EpiSimdemics, which builds this implicitly.
2. EpiFast implements a simple SEIR disease model for epidemic simulations.
3. The state transition function F is simple aggregation of multiple functions fu,v, each corresponding

to an edge incident on the node v. Function fu,v depends on nodes u,v and edge (u,v) and labels
on u,v,(u,v); and it is dynamic – interventions on u and/or v change fu,v.

4. The update scheme R in EpiFast is synchronous. The GDS synchronizes all nodes’ state changes
and changes to G due to interventions in each time step.

5. I : Interventions in EpiFast change network G, including its structure (e.g., in the case of non-
pharmaceutical interventions, or NPI) and nodes’ properties regarding their infectivities and vul-
nerabilities. EpiFast can handle a class of interventions, which is of form: when predefined global

2946

Bisset, Chen, Kuhlman, Kumar, and Marathe

conditions g1,g2, . . . and predefined local conditions `1, `2, . . . are satisfied for node v, change v’s
node properties and/or labels of a predefined subset of edges incident on v.

EpiFast is also implemented in C++/MPI. It is similar to InterSim and Episimdemics in that it runs on
almost any distributed memory system, so long as the total of all available memory can hold the whole
network and modeling parameters. In EpiFast there is one master PE and multiple worker PE. The master PE
is responsible for passing messages and data, and coordinating synchronizations. The major computations
for a diffusion process are undertaken by the worker PE. The network is partitioned online and stored on
worker PE such that each node has a unique “owner” PE and all edges incident on this node “reside”
together on the same PE. A worker PE can distinguish “local” nodes and “foreign” nodes and the master
PE knows the “owner” PE of every node. This way, all data about foreign nodes are relayed by the master
PE. For the problems we have considered to date, the master PE does not appear to be a bottleneck.

In each time step of a simulation, computations consist of interventions and diffusion. For interventions,
the master PE and worker PE collaborate to evaluate global conditions. Then each worker PE evaluates
local conditions for each node. Corresponding changes are applied to nodes that satisfy all conditions and
to edges incident on them. For diffusion, each worker PE identifies its infectious nodes. For each such
node, a PE computes adjacent nodes that it infects and sends messages about infected foreign nodes to
their owner PE via the master PE. Then the system synchronizes for updating states of nodes.

Besides the limitations of EpiSimdemics described in Section 4.3, the following restrictions also apply
to EpiFast. First, its local transition function implements a simple PTTS, commonly known as an SEIR
model in epidemiology. It is still realistic and is extendible to cover a large set of diffusion models,
including social models such as the spread of opinions. This model: (i) is predetermined for each node
(although possibly heterogeneous) and static; (ii) provides for one way transitions: a node in S state can
only stay in S or change to E state, a node in E can only stay in E or change to I, a node in I can only stay
in I or change to R, a node in R can only stay in R; (iii) has a single probabilistic transition, occurring
between S and E states. Second, the network is not completely dynamic. The network is stored in memory
in a continuous and compact data structure. EpiFast allows labeling and relabeling the existing edges.
Therefore, removing edges is easy by marking them as “inactive.” However, adding new edges is difficult.
For this reason, EpiFast requires that each node be adjacent to a predetermined set of other nodes during
the simulation; i.e., the initial graph must contain all person-person contacts, and the average degree of the
network needs to be O(1) (so the contact graph cannot be a complete graph). Third, network edges have
quantity labels (for example, duration of contact or probability of transmission) but no ordering labels.
Therefore, it is impossible to order all transmissions computed in one time step. For example, suppose a
simulation computes that two nodes u,w transmit the disease to node v. If we had known u meets v in the
morning and w meets v in the afternoon, then we would know u is the true infector. Since we do not know
which of (u,v) and (w,v) occurs first, EpiFast can only pick one randomly.

4.5 Performance Comparison Among Tools

An SEIR epidemiological model was used with each simulation tool to evaluate disease diffusion through
four large U. S. cities. Each time step in a simulation represented one day, and each diffusion instance
was run for 300 time steps. Given that an agent u is infectious, the probability of agent v contracting the
disease is given by p(v|u) = 1− (1− r)w(u,v) where w(u,v) is the edge weight and represents the duration
of contact between u and v in minutes, and r is the probability of disease transmission for a contact of one
unit time. In InterSim simulations, r = 0.0005, while values for EpiSimdemics and EpiFast are determined
from distributions.

Simulation conditions were not identical across platforms. For example, InterSim used an exposed
duration of zero, and a constant infectious duration of 4 time units for all agents. EpiFast, in contrast, used
random assignments of exposed and infectious durations from distributions for each agent. Disease spread
reached all agents in the InterSim simulations while the spread in EpiFast was roughly 50% of agents.

2947

Bisset, Chen, Kuhlman, Kumar, and Marathe

Table 2: Average execution times for one diffusion instance for each of the simulation codes for four
networks. Averages were computed over 50 diffusion instances per network. There are 300 time steps per
diffusion instance. The number of PE used with each tool differs because of different memory requirements.

Region Population
(million)

Edges
(billion)

Average
Degree

InterSim EpiSimdemics EpiFast
PEs Time (s) PEs Time (s) PEs Time (s)

Miami 2.09 0.1 49 80 131.0 8 875 8 18.09
DC 3.75 0.2 54 80 247.9 16 812 16 22.53

Chicago 9.04 0.5 58 160 635.5 40 852 40 44.31
NYC 17.88 0.9 53 – – 72 1224 72 81.54

(a)

0 50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Day

Pr
op

or
tio

n
D

ai
ly

 In
fe

ct
io

ns

sds=60i_0.5_2+1,county=Litchfield
Cell=4090

0 50 100 150 200 250 300
0.

00
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

Day

Pr
op

or
tio

n
D

ai
ly

 In
fe

ct
io

ns

sds=60i_0.5_2+1,county=Mercer
Cell=4090

0 50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Day

Pr
op

or
tio

n
D

ai
ly

 In
fe

ct
io

ns

sds=60i_0.5_2+1,county=Middlesex
Cell=4090

0 50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Day

Pr
op

or
tio

n
D

ai
ly

 In
fe

ct
io

ns

sds=60i_0.5_2+1,county=Monmouth
Cell=4090

0 50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Day

Pr
op

or
tio

n
D

ai
ly

 In
fe

ct
io

ns

sds=60i_0.5_2+1,county=Morris
Cell=4090

0 50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Day

Pr
op

or
tio

n
D

ai
ly

 In
fe

ct
io

ns

sds=60i_0.5_2+1,county=Nassau
Cell=4090

0 50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Day

Pr
op

or
tio

n
D

ai
ly

 In
fe

ct
io

ns

sds=60i_0.5_2+1,county=New_Haven
Cell=4090

0 50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Day

Pr
op

or
tio

n
D

ai
ly

 In
fe

ct
io

ns

sds=60i_0.5_2+1,county=New_York
Cell=4090

(b)

Time (step)

Fr
ac

tio
n

of
 N

od
es

 N
ew

ly
 A

ffe
ct

ed

0 5 10 15
0.0

0.1

0.2

0.3
beta=0
beta=5
beta=10
beta=20
beta=50
beta=100
beta=500

(c)

Figure 1: Results generated from NDSSL tools. (a) shows the spread of influenza in the Chicago, IL area,
with green showing low rates and red high rates of infection. (b) shows the proportion of infections by day
for several counties in the New York City area. (c) shows how methods to inhibit the spread of contagions
can be used to slow down their progression.

Numbers of PE and execution durations for one diffusion instance, averaged over 50 iterations with 300
time steps per iteration, are provided in Table 2 for each tool and population. Because InterSim instantiates
a unique NIM object for each agent and provides individualized expressive node and edge labels, it requires
more memory, so the number of PE needed is larger than that for EpiSimdemics and EpiFast. The larger
number of PE requires more communication among them, which contributes to the greater execution times.
Another contributor to the differences in execution times is the optimized EpiFast code for SEIR dynamics.
Even with the differences in simulation conditions noted above, we clearly see the trade-off (i.e., inverse
relationship) between simulator versatility and performance. These results serve to drive home the point
that different types of simulators are useful, depending on context.

4.6 Illustrative Results

We provide representative results from simulations and briefly describe their value. Maps of high-intensity
infectious regions like that of Figure 1(a) can provide decision-makers with information regarding where to
focus resources. Likewise, Figure 1(b) shows outbreak sizes over time for various counties in the vicinity
of New York City and provides information regarding where vaccines might be efficaciously delivered.
Figure 1(c) illustrates that the progression of contagions like unfounded rumors, malware in computer
networks, or financial contagions can be mitigated by finding a minimum set of critical nodes that do not
pass on the contagion or are isolated from their neighbors. In this plot, we show that if only a small number
β = 500 of critical nodes is available, which is less than optimal so that the contagion cannot be completely
halted, then it can be slowed down and attenuated to give decision makers more time to identify other
solutions. Simulations such as these enable us to evaluate protocols for controlling diffusion mechanisms.

2948

Bisset, Chen, Kuhlman, Kumar, and Marathe

5 CONCLUSIONS

In this survey, we motivated the use of GDS to reason about ABMS for systems that may consist of
multiple networks, contagions, and heterogeneous agent behaviors that co-evolve. Our goals in simulation
include understanding baseline system dynamics, but more importantly, understanding how to control and
optimize dynamics. This is because, beyond simulation, an objective is to provide domain experts, or
even the public at large, with information to improve public health and welfare. To this end, control often
takes the form of exogenous interventions; e.g., reducing the spread of a human or computer virus, or of
a malicious rumor by, respectively, providing antiviral drugs and software patches, and identifying critical
agents that must be convinced to not pass on a rumor. Large networks, sophisticated agent behaviors, and
large experimental designs to cover multi-dimensional parameter spaces of inputs, including interventions,
require HPC simulation methods. We discussed three tools that we continue to develop and use. We
believe that no single tool can satisfy all simulation needs. Some tools are highly optimized for a particular
application space because they are used frequently and/or domain experts need data—and possible several
sets of data over time—quickly to plan and to incorporate newly arriving field data during a crisis. For
other tools, versatility is key in being able to simulate a wide range of dynamics without starting from
scratch by developing new simulation capabilities.

ACKNOWLEDGMENTS

We thank our external collaborators and members of the Network Dynamics and Simulation Science
Laboratory (NDSSL) for their suggestions and comments. This work has been partially supported by NSF
Nets Grant CNS- 0626964, NSF HSD Grant SES-0729441, NIH MIDAS project 2U01GM070694-7, NSF
PetaApps Grant OCI-0904844, DTRA R&D Grant HDTRA1-0901-0017, DTRA CNIMS Grant HDTRA1-
07-C-0113, NSF NETS CNS-0831633, DHS 4112-31805, DOE DE-SC0003957, NSF CNS-0845700, NSF
Netse CNS-1011769 and NSF SDCI OCI-1032677.

REFERENCES

Aaby, B., K. Perumalla, and S. Seal. 2010. “Efficient Simulation of Agent-Based Models on Multi-GPU
and Multi-CoreClusters”. In Proceedings of the 3rd International ICST Conference on SimulationTools
and Techniques, SIMUTools ’10, 29:1–29:10.

Allen, F., and D. Gale. 2000. “Financial Contagion”. The Journal of Political Economy 108:1–33.
Atkins, K., J. Chen, V. Kumar, M. Macauley, and A. Marathe. 2009. “Locational Market Power in Network

Constrained Markets”. Journal of Economic Behavior and Organization 70:416–430.
Barrett, C. L., K. R. Bisset, X. Eubank, Stephenand Feng, and M. V. Marathe. 2008. “EpiSimdemics: An

efficient algorithm for simulating the spreadof infectious disease over large realistic social networks”.
In Proceedings of the ACM/IEEE Conference on High Performance Computing(SC), 37. IEEE Press.

Barrett, C. L., H. B. Hunt III, M. V. Marathe, S. S. R. D. J. Rosenkrantz, and R. E. Stearns. 2006.
“Complexity of Reachability Problems for Finite Discrete DynamicalSystems”. J. Comput. Syst. Sci. 72
(8): 1317–1345.

Bisset, K., J. Chen, X. Feng, and A. V. M. Marathe. 2009, June. “EpiFast: A fast algorithm for large
scale realistic epidemic simulationson distributed memory systems”. In Proceedings of 23rd ACM
International Conference on Supercomputing(ICS’09), 430–439. ACM Press. NYC, NY.

Bisset, K., X. Feng, M. Marathe, and S. Yardi. 2009. “Modeling interaction between individuals, social
networks and publicpolicy to support public health epidemiology”. In Proceedings of the 2009 Winter
Simulation Conference, 2020 –2031. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Bisset, K. R., A. M. Aji, M. V. Marathe, and Wu-chunFeng. 2011. “High-performance biocomputing for
simulating the spread of contagionover large contact networks”. In Computational Advances in Bio and

2949

Bisset, Chen, Kuhlman, Kumar, and Marathe

Medical Sciences, IEEE InternationalConference on, 26–32. Los Alamitos, CA, USA: IEEE Computer
Society.

Borsari, B., and K. Carey. 2001. “Peer Influences of College Drinking: A Review of the Research”. Journal
of Substance Abuse 13:391–424.

Cangelosi, A., and D. Parisi. 2001. “Computer Simulation: A New Scientific Approach to the Study of
LanguageEvolution”. In Simulating the Evolution of Language, edited by A. Cangelosi and D. Parisi,
3–28. Springer.

Carothers, C., and K. Perumalla. 2010. “On Deciding Between Conservative and Optimistic Approaches
on MassivelyParallel Platforms”. In Proceedings of the 2010 Winter Simulation Conference, edited by
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, 678–687. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Castellano, C., S. Fortunato, and V. Loreto. 2009. “Statistical Physics of Social Dynamics”. Rev. Mod.
Phys. 81 (2): 591–646.

Centola, D., and M. Macy. 2007. “Complex Contagions and the Weakness of Long Ties”. American J.
Sociology 113 (3): 702–734.

Channakeshava, K., K. Bisset, M. Marathe, and A. V. andS. Yardi. 2011. “High performance scalable and
expressive modeling environment tostudy mobile malware in large dynamic networks”. In Proceedings
of 25th IEEE International Parallel & Distributed ProcessingSymposium, 770–781.

Choi, H., S.-H. Kim, and J. Lee. 2010. “Role of network structure and network effects in diffusion of
innovations”. Industrial Marketing Management 39:170–177.

Christakis, N., and J. Fowler. 2007. “The Spread of Obesity in a Large Social Network Over 32 Years”.
N. Engl. J. Med. 357:370–379.

Colizza, V., R. Pastor-Satorras, and A. Vespignani. 2007. “Reactiondiffusion processes and metapopulation
models in heterogeneousnetworks”. Nature Physics 3:276–282.

Dodds, P., and D. Watts. 2005. “A Generalized Model of Social and Biological Contagion”. J. Theo.
Biology 232 (4): 587–604.

Domingos, P., and M. Richardson. 2001. “Mining the Network Value of Customers”. In Proc. ACM KDD,
57–61.

Dreyer, P., and F. Roberts. 2009. “Irreversible k-Threshold Processes: Graph-Theoretical ThresholdModels
of the Spread of Disease and Opinion”. Discr. Appl. Math. 157:1615–1627.

D’Souza, R., M. Lysenko, and K. Rahmani. 2007. “SugarScape on Steroids: Simulating over a Million
Agents at InteractiveRates”. In Proceedings of the Proceedings of Agent2007 Conference.

Easley, D., and J. Kleinberg. 2010. Networks, Crowds and Markets: Reasoning About A Highly Connect-
edWorld. New York, NY: Cambridge University Press.

Epstein, J. 2002. “Modeling Civil Violence: An Agent-Based Computational Approach”. PNAS 99:7243–
7250.

Epstein, J. 2007. Generative Social Science: Studies in Agent-Based ComputationalModeling. Princeton
University Press.

Eubank, S., H. Guclu, V. S. A. Kumar, M. Marathe, A.Srinivasan, Z. Toroczkai, and N. Wang. 2004.
“Modelling disease outbreaks in realistic urban social networks”. Nature 429:180–184.

Ferguson, N. M., M. J. Keeling et al. 2003. “Planning for smallpox outbreaks”. Nature 425 (6959): 681–685.
Germann, T. C., K. Kadau, I. M. Longini, Jr., and C. A. Macken. 2006, April11. “Mitigation strategies for

pandemic influenza in the United States”. Proc. of National Academy of Sciences 103 (15): 5935–5940.
Goldenberg, J., B. Libai, and E. Muller. 2001. “Talk of the Network: A Complex Systems Look at the

Underlying Processof Word of Mouth”. Marketing Letters 12:211–223.
Gould, R. 1993. “Collective Action and Network Structure”. American Sociological Review 58:182–196.
Granovetter, M. 1978. “Threshold Models of Collective Behavior”. American J. Sociology 83 (6): 1420–

1443.
Grimmett, G. 1989. Percolation. Springer.

2950

Bisset, Chen, Kuhlman, Kumar, and Marathe

Gruhl, D., R. Guha, D. Liben-Nowell, and A. Tomkins. 2004. “Information Diffusion Through Blogspace”.
In Proc. WWW, 491–501.

Guha, R., R. Kumar, P. Raghavan, and A. Tomkins. 2004. “Propagation of Trust and Distrust”. In Proc.
WWW, 403–412.

Habiba, Y. Yu, T. Berger-Wolf, and J. Saia. 2008. “Finding Spread Blockers in Dynamic Networks”. In
Proc. SNA-KDD Workshop, 55–76.

Haldane, A., and R. May. 2011. “Systemic Risk in Banking Ecosystems”. Nature 469:351–355.
Halloran, M., N. Ferguson, I. L. S. Eubank, D. C. B. Lewis, S. Xu, C. Fraser, A. Vullikanti, T. Germann,

D. Wagener, R. Beckman, K. Kadau, C. Barrett, C. Macken, D. Burke, and P. Cooley. 2008. “Modeling
Targeted Layered Containment of an Influenza Pandemic inthe United States”. PNAS 105 (12): 4639–
4644.

Hui, C., M. Goldberg, M. Magdon-Ismail, and W. A.Wallace. 2010. “Agent-Based Simulation of the
Diffusion of Warnings”. In Agent-Directed Simulation Symposium (ADS ’10) as part of the 2010Spring
Simulation MultiConference (SpringSim ’10), 9.

Hwu, W. 2011. GPU Computing Gems. Elsevier Morgan Kaufmannnce. See “Chapter 21. Template-Driven
Agen-Based Modeling and Simulationwith CUDA” by P. Richmond and D. Romano.

Hybinette, M., E. Kraemer, Y. Xiong, G. Matthews, and J. Ahmed. 2006. “SASSY: A Design for Scalable
Agent-Basd Simulation System Usinga Distributed Discrete Event Infrastructure”. In Proceedings of the
2006 Winter Simulation Conference, edited by L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M.
Nicol, and R. M. Fujimoto, 926–933. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Karaoz, U., T. Murali, S. Letovsky, Y. Zheng, C. D. C. Cantor, and S. Kasif. 2004. “Whole-Genome
Annotation By Using Evidence Integration in Functional-LinkageNetworks”. Proceedings of the National
Academy of Sciences 101 (9): 2888–2893.

Kempe, D., J. Kleinberg, and E. Tardos. 2003. “Maximizing the Spread of Influence Through a Social
Network”. In Proc. ACM KDD, 137–146.

Kempe, D., J. Kleinberg, and E. Tardos. 2005. “Influential Nodes in a Diffusion Model for Social Networks”.
In Proc. ICALP, 1127–1138.

Kuhlman, C., A. Kumar, M. Marathe, H. Mortveit, S. S. G. Tuli, S. Ravi, and D. Rosenkrantz. 2011. “A
General-Purpose Graph Dynamical System Modeling Framework”. In Proceedings of the 2011 Winter
Simulation Conference, edited by S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Kuhlman, C., V. Kumar, M. Marathe, S. Ravi, and D. Rosenkrantz. 2010. “Finding Critical Nodes for
Inhibiting Diffusion of Complex Contagionsin Social Networks”. In Proceedings of ECML PKDD,
111–127.

Kuhlman, C., M. Marathe, S. Ravi, and D. Rosenkrantz. 2010. “Exploiting Network Structure in Enhancing
Diffusion of Complex Contagions”. In Proceedings of the Analysis of Complex Networks (ACNE)
Workshop ofECML PKDD, 20–34.

Kuran, T. 1989. “Sparks and Prairie Fires: A Theory of Unanticipated Political Revolution”. Public
Choice 61:41–74.

Longini, I., A. Nizam et al. 2005. “Containing Pandemic Influenza at the Source”. Science 309 (5737):
1083–1087.

Markose, S., J. Arifovic, and S. Sunder. 2007. “Advances in Experimental and Agent-Based Modelling: Asset
Markets,Economic Networks, Computational Mechanism Design, and Evolutionary Game Dynamics”.
Journal of Economic Dynamics and Control 31:1801–1807.

May, R., S. Levin, and G. Sugihara. 2008. “Ecology for Bankers”. Nature 451:893–895.
Mertsalov, K., M. Magdon-Ismail, and M. Goldberg. 2008. “Models of Communication Dynamics for

Simulation of Information Diffusion”. In Proceedings of Advances in Social Networks Analysis and
Mining (ASONAM2009), 44–49.

2951

Bisset, Chen, Kuhlman, Kumar, and Marathe

Mitchell, M. 2009. Complexity: A Guided Tour. Oxford University Press.
Monge, P. R., and N. S. Contractor. 2003. Theories of Communication Networks. Oxford University Press.
Mortveit, H., and C. Reidys. 2007. An Introduction to Sequential Dynamical Systems. Springer.
Newman, M. 2003. “The structure and function of complex networks”. SIAM Review 45 (2): 167–256.
North, M., and C. Macal. 2009. “Foundations of and Recent Advances in Artificial Life Modeling withRepast

3 and Repast Simphony”. In Artificial Life Models in Software, 37–60. Springer.
O’Loughlin, J., I. Karp, T. Koulis, G. Paradis, and J. DiFranza. 2009. “Determinants of First Puff and Daily

Cigarette Smoking in Adolescents”. American J. Epidemiology 170 (5): 585–597.
Park, A., and R. Fujimoto. 2009. “Efficient Master/Worker Parallel Discrete Event Simulation”. In Proc.

of the 23rd Workshop on Principles of Advanced and DistributedSimulation, 145–152.
Parker, J. 2007. “A Flexible, Large-Scale, Distributed Agent Based Epidemic Model”. In Proceedings of

the 2007 Winter Simulation Conference, edited by S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle,
J. D. Tew, and R. R. Barton, 1543–1547. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Parker, J., and J. Epstein. 2011. “A Distributed Platform for Global-Scale Agent-Based Models of Disease-
Transmission”. ACM Transactions on Modeling and Computer Simulation 22.

Perumalla, K. 2005. “µsik: A Micro-Kernel for Parallel/Distributed Simulation Systems”. In Proceedings
of the 19th Workshop on Principles of Advanced and DistributedSimulation, 185–192.

Perumalla, K., and S. Seal. 2011. “Discrete Event Modeling and Massively Parallel Execution of Epidemi-
cOutbreak Phenomena”. SIMULATION, to appear.

Schelling, T. 1978. Micromotives and Macrobehavior. W. W. Norton and Company.
Siegel, D. 2009. “Social Networks and Collective Action”. Americal Journal of Political Science 53:122–138.
Sturm, R. 2002. “The Effects Of Obesity, Smoking, And Drinking On Medical ProblemsAnd Costs”. Health

Affairs 21 (2): 245–253.
Wang, G., M. Salles, B. Sowell, X. Wang, T. Cao, A.Demers, J. Gehrke, and W. White. 2010. “Behavioral

Simulations in MapReduce”. Proceedings of the VLDB Endowment 3 (1): 952–963.
Watts, D. 2002. “A Simple Model of Global Cascades on Random Networks”. PNAS 99 (9): 5766–5771.

AUTHOR BIOGRAPHIES

KEITH BISSET is a Senior Research Associate in the Virginia Bioinformatics Institute at Virginia Tech.
His email address is kbisset@vbi.vt.edu.

JIANGZHUO CHEN is a Senior Research Associate in the Virginia Bioinformatics Institute at Virginia
Tech. His email address is chenj@vbi.vt.edu.

CHRIS J. KUHLMAN is a graduate student in the Computer Science Department at Virginia Tech. His
email address is ckuhlman@vbi.vt.edu.

VULLIKANTI S. ANIL KUMAR is an Associate Professor in the Computer Science Department and
the Virginia Bioinformatics Institute at Virginia Tech. His email address is akumar@vbi.vt.edu.

MADHAV V. MARATHE is a Professor in the Computer Science Department and the Virginia Bioinfor-
matics Institute at Virginia Tech. His email address is mmarathe@vbi.vt.edu.

2952

