
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

VERITAS - A VERSATILE MODELING ENVIRONMENT FOR
TEST-DRIVEN AGILE SIMULATION

Anatoli Djanatliev
Winfried Dulz

Reinhard German
Vitali Schneider

University of Erlangen-Nuremberg

Department of Computer Science (Informatik 7)
Martensstr. 3

D-91058 Erlangen, GERMANY

ABSTRACT

An approach is presented in which both simulation and testing based on UML are combined in one
framework to achieve an improved overall quality. System models are specified by UML diagrams, and
are then mapped on C++-code and executed in the OMNeT++ network simulation framework. State-
space oriented test models are defined independently from this to express requirements by selected system
usages. From these test models it is possible to generate test cases and to execute them on the simulation
code level. By adding Markov chain usage profiles to the test model it is possible to apply statistical test
case generation as well. Altogether this allows to validate both kinds of models systematically and itera-
tively during the development cycle. The methodology is realized by combining appropriate tools and
new software components based on the Eclipse RCP. The approach is also well suited for software engi-
neering because standard modeling languages are used.

1 INTRODUCTION

The implementation of complex software systems usually consists of a series of development and testing
phases. Starting from requirements definition the development process is divided into a number of design,
specification, programming and testing steps. Each software engineering step is guided by an appropriate
method and generally supported by dedicated tools, e.g., Rational DOORS (IBM 2011), Papyrus UML
(Papyrus 2008), Enterprise Architect (Sparx Systems Ltd. 2011), and .getmore (sepp.med gmbh. 2011).
 Due to the increasing complexity of software systems model-driven approaches are gaining in popu-
larity. In particular, graphical representations like UML (Unified Modeling Language) diagrams of special
system features allow to deal with the complexity and also enable advanced analysis and validation capa-
bilities. The UML allows to describe the structure and behavior of a system and eventually such a model
can be executed or simulated in order to gain insight in its dynamics. The UML also allows to define
models of tests of the later system, which is then considered as the SUT (system under test). Following
these observations a simulation framework Syntony (Dietrich, Dressler, and German 2009) has been de-
veloped, in which system models can be described by UML models, compiled to C++ and executed in the
OMNeT++ network simulation framework. This work has been extended by the possibility of defining
and executing test cases for single components of the system model according to the UML testing profile
(Dietrich et al. 2010). In this paper this framework is complemented by adapting advanced concepts from
model-based testing such that truly integrated simulation and testing becomes possible.

3662978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Djanatliev, Dulz, German, and Schneider

 Model-based testing techniques make use of models of either the behavior of the SUT or the expected
usage of the users of the SUT. In the former case a system specification is derived from the requirement
definitions and serves as a starting basis to automatically generate test cases in order to test the SUT (Ro-
saria and Robinson 2000). In the latter case usage models are deduced from the requirements and may be
considered as independent from the specification. Because exhaustive testing of real systems is infeasible
in practice an appropriate set of test cases must be provided for accomplishing a given test goal. In con-
trast to other testing techniques, the statistical testing approach benefits from usage driven testing based
on a set of statistically sampled test cases (Dulz and Zhen 2003, Prowell 2005). Statistical testing relies on
a Markov chain usage model (Walton, Poore, and Trammell 1995; Whittaker and Thomason 1994) that
characterizes the possible uses of given software in its intended environment and consists of usage states
and transitions between these states. Test cases are automatically derived by randomly traversing the
Markov chain between two dedicated start and end states.
 Design and implementation errors are the more expensive the later they are detected and fixed. There-
fore, we call for the earliest possible validation of the specification models in the course of the software
engineering process. Otherwise, errors are detected too late while testing the SUT in the system or even
the acceptance test.
 In the VeriTAS environment we apply, among others, a UML modeling tool, a simulation framework
and a test case generator to perform a so-called test-driven agile simulation (TAS); statistical usage test-
ing can also be applied. Altogether a new methodology is defined with the following three contributions:
first, a systematic way is presented with which simulation models can systematically be validated itera-
tively during the development phase. This is considered important since correctness of complex simula-
tion models is hard to control. Second, as model-based testing gets more popular, test models are getting
more complex and their correctness is also hard to control; they can be validated early against the simula-
tion model. Third, an overall process is defined which if combined with code generation can provide high
quality software with respect to quantitative and functional aspect.

 In the following sections we explain the idea of test-driven agile simulation and the main parts of the
VeriTAS environment in order to support model-driven software development, testing and simulation. To
illustrate various concepts throughout this paper a model of the Stop-And-Wait protocol (Dietrich et al.
2010) will be used as an example.

2 TEST-DRIVEN AGILE SIMULATION

As mentioned before, UML-based models are growing in popularity for system modeling as well as for
test specifications. Usually, the testing model is derived from a system model and aims to validate the
functional as well as the non-functional behavior specified for that system. Thereby, the validation is per-
formed by executing tests on the system after it has been implemented. To better assure the validation of
the required system behavior we propose to start from the requirements and to derive the system specifi-
cation as well as the test specification independently from each other (Figure 1).
 The key idea of the TAS approach is to use the same test cases that are otherwise used in the latter
system test for an early validation step of the involved models. This is done by simulating a given system
specification and running test cases at the model level. The method also implies the automatic generation
of executable simulations and of test cases from corresponding models, which can be executed within a
simulation framework. This approach lets us detect modeling errors or inconsistencies in the simulated
system model and the used test model as early as possible, even before any code or hardware has been
implemented. Prior to expensive tests on the real system in customer’s target environment, generated test
cases as well as the system specification can easily be validated by executing the simulation. Hence, one
of the main advantages of the TAS approach is to provide a cheap and agile technique to check the mod-
els in several iteration steps during early engineering phases.

In addition to the dynamic validation, when tests are performed by means of simulation, it is also rea-
sonable to compare the static characteristic of system and test models, e.g., if the models cover all speci-

3663

Djanatliev, Dulz, German, and Schneider

fied (usually functional) requirements or if the same name conventions have been used. In the next sec-
tion we describe the VeriTAS environment, which supports the TAS approach.

Figure 1: The concept of the Test-driven Agile Simulation

3 THE VERITAS ENVIRONMENT

VeriTAS is based on the Eclipse Rich Client Platform that allows combining specific components sup-
porting the main steps of a quality-assurance process within a common environment (Figure 2) and which
implies a typical tool-chain.

Figure 2: Overview of the VeriTAS environment

The current realization of the VeriTAS tool chain applies Papyrus UML and Enterprise Architect to pro-
duce UML conform specifications for system simulation and test. In the next step the usage model is im-
ported by the test case generation tool .getmore (sepp.med gmbh. 2011) that enables the generation of ab-

3664

Djanatliev, Dulz, German, and Schneider

stract test cases dependent on the desired strategy. Additionally, a visualization framework offers custom-
ized layout algorithms to visualize models that are managed by .getmore and allows highlighting diverse
aspects within a model, e.g., generated test cases. It also provides an editor for Markov chain usage pro-
files MCUPEditor in order to generate test cases statistically. To simplify the usage profile definition
nodes and transitions may be highlighted by different colors that indicate different weights. This new fea-
ture allows focusing on special regions of interest within a usage model that are considered by the statisti-
cal test case generation strategy. In our TAS approach test cases are used to validate system specifications
by means of simulations. In order to generate an executable simulation model from a given system speci-
fication, i.e., a UML state chart diagram, the simulation framework Syntony (Dietrich et al. 2010) is ap-
plied within the VeriTAS tool chain. Furthermore, a dedicated exporter has been developed for automati-
cally transforming generated test cases into the UML format. Finally, simulation results and test metrics
can be calculated and visualized within Syntony by using the public domain tool R.

3.1 Model Definition

Different types of UML diagrams can be used to describe certain aspects of the simulated or tested sys-
tem, like architecture, data and behavior. In our example model of the Stop-And-Wait protocol we follow
the modeling paradigm of communicating automata. Among others, we take the use of class, composite
structure and state chart diagrams to describe the system (Figure 3). In this example the system represents
protocol units that are responsible for reliable data transfer (RDT) over an unreliable channel. To specify
non-functional performance attributes and measurements, that are relevant in scope of simulation, we use
the UML profile for MARTE (Modeling and Analysis of Real-Time and Embedded Systems).

Figure 3: Extract of the Stop-And-Wait model in PapyrusUML

 To validate the behavior of the specified units we can define model-based unit tests (Dietrich et al.
2010). According to the UML Testing Profile (UTP) a test context describes the SUT as well as involving
test components and contains test cases. Usually, test cases are modeled as sequence of simple test steps,
which express the interaction with the SUT. In our approach we make use of automated test case genera-
tion from activity diagrams or Markov chain usage models, which specify the usage of a system or a sin-
gle component from user’s point of view. Thereby, single test steps are modeled as parameterized interac-
tions and are combined to a sequence during the generation.

Datafram

3665

Djanatliev, Dulz, German, and Schneider

3.2 Visualizing Hierarchical Usage Models

As mentioned before we operate with usage models expressed as graphs consisting of nodes and arcs. To
support the visualization of hierarchical diagrams the visualization framework has been developed based
on the Eclipse Zest Visualization Toolkit. As test-cases represent single paths of a model, the visualiza-
tion component of VeriTAS offers a parallel view of the test-cases as a tree and the corresponding dia-
gram with highlighted paths (Figure 4). Furthermore it is easily possible to navigate through diagram hi-
erarchies and to configure the appearance of single model elements.

Figure 4: Test case visualization as highlighted paths

 Model-driven testing may use models that contain information from different sources and views in-
cluded by requirement engineers, software architects, test engineers and so on. For that reason it is often
cumbersome to find and represent the relevant data. In VeriTAS the visualization component provides an
extension point to add user-defined perspectives and to display only those parts that are needed for a giv-
en engineering aspect. The user can define specific figures, colors, fonts for diagram elements to highlight
relevant parts in the model. Also new views and buttons may be added to the user-defined perspective.

For models that are imported without any graph positioning information, the visualization component
provides some default graph layout algorithms. For instance the tree layout, the grid layout and the spring
layout of the visualization framework Zest can be used. In addition, the visualization component offers an
extension point for user-defined layout algorithms realized as Eclipse plug-in. Because Zest layout algo-
rithms fail in some important visualization criteria like bend points, length of the connections and over-
lapping areas VeriTAS provides its own configurable layer-based layout algorithm (Purchase 1997).

3.3 Statistical Test Case Generation

Usage models act as a source for many different generation algorithms to derive a set of test cases. Well
known techniques, such as coverage algorithms, are already supported by various test case generation
tools like .getmore. Because exhaustive testing is not practicable and too expensive for complex systems,
it is reasonable to make use of advanced generation methods, in particular in early phases of the software
development. In our approach we focus on the statistical test case generation based on Markov chain us-
age models. VeriTAS contributes to this approach by providing a Markov perspective that enables the

3666

Djanatliev, Dulz, German, and Schneider

provision of usage profiles with an integrated consistency check. Sometimes, the exact profile definition
is not possible or requires an additional effort (Dulz, Holpp, and German 2010). To take the profit of the
statistical generation methods, the so-called focus method has been developed for VeriTAS. Therewith,
one is capable to define special regions of interest, which are called focus levels without the exact specifi-
cation of probabilities for transitions in the focus level (Figure 5). The exact values are calculated auto-
matically afterwards for each branch.

Figure 5: Usage profile definition using the focus method

 We assume that the set of all outgoing edges is E . If the uniform distribution at a branch cannot be
applied, the probability ep of an edge e with the level el and the weight of the destination node)(ew is

calculated by

 Using N as the set of all reachable nodes from node n and LLF as the so-called level loss factor.

inD , is the minimal distance from node n to node i . Hence, the weight)(ew can be calculated using the

level of the node nl by

 The global level loss factor will influence the probability calculation of the edges. A low LLF means
a high propagation of the node’s focus level to all previous paths. Thus, it results in a higher probability
for test cases that contain nodes in focus levels and therefore nodes at focus levels are visited more often
in the TAS approach.

Ei
i

e
e iwl

ewl
p

))((

)(

Ni

D
in

inLLFllew))1(()(,

3667

Djanatliev, Dulz, German, and Schneider

4 MODEL VALIDATION USING SYNTONY AND AGILE SIMULATION

In the previous sections we have introduced our TAS approach and described modeling, visualizing and
test case generation using the VeriTAS environment. In this section we focus on the validation of in-
volved models by using the simulation framework Syntony (Dietrich et al. 2010), which is also integrated
in VeriTAS.
 Utilizing the extensibility of the visualization component, VeriTAS offers a perspective to perform
static validation checks on models and to highlight the model elements that contain errors (Figure 6). All
in all, it is very easy to add new validation constraints by using the Eclipse extension mechanism. To
transform abstract test cases previously generated by .getmore into UML-conform interaction diagrams
that are used by Syntony, VeriTAS provides an exporter component.

Figure 6: Validation perspective of VeriTAS

The Syntony framework provides mechanisms to transform UML system models into executable simula-
tion code for the OMNeT++ simulation engine that we are using in our approach. On the right hand of the
usage model in Figure 7 the different steps of a Syntony simulation process are depicted:

 In the first step Syntony generates UML activity diagrams from textual Casual statements

(Dietrich et al. 2010), which are used to express simplified and more user-friendly activity
definitions.

 After that, configuration parameters are initialized that are necessary for transforming UML
models represented in the XMI model interchange format.

 During the transformation step all elements of the UML system model are translated to C++
code needed for generating an executable OMNeT++ simulation model.

 Next, make files are created in order to compile the generated C++ code.

3668

Djanatliev, Dulz, German, and Schneider

 After transforming and compiling the UML input model, Syntony displays the contained test
cases in its test view. In this way, Syntony lets the user select and execute test cases in com-
bination with a simulation model.

 In the test view test verdicts are displayed after the simulation (Figure 7). Green or red colors
are used to visualize, whether a test case will result in the verdict PASS or FAIL during the
simulation. In addition, the coverage column indicates the percentage of nodes that are cov-
ered by each of the test cases and the test suite altogether.

Figure 7: Test-driven Agile Simulation provided by the VeriTAS tool chain

 Syntony also provides a dedicated evaluation view for importing results and for selecting metrics that
have to be analyzed and plotted in graphs. This specific task is done in the background by the open source
tool R (R Project 2011).

5 CONCLUSION

In this paper we introduced the versatile modeling environment VeriTAS. This approach intends to lower
the cost and time barriers between simulating a system specification and testing the implemented SUT.
The combination of different, dedicated tools within a common Eclipse-RCP environment provides an in-
tegrated support for quality-assurance processes and opens new perspectives for the versatile usage inde-
pendent of specific application domains. Due to Eclipse it is very easy to substitute specific tools in the
VeriTAS tool chain and to provide extensions and additional features with respect to more concrete issues
and questions (Dulz 2011).
 Looking ahead, different extensions and improvements are planned for VeriTAS, such as calculating
performance metrics or determining the real-time capability for a given system specification by means of
an agile simulation approach.

3669

Djanatliev, Dulz, German, and Schneider

REFERENCES

Dietrich, I., F. Dressler, and R. German. 2009. “Syntony: A Framework For Model-Driven Simulation,
Analysis, And Test.” Presentation during PhD Colloquium at 2009 Winter Simulation Conference,
Austin, TX.

Dietrich I., F. Dressler, W. Dulz, and R. German. 2010. “Validating UML Simulation Models with Mod-
el-Level Unit Tests.” In 3rd ACM/ICST Int. Conf. on Simulation Tools and Techniques for Communi-
cations, Networks and Systems (SIMUTools 2010), Malaga, Spain.

Dulz, W. 2011. “A Comfortable TestPlayer for Analyzing Statistical Usage Testing Strategies.” In Proc.
of the 6th IEEE/ACM International Workshop on Automation of Software Test (AST 2011). Waikiki.

Dulz, W., and F. Zhen. 2003. “MaTeLo - Statistical Usage Testing by Annotated Sequence Diagrams,
Markov Chains and TTCN-3.” In IEEE Proc. Of Third International Conference on Quality Software
(QSIC 2003), 336–342.

Dulz, W., S. Holpp, and R. German. 2010. “A Polyhedron Approach to Calculate Probability Distribu-
tions for Markov Chain Usage Models.” Electronic Notes in Theoretical Computer Science 264(3):19–
35.

IBM. 2011. “Rational DOORS: A Requirements Management Tool for Systems and Advanced IT Appli-
cations.” Accessed March 31. http://www-01.ibm.com/software/awdtools/doors.

Papyrus. 2008. “Open Source Tool for Graphical UML2 Modelling.” Accessed November 5, 2010.
http://www.papyrusuml.org.

Prowell, S. J. 2005. “Using Markov Chain Usage Models to Test Complex Systems.” In Proceedings of
the 38th Hawaii International Conference on System Sciences, 318c–318c.

Purchase, H. C. 1997. “Which Aesthetic has the Greatest Effect on Human Understanding?” In Proceed-
ings of the 5th International Symposium on Graph Drawing, 248-261. Springer.

R Project. 2011. “The R Project for Statistical Computing.” Accessed March 30. http://www.r-
project.org/.

Rosaria, S., and H. Robinson. 2000. “Applying Models in Your Testing Process.” Information and Soft-
ware Technology 42:815–824.

sepp.med gmbh. 2011. “The Test Case Generator: .getmore.” Accessed March 30.
http://www.seppmed.de/produkte/getmore.html.

Sparx Systems Ltd. 2011. “Enterprise Architect 9.1 Full Lifecycle UML Modeling Software.” Accessed
March 30. http://sparxsystems.eu/.

Walton, G. H., J. H. Poore, and C. J. Trammell. 1995. “Statistical Testing of Software Based on a Usage
Model.” Software - Practice and Experience 25(1):97–108.

Whittaker, J. A., and M. G. Thomason. 1994. “A Markov Chain Model for Statistical Software Testing.”
IEEE Transactions on Software Engineering 20(10):812-824.

AUTHOR BIOGRAPHIES

ANATOLI DJANATLIEV received a diploma in computer science in 2009. Currently he is a research
assistant at the Department of Computer Science, University of Erlangen-Nuremberg. His research inter-
ests include prospective assessments of health technology by simulation. His email address is ana-
toli.djanatliev@cs.fau.de.

WINFRIED DULZ received the MSc and PhD degrees from the Department of Computer Sciences,
University of Erlangen, in 1979 and 1989, respectively. Since 1981, he has been with the Computer Net-
works and Communication Systems Group at the University of Erlangen, where he is leading the Design
and Testing Group. His research interest is on statistical usage testing based on Markov chain usage mod-
els. Application domains have been in the automation, communication, medical and automotive areas. He

3670

Djanatliev, Dulz, German, and Schneider

was involved in several national and international scientific and industrial research projects and is a
member of the ACM. His e-mail is Winfried.Dulz@informatik.uni-erlangen.de.

REINHARD GERMAN received a diploma in computer science in 1991, the PhD degree in 1994, and
the habilitation degree in 2000 from the Computer Science Department, Technical University of Berlin.
Thereafter, he joined the Department of Computer Science at the University Erlangen-Nuremberg. First,
he was an associate professor (system simulation), then he became a full professor in 2004 (computer
networks and communication systems), served as head of the department and serves currently as dean of
the faculty of engineering. His research interests include performance and dependability analysis of net-
worked systems based on numerical analysis (Markovian and non-Markovian models, approximate analy-
sis of large models as well as network calculus), discrete event simulation, measurements, monitoring and
testing. Vehicular communications and autonomous sensor/actor networks constitute major application
domains. His e-mail is german@cs.fau.de.

VITALI SCHNEIDER received a diploma in computer science in 2009. Currently he is a research assis-
tant at the Department of Computer Science, University of Erlangen-Nuremberg. His research interests
include combination of simulation and testing methodologies.
His e-mail is vitali.schneider@cs.fau.de.

3671

