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ABSTRACT

This paper is concerned with production planning in manufacturing, which can be loosely defined as the
problem of finding a release plan for jobs that minimizes the total cost (or maximizes the total profit).
Production planning is a challenging optimization problem due to the variability in manufacturing systems
and uncertainty in future demand, both of which have not been adequately addressed by existing production
planning models. To address both these issues, this paper formulates the production planning problem as
a simulation-based multi-objective optimization problem, and adapts a genetic algorithm to search for a
set of release plans that are near-Pareto optimal. The solutions from the simulation optimization approach
can serve as a useful benchmark for existing and new production planning methods.

1 INTRODUCTION

This paper is concerned with production planning in manufacturing, which can be loosely defined as the
problem of finding a release schedule of jobs into the facility over time so that the actual outputs over
time satisfy, as closely as possible, the predetermined requirements (Missbauer and Uzsoy 2010). Clearly,
production planning is an optimization problem with the decision variables being the quantity of jobs
released into the system for processing over a planning horizon, and the objective is usually to minimize
the total cost (or sometimes profit) associated with a release plan. The total cost typically includes the
holding cost for finished goods and work in process inventories (WIP), penalty costs for failing to satisfy
customer demand in time, and raw material cost.

Evaluating the quality of a given release plan is challenging due to the variability (or uncertainty)
involved in the manufacturing planning environment. As pointed out by Cheng (1987), two sources of
variability are inherent in any production planning problem: fluctuation in product demand, and variation
in operation work contents due to causes such as random machine failures. The presence of such variability
leads to two major difficulties in evaluating a release plan. First, for a given release plan, the total cost
incurred over the planning horizon is a random variable, and hence, a thorough evaluation of a plan needs
to be made based on the distribution of the total cost, or at least on the mean and variance of the cost
which are considered as the two fundamental distribution characteristics. Note that it is important to take
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into account not only the mean but also the variance of the cost, since the latter is a measure of the risk
associated with a release plan.

Second, it is difficult to quantify the dependence of the mean/variance of the total cost upon the
release plan. The cost depends on the output performance of the manufacturing system over the planning
horizon: the quantity of products produced and the WIP (i.e., the number of jobs in the system). Due to
the queueing effects resulting from the system variability, these outputs are stochastic processes whose
distribution evolves over time depending on the ongoing release of jobs and the initial status of the system
(e.g., the WIP and inventory levels at the beginning of the planning period). For a realistic manufacturing
system, the relationships between release plans and stochastic outputs are nonlinear and time-dependent,
and cannot as yet be described accurately by analytical methods. At present simulation appears to be the
only approach that is able to provide a good approximation of the stochastic input-output relationships
based on numerical instances.

The existing research on production planning has not adequately addressed these two difficulties,
i.e., the risk assessment of a production plan and the quantification of the input-output relationships for
manufacturing systems. Most production planning models, including the widely used Material Requirements
Planning (MRP) procedure (Baker 1993; Vollmann 1988) and most mathematical programming models
(e.g., Hackman and Leachman 1989; Johnson and Montgomery 1974; Leachman 1994), disregard the
stochastic nature of the problem and do not even consider the dependence of a system’s outputs upon the
input release (or the system workload). The relationship between releases and output is defined by lead times
that are specified as exogenous parameters independent of workload, contradicting results from queuing
models and industrial practice. Ignoring this fundamental relationship between workload, as determined
by releases, and output may well lead to inferior production plans (Byrne and Bakir 1999; Pahl et al.
2005). In recent years, there has been a growing interest in exploring this input-output relationship in
production planning (Pahl et al. 2005). One approach within this new stream of work is to integrate
deterministic mathematical programming with computer simulation. A number of researchers (Hung and
Leachman 1996; Byrne and Bakir 1999; Kim and Kim 2001; and Byrne and Hossain 2005) have combined
simulation and mathematical programming models in an iterative scheme to evaluate the effects of the
release decisions upon the performance of a manufacturing system. Other researchers (Asmundsson et al.
2006; Asmundsson et al. 2009) have proposed the clearing function (CF) methods, in which the CFs are
first estimated from simulation and then incorporated in the optimization model as constraints describing
the dependence of output upon expected WIP, which, in turn, is defined by the release rates of jobs. In the
linear/nonlinear programming models of this more recent work, simulation is used to refine or estimate
static constraints, providing a deterministic approximation to the system’s time-dependent input-output
relationships. A number of authors (Peters et al. 1977; Sen and Higle 1999; Aouam and Uzsoy 2011) have
proposed stochastic programming models with recourse, while Higle and Kempf (2010) propose chance-
constrained programming models. These models explicitly address the stochastic nature of the problem,
but involve different levels of approximations whose effect on solution quality is still under investigation.
Also, to the best of our knowledge, no work in the literature has considered the risk factor (or variance of
cost) in production planning.

This paper addresses the drawbacks of existing production planning models by adapting and applying
the simulation optimization approach, which incorporates discrete-event simulation as an objective evaluator
in an optimization routine (Chapters 19-21 in Henderson and Nelson 2006). The simulation optimization
(SO) approach allows for the evaluation of a release plan based on not only the mean but also the variance
of the total cost incurred by that plan. By using simulation to directly estimate the system outputs (and
subsequently the cost objective) for a given release plan, the time-dependent input-output relationship is
quantified in detail, subject to modelling error in the simulation model.

Admittedly, the SO method may be very time consuming due to the possibly large amount of discrete-
event simulation required. Thus, the use of SO in the practice of production planning may require parallel
machines to meet the computational loads and deliver a timely decision. However, the SO method is of
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substantial research interest in that it provides “true” optimum production plans, which serve as a useful
benchmark to evaluate other production planning methods. Currently, the production plans resulting from
the existing models can only be evaluated for feasibility or compared with each other for relative superiority.
Due to the advantages discussed above, the SO method is expected to lead to better plans than the existing
methods, and hence can provide a benchmark evaluation of the existing and future production planning
models.

As our first step in approaching the production planning problem with the SO method, we have
completed two tasks in this paper.

• Build a C++ discrete-event simulation model representing a scaled-down semiconductor wafer
fabrication (fab) system. The initial condition of the simulation can be specified to reflect the
status of the real system at the time when planning decisions are to be made. The C++ model is
integrated into the optimization routinee as a sampling tool.

• Adapt a deterministic multi-objective heuristic to solve the SO problem for production planning.
The heuristic was applied to the scaled-down wafer fab model, and approximately Pareto “optimal”
production plans were obtained under two different demand scenarios.

2 OVERVIEW OF THE SIMULATION OPTIMIZATION APPROACH

The problem of optimum production planning is stochastic by nature due to the variability inherent in the
decision environment. For a release (or input) plan over a time horizon, the outputs of a manufacturing
system are stochastic processes that evolve with time. The total cost associated with a plan is a function of
the system outputs and the pre-specified random demand over the planning horizon, and hence is a random
variable. Therefore, to evaluate a release plan, the performance measures of interest should include both
the expectation and variance of the total cost. Since analytical expressions for the relationships between
the input decision and the performance measures are unavailable, SO is a promising alternative to approach
the optimum planning of production activities.

SO provides an optimization framework within which candidate solutions are systematically generated
and evaluated in terms of performance measures estimated by simulation experiments. With the wide use
of simulation in industry, SO is gaining increased popularity, and nowadays most discrete-event simulation
packages include some form of “optimization” routine. Compared to deterministic optimization, SO involves
an additional complication due to the stochastic nature of the problem that it intends to solve: In SO, the
performance measures of a particular decision setting (e.g., a production plan) cannot be evaluated exactly,
but instead must be estimated and are thus subject to stochastic noise/errors. Such uncertainty makes it
important to address the stochastic convergence of solutions (Hong and Nelson 2006). However, most
algorithms used in commercial software are heuristics, such as tabu search and scatter search in OptQuest
(OptTek Systems, Inc.); they do not address the stochastic nature of the performance estimates obtained
from simulation, and provide no convergence or “correct selection” guarantees. Such heuristics typically
evaluate the objective function by averaging over a small (often fixed) number of replications, and then
treat the average as deterministic (Xu et al. 2010).

Optimum production planning for semiconductor manufacturing typically involves a relatively large
number of decision variables, usuallt into the hundreds if not thousands. We attempted to use theoretically
sound algorithms such as that developed by Xu et al. (2010) to solve the problem, but were not able to
obtain solutions within a reasonable amount of time (say, a week or so). Hence in this preliminary study we
have adapted and applied a multi-objective optimization (MOO) heuristic to solve the planning problem.
The two objectives of the optimization problem are minimizing the mean and variance of the total cost.

The remainder of the paper is organized as follows. Section 3 describes the simulation model of the
scale-down wafer fab investigated in this work. In Section 4, the formulation of the optimization problem
for production planning is given. In Section 5, the MOO heuristic is adapted and applied to solve the
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production planning problem . Section 6 presents the empirical results obtained from applying the SO
method for optimum production planning. Section 7 gives a brief summary.

3 SIMULATION MODEL

We consider the scale-down semiconductor wafer fab system described in Kayton et al. (1997), which
has been used in the literature (e.g., Asmundsson et al. 2009; Irdem et al. 2010) to evaluate a variety
of production planning and scheduling methods. The system consists of 11 workstations, and involves
the representative features of real semiconductor fabs such as machine failures, re-entrant flows and batch
processing.

The system is designed to process three types of wafers (products) with each type following a distinct
route. A wafer is considered as an individual unit of processing materials that passes through a wafer fab.
Product 1 requires twenty-two operations, Product 2 fourteen operations, and Product 3 fourteen operations.
All the products are released into the fab in a fixed lot size of 50. A lot is a number of wafers of the same
type that are processed and transported between workstations as a unit. Following the common practice of
production planning literature, the system is treated as a push system (Hopp 2007), and thus the release
rate of jobs (e.g., the weekly wafer starts) can be controlled by production managers.

Using Microsoft Visual Studio C++, we built the simulation model that represents the scale-down
wafer fab. The C++ model was verified using techniques recommended in Law and Kelton (2000), such
as running the model with simplified assumptions to detect logical mistakes and testing the model outputs
under a variety of input settings. Also, the C++ model was validated against the simulation model built in
Arena by Irdem et al. (2010). The outputs from the C++ and Arena models are compared for a wide set of
inputs. We chose to construct the simulation model in C++ as opposed to using the existing Arena model
so that the simulation can be integrated as a sampling tool into the MOO algorithm, which is developed
in Matlab.

4 FORMULATION OF THE PRODUCTION PLANNING PROBLEM

We formulate the optimum production planning as a multi-objective optimization problem. Denote the
planning time horizon as (0,H]. Following the existing production planning models, we divide the entire
horizon into T equal-length time periods. For convenience of discussion, the following notations are given.
Indices:

k: Product index.
t: Planning period index.

Parameters:
K: Number of different types of products/wafers in the manufacturing system.
T : Number of time periods within the planning horizon (0,H].
ωkt : Unit WIP holding cost per period for product of type k in period t.
hkt : Unit inventory holding cost per period for product of type k in period t.
bkt : Unit backlogging cost for product type k in period t.
Dkt : Demand for type k product in period t; demand is considered as a random variable that follows

a pre-specified distribution obtained from forecasting models which are outside the scope of this
work. We assume that all demands are realized at the end of each planning period.

Independent decision variables:
xkt : Number of lots of type k products released in period t. We assume that lots are released into

the system with constant inter-release times. Denote x = {xkt ;k = 1,2, . . . ,K; t = 1,2, . . . ,T} as the
decision vector to be determined in the planning optimization.

Dependent random variables:
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Zkt : Number of lots of product type k products produced in period t.
Wkt : Cumulative WIP (in number of lots) of type k products in period t. Denote Qk(τ) as the WIP

level of type k products at a time instant τ (−∞ < τ < ∞). Since the WIP level jumps up or down
upon the arrival or departure of products, Qk(τ) is a piece-wise constant function of the continuous
time τ . Let (st ,et ] be the interval of the tth time period, then we have

Wkt =
∫ et

st

Qk(τ)dτ.

Ikt : Cumulative inventory level of type k end products at the end of period t. Let Ik0 represent the
initial inventory of type k finished goods, and Vk(τ) the inventory of product k at time instant τ .
Note that Vk(τ) is also a piece-wise constant function of time τ . Then the cumulative inventory Ikt
can be written as:

Ikt =
∫ et

st

Vk(τ)dτ.

The inventory level at the beginning of each period is given as:

Vk(s1) = Ik0

Vk(st) = max{0,Vk(st−1)+Zk,t−1−Bk,t−1−Dk,t−1}; t = 1,2, . . . ,T

where Bk,t−1 is defined as follows.
Bkt : Quantity of type k products that cannot be satisfied on time at the end of planning period t.

The unmet demand is considered as backlog, and will be fulfilled at the end of nearest planning
period(s). We have:

Bkt =−min{0,Vk(st)+Zk,t −Bk,t−1−Dk,t}; t = 1,2, . . . ,T

Given pre-specified product demand and initial system status (including initial WIP, inventory levels, backlog
quantities, etc.), all the dependent variables can be evaluated through simulation with a specified release
plan.

It is worth pointing out that for the sake of solving the optimization problem in a realistic setting, it
is necessary to consider time periods beyond the planning horizon. In this work, we follow the approach
of Hung and Leachman (1996), and assume that after the planning horizon demands for each product
type will continue forever following the rate of the last planning period. An extra post-planning period is
added, during which the demands are satisfied by the products that are released but not finished during the
planning horizon. This extra period lasts until all the products released during the planning horizon have
been completed.

The total cost incurred by the production plan x can be written as

L(x) =
K

∑
k=1

T+1

∑
t=1

ωktWkt +
K

∑
k=1

T+1

∑
t=1

hktIkt +
K

∑
k=1

T

∑
t=1

bktBkt ,

which consists of three parts: the WIP holding cost, the inventory holding cost, and the backlog cost. The
total cost L(x) is a random variable, and the purpose of production planning is to find a release plan that
excels in terms of both the expectation and variance of L(x). Hence, we formulate the production planning
problem as the following MOO problem:

min E[L(x)]
min Var[L(x)] (1)

Subject to: xL
k ≤ xkt ≤ xU

k ; k = 1,2, . . . ,K; t = 1,2, . . . ,T
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The lower and upper bounds, xL
k and xU

k , are parameters specified by the user.
For an MOO problem, there generally does not exist any single solution which can provide the optimal

value on all the objectives, and thus it is of interest to generate a set of non-dominated solutions, where no
objective can be improved without worsening at least one other objective. The set of all non-dominated
solutions is referred to as the Pareto optimal front (Deb 2009), and our goal is to obtain a set of solutions
for x as close as possible to the Pareto optimal front.

5 THE MULTI-OBJECTIVE OPTIMIZATION PROCEDURE

5.1 The Multi-Objective Optimization Algorithm

To solve the problem (1), we adapted the MOO function “gamultiobj” provided by Matlab. The function
gamultiobj uses a controlled elitist genetic algorithm, which is a variant of the elitism non-dominated sorting
GA (NSGA-II). Due to its various appealing features, the NSGA-II is a most widely used algorithm for
MOO problems (see Deb 2009 for details). Since the gamultiobj function is developed for deterministic
optimization, we adapted it in a straightforward way to accommodate the stochastic simulation involved
in the simulation optimization procedure.

The major change made to the gamultiobj function is to include a two-stage process which determines
for each candidate solution (release plan) the number of simulation replications required to evaluate the
cost objectives associated with that candidate to a desired degree of statistical precision. As opposed
to deterministic optimization where only one replication is needed to evaluate the objective values for
a candidate solution, the number of simulation replications required to solve (1) may well vary on a
candidate-by-candidate basis. In the adapted algorithm, for each newly generated solution x∗, the following
two-stage process is used to determine the number of replications required to obtain an expected cost
estimate Ê[L(x∗)] of the desired precision. Suppose that the precision is measured by the variance of
Ê[L(x∗)], and the desired variance is pre-specified as σ2. At the first stage, a conservative number, say n0,
independent replications are generated. From the n0 cost realizations, the sample variance of the cost is
estimated as σ2

0 . The number of replications that is likely to provide a desired variance σ2 for Ê[L(x∗)] is
then set as dσ2

0 /σ2e. At the second stage, dσ2
0 /σ2e−n0 additional replications are performed. The data

obtained from both stages are then used to evaluate the objectives, the mean and variance of the total cost.

5.2 Simulation-Based Objective Evaluation

As mentioned above, for a candidate release plan x∗, multiple simulation replications will be performed
with each one leading to an instance of the associated total cost L(x). Averaging across those replications
will lead to an estimate for E[L(x∗)], denoted as Ê[L(x∗)]; an estimate of the variance Var[L(x)] can also
be obtained, which is denoted as V̂ar[L(x)].

Next, we detail how a simulation experiment is performed under a plan x∗ to obtain an instance of
the total cost. (i) First, the initial status of the simulation model is specified to reflect the status of the
manufacturing system at the beginning of the planning horizon, when the planning is being performed. For
each replication, the simulation model is initialized with certain WIP levels at different workstations, the
completion time for the lots currently in process at all the stations, the last failure time of each machine,
etc. Hence each simulation starts from a state consistent with the real system being considered. (ii) Second,
under the plan x∗, the model is simulated for the time length equal to the planning horizon, which is 12 weeks
in the experiments considered in Section 6, plus the extra period mentioned in Section 4. The (T +1)th

additional period is determined in such a way that the products released during the planning horizon will
complete processing by the end of the extra period. Based on the range of the total time it takes for a wafer lot
to go through the system, the length of the extra period is set to three weeks in our experiments. (iii) Third,
during the discrete-event simulation process, the system outputs {Ykt ;Wkt ;k = 1, . . . ,K; t = 1, . . . ,T + 1}
are collected. For each replication, by generating a demand realization {Dkt ;k = 1, . . . ,K; t = 1, . . . ,T +1}
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Table 1: The mean demand {dkt ;k = 1,2,3; t = 1,2, . . . ,12}. (The demands are given in terms of lots per
week.)

Period 1 2 3 4 5 6 7 8 9 10 11 12
Prod1 23 26 29 31 34 37 40 43 45 48 51 54
Prod2 66 62 58 54 49 45 41 37 33 28 24 20
Prod3 16 16 15 15 15 15 14 14 14 14 13 13

from the given random demand distributions (Section 6.1), {Ikt ;Bkt ;k = 1, . . . ,K; t = 1, . . . ,T +1} can also
be obtained.

Therefore, for a certain release plan x∗, each simulation run leads to a possible value of the total
cost. With multiple replications, the mean and variance (and possibly the distribution) of the cost can be
estimated, and these statistics represent the variability in the manufacturing system as well as the demand
uncertainty.

6 EMPIRICAL RESULTS

The multi-objective simulation optimization procedure was applied to solve the production planning problem
for the scale-down semiconductor wafer fab described in Section 3. The parameters and variables defined
in Section 4 are specified as follows. The planning horizon considered is 12 weeks, with each time period
being one week long and T = 12 periods within the planning horizon. The extra planning period is set as
3 weeks. It is assumed that the cost parameters are time-independent and product-independent, and hence,
for any time period and any product type, we have ωkt = 7 for the unit WIP holding cost per time unit,
hkt = 15 for the unit inventory holding cost per time unit, and bkt = 35 for the backlog cost.

There are K = 3 different types of wafers processed in the system, so the release plan x is a 36×1
decision vector. The constraints in (1), i.e., the upper and lower bounds on the release rates are given as:
xk

L = 10 lots/week and xk
U = 80 lots/week. If all three types of products are released at their lower bound

rates, the system utilization is 0.3. If one product is released at its upper bound rate while the other two
products are released at their lower bound rates, the system utilization is about 1.2. Hence, the system is
allowed to be temporarily overloaded in our production planning problem.

The forecasted demand over the planning horizon is specified in Section 6.1.

6.1 Prespecified Demand

It has been explained in Section 5.2 that for each simulation replication, an instance of the total cost is
obtained with a realization of the random demand. In the simulation optimization procedure, the random
demand is allowed to follow any type of distribution, among which the most sophisticated distributions
may be those represented by multivariate time-series models. To generate demands that can be modeled
as general multivariate time-series, please refer to the algorithms developed by Biller and Nelson (2003).
In this paper, two different demand scenarios are considered.
Case 1
In the first case, it is assumed that the customer demand over the planning horizon is deterministic and
given with certainty as shown in Table 1. As can be seen from Table 1, over the planning horizon, the
demand for product 1 increases gradually, the demand for product 2 decreases, and the demand for product
3 remains at a low, stable level. If the wafer fab is operated at a release rate equal to the the demand rate
in Table 1, then the system utilization is about 80% throughout the planning horizon.
Case 2
In the second case, the product demand is random and assumed to follow a normal distribution. Specifically,
denote the random demand vector as {Dkt ;k = 1,2,3; t = 1,2, . . . ,12}, and for product k in period t, Dkt
is normally distributed with a mean of dkt as given in Table 1, and a standard deviation of 0.1× dkt .
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The demands across different products and time periods are assumed independent. In each simulation
replication, a realization of the random vector {Dkt ;k = 1,2,3; t = 1,2, . . . ,12} is generated and used to
evaluate the total cost of a release plan.

6.2 Optimization Results

Figure 1 shows the objective performance (in terms of the mean and standard deviation of the total cost)
of the two set of solutions obtained for the two demand scenarios. The fourteen crosses represent the
performance estimates of the solutions for case 1, and are labelled as 1.1 to 1.14. The nine circles represent
the performance estimates of the solutions for case 2, and are labelled as 2.1 to 2.9. As can be seen from
the Figure 1, a set of non-dominated solutions were obtained for both cases. For each case, the solutions
(or release plans) vary over a fairly wide range in terms of the mean and standard deviation of the cost.
Compared to the solutions obtained from single-objective optimization, the results (as those presented in
Figure 1) from solving our MOO problem provide more complete information to decision makers who
have to weigh the trade-off between average cost and the risk associated with that cost.
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Figure 1: Objective performance of the solutions obtained for the two demand scenarios.

As expected, the solutions in Case 2 result in a higher variability in the total cost compared to those
in Case 1. For instance, solutions 1.5 and 2.3 have almost the same mean cost, but the standard deviation
of solution 2.3 is substantially higher than that of solution 1.5.
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7 SUMMARY

This work is a preliminary step toward approaching the production planning problem with simulation
optimization methods. The optimum production planning is formulated as a multi-objective optimization
(MOO) problem, and the two objectives considered simultaneously are minimizing the mean and variance of
the total cost associated with a production plan. A heuristic algorithm is adapted to solve the MOO problem
due to the high-dimensional decision variables and high computational time required by simulation. The
solutions resulting from the heuristics can serve as the starting points for asymptotically locally convergent
algorithms, or can be further investigated through ranking and selection procedures.
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