Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

ON-THE-FLY PARALLELIZATION IN AGENT-BASED SIMULATION SYSTEMS

Cole Sherer George Vulov
Computer Science Department CSE, College of Computing
University of Georgia Georgia Institute of Technology
Athens, GA 30602, USA Atlanta, GA 30332-0280, USA

Maria Hybinette

Computer Science Department
University of Georgia
Athens, GA 30602, USA

ABSTRACT

Agent-based simulation (ABS) systems are increasingly being used to solve a wide-array of problems
in business, telecommunications, robotics, games, and military applications. ABS modelers face two
challenges: First, performance is affected, as their simulations become more complex and larger scale;
and second, development is difficult because there is no common interface to the array of platforms that
support ABS work. We seek to transform popular, intuitive, sequential ABS APIs into efficient parallel
code automatically. As a first step we are parallelizing the popular MASON multiagent simulation Kkit,
other future potential targets include Player/Stage and Teambots. To achieve this, we have mapped the core
MASON API to correlate with the agent API of SASSY, a parallel and scalable, agent-based simulation
system. We then use Soot, a Java bytecode optimization framework, to automatically convert MASON
bytecode into SASSY bytecode. This allows simple, sequential MASON code to be run in a parallel
environment.

1 INTRODUCTION

Agent-based simulation (ABS) systems are increasingly being used to solve a wide-array of problems in
business, telecommunications, robotics, computer games, and military applications (Logan and Theodor-
opoulos 2001). With these applications, ABS modelers face two challenges: first, performance is affected
as their simulations become more complex and larger scale, and second, development is difficult because
there is no common interface to the array of platforms that support ABS work. In this paper we seek
to address the first issue. By providing a framework to seamlessly translate sequential ABS bytecode to
parallel, distributed bytecode, we can tackle larger scale simulations in a smaller amount of time.

Many compilers have been designed to tackle the general auto-parallelization problem, but they per-
form poorly. Most rely on a developer to provide annotations to aid in the parallelization process, and
others use an optimistic parallelization process that may be slower than the serial version due to excessive
rollback (Kulkarni et al. 2009). By focusing on ABS systems alone, we are able to solve this prob-
lem and provide proof of concept using the MASON framework as a starting point. Our method requires
no annotations and can be scaled to any number of processors after being run through a transformer only once.

978-1-4577-2109-0/11/$26.00 ©2011 IEEE 3022

Sherer, Vulov, and Hybinette

.classi | SOD .classl

MASON SASSY

@-0 E@

Figure 1: MASON bytecode is transformed into SASSY bytecode.

We seek to transform popular, intuitive, sequential ABS APIs into more efficient PDES code automati-
cally. As afirst step we are parallelizing the popular MASON multiagent simulation kit developed at George
Mason University. Future potential targets include Player/Stage and Teambots. To achieve this, we have
mapped the core of the MASON API to correlate with the agent API of SASSY, a scalable, agent-based
simulation system using a PDES kernel. We then use Soot, a Java bytecode optimization framework, to
automatically convert MASON bytecode into SASSY bytecode. This allows simple, sequential MASON
code to be run in a PDES environment. This process is demonstrated in Figure 1. Our initial tests show
promising results with an average speedup of 3.44 when run on 4 machines (3.44 times faster than the
original running sequential code).

The remainder of this paper is organized as follows: in the next section we review related work from the
high performance computing and agent-based simulation communities. In Section 3 we present our imple-
mentation in detail and discuss two simulations that were used in developing our approach. In Section 4 we
discuss the results of our tests, comparing a MASON simulation to both a hand-coded SASSY simulation
and one transformed using our Soot approach. Finally, we conclude the paper with a discussion of future work.

2 RELATED WORK

MASON is an easily extensible, discrete-event multi-agent simulation system written in Java. It is designed
for running swarm, multi-agent simulations with millions of agents, but was specifically designed to run in
a single process. This allows researchers to run many tests in parallel, using different parameters for each
individual simulation. This is useful for genetic algorithm-based simulations where the parameters must
evolve slowly until an optimum set is found for the problem (Luke et al. 2004). MASON can be extended
such that agents in a single simulation are performing tasks in a parallel or distributed environment, but
the onus is on the simulation developer to handle synchronization issues that may arise. We chose to target
MASON due to its very active community and large number of recent publications.

Player/Stage is a multi-robot simulation system. Player is used as a robot device server offering trans-

parent robot control over a network, and Stage is a lightweight, highly configurable simulator supporting
large populations of agents. Player/Stage is socket-based, so it works with a wide range of languages from

3023

Sherer, Vulov, and Hybinette

C and Fortran to Java and Python. The system is most often limited by TCP latency and overhead, but
it could potentially benefit from our technique (Gerkey et al. 2003). Teambots is also heavily rooted in
robotics research and could benefit from our technique as well (Balch 1998).

SASSY is an agent-based simulation system built on a traditional PDES kernel. SASSY’s kernel is
based on the Time-Warp synchronization algorithm, and uses middleware to provide an agent-based API
to application developers. This API is based on a sense-think-act cycle and logically separates an agent’s
brain from its body (Hybinette et al. 2006). Experiments in (Vulov et al. 2008) show that SASSY can
achieve significant speedup (6.2x) when run on 8 processing elements (PEs) with thousands of agents.

General HPC parallelization approaches rely on two main approaches, static and runtime. Runtime
techniques rely on optimistic parallelization. This method attempts to parallelize code, using rollbacks when
necessary to prevent synchronization issues. When used on its own, optimistic parallelization can actually
increase runtimes when there are excessive rollbacks. This type of auto-parallelization often works best when
paired with static techniques like those of the Galois project. These rely on programming abstractions to
highlight opportunities for parallelism. One of the main abstractions in the Galois project is a custom iterator
that accesses items in a list in random order, using a barrier for synchronization at the end of iteration. This
can be used with data structures that are semantically commutative, like sets, and signals the runtime analyzer
that parallelization will work well over the iterated set (Kulkarni et al. 2009). SASSY also uses optimistic
parallelization, but our static analysis technique does not rely on any special annotations from the developer.

While no general approach has been found to solve the auto-parallelization problem, we believe that
by focusing on a subset of programs (namely multi-agent simulations written in MASON), we can easily
produce parallel, distributed code using Soot, a framework designed for optimizing Java code. While
Java has many advantages like platform independence, execution safety, garbage collection and an object-
oriented paradigm, it is often much slower than C and C++. Soot was designed to optimize and annotate
Java bytecode to remove unnecessary safety checks (like many array bounds checks), inline functions,
and perform other tasks to get Java up to speed. Soot provides facilities for both intraprocedural and
whole program optimization, making it perfect for transforming bytecode from one simulation library to
another (Vallée-Rai et al. 1999).

3 APPROACH

Soot offers a fairly straightforward approach to parallelization. The first step in converting code from
MASON into SASSY is to study the API of each framework and map the methods and classes from
MASON into those of SASSY. A brief overview of this mapping can be found in Figure 2. All MASON
simulations contain exactly one object that extends the SimState class. This object contains a discrete-
event schedule, a MersenneTwister random number generator, and zero or more fields. SASSY is designed
for every agent to keep track of a local state and share relevant information with other agents. Since there
is no world state kept in SASSY, the SimState class posed our first major challenge. In order to mitigate
this a WorldStateAgent (WSA) class extending SASSY’s Agent class is created to take the place of
MASON’s SimState. This WSA would have to send messages to all other agents at each time-step in-
forming them of the current world state. This imposes memory usage issues that will be discussed in Section 5.

Two important methods in the SimState class that need to be handled by SASSY are start and
finish. We handle the start method by simply renaming it init, but the finish method is a
bit more difficult. SASSY uses the setEndOfSimFlag method to signify that a simulation should be
finished, so we must replace any calls to the £inish method with calls to setEndOfSimFlag instead.
If the SimState subclass overwrites finish, we only replace calls to super.finish to ensure that

3024

Sherer, Vulov, and Hybinette

SimState WorldStateAgent
start () —_ init ()

finish() setEndOfSimFlag()

Steppable
stepl?gimState state) q Ageﬂt

think ()

Figure 2: This is a mapping of MASON classes to SASSY classes. MASON is on the left; SASSY is on
the right.

all custom cleanup code is run before the simulation is complete.

In MASON, the SimState object contains a schedule which is an ordered list of Steppables. As
the schedule is stepped, the next scheduled agent is popped from the list and its step method is called.
We replace all subclasses of Steppable with SASSY Agents, renaming the step method to think,
fitting SASSY’s sense-think-act model.

Our first experiment tested the system in a “stateless” environment. The simulation involves 100 balls
bouncing around the screen. The balls ignore each other and can only interact with the boundary of the
simulation. Each time step, a ball will calculate whether it is currently touching a boundary. If so, the ball
will change directions to simulate a bounce. Balls all sleep from 1-3ms per think cycle to simulate an
agent with more advanced logic. Each ball in the simulation advances 1000 time steps before signaling for
the simulation to end. We first implemented this simulation in MASON and then by hand in SASSY. After
running tests to confirm that SASSY could indeed perform faster than MASON when run in a distributed
environment, we ran the MASON code through our Soot transformer and measured the performance of
the auto-generated code. An image of this simulation can be seen in Figure 3.

Our second experiment was more complicated and was designed to really test the correctness of our
bytecode transformer. For this experiment, we chose to use the ant foraging simulation that comes with
the MASON library (Panait and Luke 2004). In this simulation, 20 ants search for food in a 100x100 grid.
The ants use two pheromones: £indFood and findNest, to mark their paths as they move around the
world. These pheromones are slowly diffused through the grid to simulate degradation over time. Other
ants in the simulation follow and add to these pheromones to locate their goals. Over time, this creates
short, efficient paths between each goal in the simulation. This is normally run under visualization to
view these paths, but in order to compare performance we turned all visualizations off and modified the
simulation to end after 100 food was collected. This simulation involves keeping track of a lot of world
state. As discussed earlier, this uses a lot of memory in an auto-parallelized version, where each ant keeps a
copy of the entire world state. Our hand-coded version was designed to alleviate this memory usage problem.

In the hand-coded version of the ant foraging simulation, the shared environment was divided and
each part of the environment was modeled by an individual agent. The shared ant environment has three
essential functions:

1. Storing the levels of findFood and findNest pheromones

3025

Sherer, Vulov, and Hybinette

Figure 3: Simple ball simulation with 100 bouncing balls.

2. Modeling diffusion of each of the two pheromones
3. Modeling evaporation of the two pheromones.

While diffusion is an inherently continuous process, its implementation in a computer system requires
discretization. We discretized the environment as a 100x100 grid, in the same way the environment was
discretized in the MASON simulation. Each grid of the cell was modeled by a separate PheromoneAgent.
Each PheromoneAgent stores the pheromone levels in the block it represents and updates them according
to diffusion and evaporation at each time step. To implement the diffusion operator, we used the Euler
diffusion stencil, which requires each block to know the pheromone values of its immediate neighbors.
Modeling evaporation was simpler, since evaporation rates were assumed to not depend on the pheromone
values of neighboring cells. At each time step T of the simulation, each PheromoneAgent has received
a message from its neighboring agents with their pheromone levels. The agent computes its pheromone
levels at time T+1 and sends the updated pheromone levels to its neighbors, priming them for the next time
step. Each PheromoneAgent also sends updated pheromone information to all mobile agents currently
subscribed to it. This can be seen in Figure 4.

Unfortunately, due to limitations in the SASSY library, we have been unable to auto-parallelize this ant
simulation, but we continue to work on updating the engine and plan to add several features to facilitate
this auto-parallelization process. This is discussed in Section 5.

4 RESULTS

The bytecode transformer performed very well in all tests. Our stateless ball simulation achieved a speedup
of 3.44 on 4 machines (i.e., it runs 3.44 times faster than the running original sequential code (MASON
only code). This is very close to the 3.52 speedup we were able to achieve with a hand-coded SASSY
implementation of the same simulation. Figure 5 shows the results of running both the hand-coded and
the transformed simulation on up to 4 processors (run in a distributed environment). Both of the SASSY
simulations ran about 1.5% slower than MASON on a single processor, but showed significant speedup
when run on several machines. For this simulation, our hand-coded version was almost exactly the same
as the Soot output, but the hand-coded tests were from 1 to 2.5% faster than the Soot transformations. We
believe this may be due to excessive loads and stores introduced when Soot converts from its intermediate

3026

Sherer, Vulov, and Hybinette

Figure 4: SASSY Ant Simulation - £indNest Pheromone is to the left; findFood Pheromone is to the
right.

forms back to Java bytecode (Vallée-Rai et al. 2000).

In addition to the stateless experiment, the Wor1dStateAgent has been fully implemented in SASSY
and converts MASON code into SASSY. Unfortunately, SASSY does not currently support the addition
and removal of agents while a simulation is running, so general MASON simulations, including the ant
simulation we were testing, can not be converted until this feature is added to the SASSY kernel. This and
other improvements to the system will be discussed in the next section.

S CONCLUSIONS AND FUTURE WORK

So far, the results of our MASON-to-SASSY transformation are promising. Our implementation achieves
a speedup of 3.44 on an automatically parallelized simulation running in a distributed environment of
4 machines (it runs 3.44 faster than the sequential implementation). A WorldStateAgent has been
added to SASSY to handle all reads and writes to the state of the simulation, and we have targeted several
improvements that need to be made in SASSY’s architecture to better facilitate this parallelization process.
As an optimistic PDES, SASSY naturally uses more memory than MASON to keep track of states in case
of rollback. Since each SASSY Agent runs in its own thread and needs access to the world state, there is
one copy of the state given to each Agent to prevent the need for unnecessary locks that would slow down
the system. We are aware of this memory problem and have studied solutions to it in previous work (Vulov
et al. 2008).

One of SASSY’s much needed features is load balancing. This would speed up the performance of the
simulator, and would allow for dynamic Agent allocation during a simulation. Without the ability to add
and remove agents in the middle of execution, our approach will not be able to fully support MASON. The
ant simulation we were studying relied on its ants to die and new ants to take their place throughout the
life of the program. Our hand-coded simulation was unable to replicate this behavior, so we’re currently
looking into this feature and plan to add it to SASSY in the future.

3027

Sherer, Vulov, and Hybinette

3.5

2.5

=&—Hand-Coded

Speedup
N

= Transformed

15
/ Mason
| i

15

0.5

1 2 3 4

Number of Processors

Figure 5: Number of Processors vs. Speedup (larger is better).

ACKNOWLEDGEMENTS

We would like to think George Mason University’s Evolutionary Computation Lab and Center for Social
Complexity for the MASON toolkit and the Sable Research Group of McGill University for the Soot
optimization framework.

REFERENCES

Balch, T. 1998. Behavioral diversity in learning robot teams. Ph. D. thesis, Georgia Institute of Technology.

Gerkey, B., R. Vaughan, and A. Howard. 2003. “The player/stage project: Tools for multi-robot and
distributed sensor systems”. In Proceedings of the 11th international conference on advanced robotics,
317-323. Citeseer.

Hybinette, M., E. Kraemer, Y. Xiong, G. Matthews, and J. Ahmed. 2006. “SASSY: a design for a scalable
agent-based simulation system using a distributed discrete event infrastructure”. In Proceedings of the
2006 Winter Simulation Conference, edited by L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M.
Nicol, and R. M. Fujimoto, 926-933. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Kulkarni, M., K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. Chew. 2009. “Optimistic parallelism
requires abstractions”. Communications of the ACM 52 (9): 89-97.

Logan, B., and G. Theodoropoulos. 2001. “The distributed simulation of multiagent systems”. Proceedings
of the IEEE 89 (2): 174-185.

Luke, S., C. Cioffi-Revilla, L. Panait, and K. Sullivan. 2004. “Mason: A new multi-agent simulation
toolkit”. In Proceedings of the 2004 SwarmFest Workshop, Volume 8. Citeseer.

Panait, L., and S. Luke. 2004. “Ant foraging revisited”. In Proceedings of the Ninth International Conference
on the Simulation and Synthesis of Living Systems (ALIFE9). Citeseer.

3028

Sherer, Vulov, and Hybinette

Vallée-Rai, R., P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. 1999. “Soot-a Java bytecode
optimization framework”. In Proceedings of the 1999 conference of the Centre for Advanced Studies
on Collaborative research, 13. IBM Press.

Vallée-Rai, R., E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan. 2000. “Optimizing Java
bytecode using the Soot framework: Is it feasible?”. In Compiler Construction, 18-34. Springer.
Vulov, G., T. He, and M. Hybinette. 2008. “Quantitative assessment of an agent-based simulation on a time
warp executive”. In Proceedings of the 2008 Winter Simulation Conference, edited by S. J. Mason,
R. R. Hill, L. Moench, O. Rose, T. Jefferson, and J. W. Fowler, 1068—1076. Piscataway, New Jersey:

Institute of Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHIES

COLE SHERER is a PhD student in Computer Science at the University of Georgia. He received two
Bachelor’s degrees, one in Mathematics and one in Computer Science, from the University of Georgia
in 2007. His research interests include simulation, game programming and agent-based simulation. He
competed in the ACM Collegiate Programming contests and TopCoder algorithm contests for several years.
In 2009, he founded Ginger Magic Games, an Athens-based game development company. He joined the
Distributed Simulation Laboratory at the University of Georgia in 2010.

GEORGE VULOV is a PhD Student in Computer Science at Georgia Institute of Technology . He received
the BS degree in Mathematics and Computer Science with honors from the University of Georgia in Athens.
He is a recipient of the Charles M. Strahan Award in Mathematics and the UGA Midterm Foundation
Fellowship. He has competed in the ACM Collegiate Programming contests since 2005. His research
interests include software engineering, computational science and agent-based simulations.

MARIA HYBINETTE is a researcher in high performance simulation systems. Her current focus is on
social animal behavior modeling and financial market simulation. She is especially interested in hybrid
(both micro & macro) simulation of multi-agent behavior, and mechanisms for making them faster, more
effective, and more usable. In earlier work, she developed a number of methods for boosting the performance
of discrete event simulations on parallel multi-processors. She lives with her husband Tucker, 3 children,
2 cats, 30,000 bees (outside) and a colony of ants (inside). When she’s not teaching or researching, she
loves learning about photography, reading and playing with her family.

3029

