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ABSTRACT 

Rail simulation model calibration is a process of adjusting model parameters while comparing model out-
put with observations from the real rail system. There is a lack of systematic methodology for calibrating 
urban rail simulation models. Based on a simulator developed for urban rail operations and control, the 
paper demonstrates a methodology of calibrating model parameters, and specifically, fine-tuning some of 
the simulation inputs. The calibration process is modeled as a multi-variate optimization problem and 
solved by the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm. A case study of 
the Massachusetts Bay Transportation Authority (MBTA) Red Line shows that the methodology im-
proves the simulation model dramatically in terms of replicating the track block runtimes. At the same 
time, it upgrades the station specific dwell time parameters and enhances a-priori boarding rates at sta-
tions fairly effectively. 

1 INTRODUCTION 

An urban rail operations and control simulator consists of several individual models, which require a 
number of inputs as well as parameters (Koutsopoulos and Wang 2007). Models can be deterministic or 
stochastic. For example, passenger arrival is generally modeled as a stochastic process. Some models 
have analytical formulations, such as dwell time models, while others do not, like signal control logic, 
which is modeled as a discrete control depending on the occupancy of related track blocks. The simula-
tion model works as an integration of these interactive models, with their inputs and parameters, as shown 
in Figure 1 (Wang 2006). 

Parameters and inputs that are included by the simulation model fall into either the “gray” category 
(information is partially known) or “white” category (information is known and reliable). In order to 
make the simulator replicate the real behavior of the system, a number of model parameters and inputs 
which belong to the “gray” category require calibration. For example, the dwell time model for the simu-
lator could be developed based on small dwell time samples from a limited number of stations. Parameter 
values from such models provide valuable information; however, generalizing them as being applicable to 
all stations is not realistic. Station specific parameter values can then be determined through the calibra-
tion process. Another case is that the observations from the real system are collected under configurations 
(time, space or other specific conditions) that are not readily replicable by simulation. For example, for 
many urban rail systems, there are abundant observations of OCS (Operations Control System) runtimes 
generated every day, which are good measurements of the current system behavior. However, to get their 
equivalents from simulation for the purpose of comparing the simulated and observed behavior, the de-
mand when the observations were collected must be available as simulation input. This is under many cir-
cumstances impossible, or expensive to obtain. Using the known information to infer the demand through 
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the calibration process becomes an approach worth exploring, and in some cases, one of the most cost-
effective options. 

 
 

Figure 1: Components of a rail simulation model 

Calibrating the simulation model generally involves comparing the simulated system behavior with 
the equivalents of actual system observations. In order to do this, a set of measurements has to be defined 
based on the available observations from the real system and simulation output.  Data that can be used for 
this purpose include manually collected data and/or data recorded by OCS, which is available in many rail 
transit systems. 

2 MODEL FORMULATION 

The output SY  of a simulation model S is a function of true parameters P and input data I: 
 

 IPSY S ,                                                                                     (1) 

sY  is an estimate of the true system measurement Y. The goal of the calibration is to make sY  as 
close to Y as possible by adjusting parameters P, and in some cases, input I.  

The calibration of simulation model S is formulated as an optimization problem. The objective is to 

minimize the difference between Y and SY  while letting simulation parameters and input deviate from a-
priori values. The general form of the model can be formulated as 
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where S  is simulation model; Y and SY  are measurements collected from real system and measurements 

collected from simulation; aP and P are a-priori values for parameter and their estimated values during 

calibration; aI and I are simulation initial input (a-priori values) and estimated input during calibration; 

*l  and *u are lower and upper bounds allowed for related variable category *; iw are weights; and m, n, l 
are numbers of items included. 

3 ALGORITHM  

The above model is essentially a multivariate stochastic optimization problem. The general representation 
of this type of model is the minimization of the objective function (usually called a loss function) Z (θ) 
with respect to a set of parameters θ. The general approach to solving such problems is based on an itera-
tive process of searching for optimal parameter values. The search path is guided by the gradient meas-
urement associated with the loss function. 

The model is difficult to solve since it is simulation-based and hence, lacking a closed form solution. 
Thus direct gradient measurements are unavailable. However, there are algorithms that can solve such 
problems based on approximations to the gradient formed from measurements of the loss function. The 
general procedure of seeking the optimal solution θ* is based on the following updating function 

 
 kkkkk ga  1                                                                      (3) 

 
where  kkg  is the estimate of the gradient     Zg   at iteration k, and ka  is the step size at itera-
tion k. 

There are a number of Stochastic Approximation (SA) algorithms that can solve problems where only 
the approximation of the gradients is available. Examples of such algorithms include Finite-Difference 
SA (FDSA) and Simultaneous Perturbation SA (SPSA) algorithm. 

FDSA requires that each parameter k  be perturbed one at a time and corresponding measurements 
being evaluated. The gradient estimate is calculated by differencing the measurements, then dividing by 
the difference interval, used to form the perturbation. For example, for a two-sided differential FDSA, for 
each parameter i  (i = 1, 2 … p), the gradient estimate is calculated by 
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where ie denotes a vector with one in ith place and zero elsewhere, and kc  is a small positive number that 
becomes smaller as k, the number of iterations, increases. The calculation of the gradient vector requires 
2p function evaluations.  

Compared to FDSA, SPSA approximates the gradient  kkg  by randomly perturbing all the elements 
of k simultaneously to get two measurements of Z, while each individual gradient  kkg  is formed from 
a ratio involving that element and the difference between the two corresponding measurements. For two-
sided simultaneous perturbation, the gradient is approximated by 
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where  kpkkk  ,,, 21   is the random perturbation vector of dimension p, following a user speci-
fied distribution. 
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Spall (1998) reports that: “Under reasonably general conditions, SPSA and FDSA achieve the same 
level of statistical accuracy for a given number of iterations, even though SPSA uses p times fewer func-
tion evaluations than FDSA (because each gradient approximation uses only 1/p the number of evalua-
tions).” The mathematical rationale and experimental results can be seen in Spall (1998). As a result, the 
SPSA makes the calibration much more efficient than FDSA since it requires far less number of simula-
tion evaluations. The SPSA proceeds according to the following steps: 

1. Initialization. Assign initial values for SPSA parameters a, c, A, α and γ in order to calculate the 

gain sequences  kAak  and kcck / . Choose a-priori values of simulation parameters 
and input that are also included as subject of calibration, set number of iterations k = 0; set maxi-
mum number of iterations desired to perform Kmax; 

2. Evaluation of loss function. 
3. Generation of the perturbation vector. A Bernoulli 1 distribution with probability of 0.5 is used 

to generate a seed matrix for perturbation. To accommodate the different magnitudes of ki , the 

actual perturbation ki  is calculated as 
 

kikiki      (6) 
 
where ki  is the Bernoulli random number and is a constant (0 ≤ ρ ≤ 1); 

4. Gradient approximation. The simulation is run with parameters kkk c  , the gradient is calcu-
lated by 
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5. Updating θ.  kkkkk ga  1  
6. Convergence. Two convergence criteria are used to terminate the optimization: 

    )( klk ZZ or k = Kmax, where l is the number of iterations after iteration k during which 
the loss function changes less than a very small number ε. If neither of the 2 criteria is satisfied, 
go to 3, otherwise stop. 

4 CASE STUDY 

4.1 Line Characteristics 

The above methodology is applied in a simulation study on the Massachusetts Bay Transportation Au-
thority (MBTA)’s Red Line, which is simulated with a generic simulator - SimMETRO (Koutsopoulos 
and Wang 2007). 

The Red Line consists of a trunk part and 2 branches. The trunk part (Alewife to JFK) is 8.4 miles 
long and has 12 stations. After JFK, the Ashmont line is 3.4 miles long and Braintree line is 9.1miles long. 

The network under study consists of the one-way section of the Red Line from Alewife to South Sta-
tion. This section has 10 stations and runs two routes destined to Ashmont and Braintree, respectively 
(Figure 2).  

The simulator is calibrated to 4-6pm period. During which, train dispatching headways at Alewife are 
scheduled at 4 minutes, except for 4 pairs of trains having 3 minutes headways that start at 4:40pm, 
4:50pm, 5:00pm and 5:10pm respectively. In total, 15 Ashmont and 17 Braintree trains are scheduled; 
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with 2 pairs of consecutive Braintree trains scheduled starting at 4:43pm and 4:53pm. However, the actual 
dispatching headways during the afternoon peak have very high variability, ranging from less than 2 
minutes to more than 10 minutes, as shown in Figure 3. Given this, the dispatching headways are repre-
sented by an empirical distribution in the model calibration. 
 

 

Figure 2: The MBTA Red Line Network 
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Figure 3: Scheduled vs. actual dispatching headway at Alewife 

The Red Line has many sources of randomness both from the demand and supply sides, such as pas-
senger arrival, boarding and alighting behavior, vehicle variability, track conditions and OCS block time 
uncertainty, level of power supply variability, vehicle-track adhesion variability, operators’ behavior, in-
cidents, etc. These uncertainties are represented in the simulation model with respective level of stochas-
ticity (Wang 2006). 

4.2 Parameters and Input for Calibration 

4.2.1 Dwell Time Model Parameters 

The currently implemented dwell time model is Puong’s model(Puong 2000). It is developed based on 
small dwell time samples collected at Kendall and South Station. It is understandable that different sta-
tions may have different platform configurations and dwelling environments, thus the model parameters 
may not be universally applicable. Allowing model parameters to have some station specific freedom in 
calibration is necessary if different dwell models for different stations are not considered. 
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The model captures the dwell time by the following parameters: the constant C0, boarding time per 

passenger α, alighting time per passenger β, and crowding factor γ. 
The suggested values for dwell model parameters are given later in Table 1. These values are used as 

initial values and will be tuned during the calibration. 

4.2.2 Demand 

The 1997 CTPS (Central Transportation Planning Staff) count were the most reliable passenger demand 
data at the study.  

While the demand data is old; it contains valuable information, such as the split between routes, the 
relative magnitude of station demand, the fraction of alightings to the train load, etc. So, 1997 demand are 
good a-priori values to start with during the calibration process. 

4.3 Measurement 

OCS track occupancy times record the moments when trains enter and leave the block. Based on these 
moments, the duration for the train to cross the entry and exit points is called block runtimes. More gen-
erally, these times can be used to calculate the overall trip times for trains. The simulator mimics the en-
tering and exiting events and generates data that are comparable to OCS data. 

Since block runtime measures train movement on the block level, it is the most fundamental and de-
tailed measure to capturing system behavior. In addition, block runtimes for station blocks are good esti-
mates of dwell times which reflect demand levels; they are easy to extract from OCS records and simula-
tion output; and large enough samples are easy to obtain, thus facilitating the comparison between 
simulation and real system measurements. 

The OCS observations also show periodical differences in terms of block run times during 4-6pm pe-
riod, especially for blocks where station platforms are located. This is mainly due to the time-dependent 
characteristics of demand level and related train dispatching pattern. So, periodical block runtimes are 
used to capture the pattern. This is also consistent with the time-specific demand level and multi-period 
dispatching used in the calibration, as discussed before. 

4.4 Formulation for Red Line 

With the above selected input data and system measurements for calibration, the model is formulated for 
the Red Line as follows. 
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Where, sim

ijt  and OCS
ijt are simulated and OCS observed average block runtime within period i for block j; 

sim
ika and CTPS

ika are simulation estimated and CTPS counted passenger arrival rate during period i at station 
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k; sim
ikf and CTPS

ikf  are simulation estimated and CTPS counted passenger alighting fraction during period 

i at station k; sim
kc , sim

k , and sim
k  are simulation estimated dwell time model constant, boarding time per 

passenger, and alighting time per passenger at station k; mit
kc , mit

k and mit
k  are the dwell time model 

suggested constant, boarding time per passenger, and alighting time per passenger at station k; *
kl and 

*
ku are lower bound and upper bound for parameter * at station k; *w is the weight for item *; and S(*) is 

the simulation. 

4.5 Model solution 

4.5.1 Selection of Parameter Values 

A number of optimization model parameters need carefully selected values. These parameters include the 
SPSA algorithm parameters, the weights in objective function, and the lower and upper bounds for pa-
rameters to be calibrated. Finding the proper values for these parameters often needs quite a few test runs. 
Without elaborating on these parameters, either the optimization will not be able to reach the optimal, or 
the speed of convergence will be slow.  

Seeking the appropriate values for these model parameters is actually a process to calibrate the opti-
mization model itself, which is used to calibrate the simulator. There are efforts reported in the literature 
that provide general guidelines on how to choose SPSA model parameters, such as Spall (1998).  

The weights for objective functions are also very important for the performance of the model. 
Weights for the parameters not only reflect the relative confidence that each to-be-calibrated parameter 
deserves to be within the same category of parameters, but also play the role on trading off the contribu-
tions to objective functions among parameters of different categories. These weights drive calibrated pa-
rameters to move towards desired direction.  

Since there has not been a systematic approach to know what are the best values for these parameters 
and weights, trial and error were used to find relatively good set of values in terms of improving model 
performance.  The suggested values by literature are used as starting points (Spall 1998, Wang 2006). 

The bounds provide a solution space for the problem. They set constraints to parameters in terms of 
how far they can deviate from the a-priori values. They confine the optimization from reaching out to 
spaces that are not possible to contain the optimal solution based on the given information, thus reduce 
the computational effort. The actual scope of the bounds in many cases relies on judgment and confidence 
on the known information, and the performance of test runs. For example, if the test runs show that the 
bound for some parameter is constantly reached for many iterations, it means the bound might be reval-
ued to allow larger freedom. 

4.5.2 Objective Values  

The model was solved by SPSA algorithm. Figure 4 illustrates the change of the loss function with re-
spect to iterations. The objective values reduce quickly in the first few iterations then start bouncing with 
a general tendency of decreasing. As the number of iterations increases, the gain sequences of SPSA algo-
rithm become smaller thus the adjustments to the variables per step are smaller, and the oscillation of the 
objective function is less intensive, until it settles down at a certain level without changing too much for 
some consecutive iterations. The solution near this realm is taken as the optimal solution. 

4.5.3 Dwell Model Parameters  

Table 1 shows the calibrated dwell time model parameters. It can be seen that the constants for all the sta-
tions are larger than the initial values. This explains the possibility that Puong’s model could have missed 
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some source of dead time. The dead time captures all the time that is non-boarding and alighting related, 
including the time when trains stay still with door closed after boarding (which happens in a few cases). 
Note that Puong’s model used dwell time samples measured from the door open to door close time, which 
does not count the standing time after doors close. As expected, the dead time at Park station almost dou-
bled, since the operator has to open and close the door on both sides of the train, and move back and forth 
twice, and this takes some extra time. It indicates that the calibration picks-up these details and improves 
the model. 
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Figure 4: Convergence of objective function 

Table 1: Calibrated values for dwell model parameters 
 

Parameter C0 α β 
Puong’s model 12.52 2.27 1.82 
Davis 15.23 2.4 1.89 
Porter 13.61 2.09 1.84 
Harvard 18.12 2.04 1.83 
Central 16.71 2.29 1.77 
Kendal 13.91 2.34 1.83 
Charles 20.04 2.41 1.88 
Park 23.83 2.52 1.89 
Downtown 14.14 2.37 1.87 
South Station 17.4 2.34 1.83 

4.5.4 Passenger Demand 

In order to evaluate the effectiveness of the calibration, the estimated passenger arrival rates obtained 
from the calibration were compared to the actual arrival rates in 2004 at select stations for which such da-
ta was available.  Note that only the 1997 demand data rates were used for calibration (as a-priori values).  
The 2004 data was used exclusively for validation purposes after calibration. 

Figure 5 compares the calibrated arrival rates at the 4 stations for which data from 2004 is available.  
For each station arrival rates reported correspond to 30 min intervals for the 4–6 pm peak period.  The 
graph illustrates the a-priori values (1997), the actual values (2004), and the calibrated values for the peri-
od from 4–6 pm, in 30 min intervals.  The results indicate that the calibration estimates the actual arrival 
rates fairly well, especially for high demand stations. 
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Figure 5: Demand calibration 

4.5.5 Measurements 

In order to compare the effectiveness of calibration, before and after calibration system behavior meas-
urement comparisons are done.  Aimed at capturing the train movement and train-passenger interaction, 
train movement at block level, or more specifically, the run time distributions for all the blocks were 
compared. Most of the blocks gain significant improvement after the calibration, especially those that are 
sensitive to congestion and demand levels, like the station blocks where platforms are located. These 
blocks were divided into 4 half-hour period and compared directly between simulation and OCS values 
during the calibration, the final solution shows the averages for each period have improved significantly, 
as shown by Table 2, the differences between simulation and OCS were reduced substantially after cali-
bration (the values in brackets are after-calibration differences). 

Table 2: Station block runtime difference: OCS vs. simulation (sec.) 
 

Location 4:00-4:30 4:30-5:00 5:00-5:30 5:30-6:00 
Davis -8.1(-2.7) -4.3( 0.0) -7.8(-2.0) -7.5(-2.8) 
Porter -2.8(-0.2) +0.8(-0.3) -2.2(-0.5) -5.9(-1.4) 
Harvard -9.7(+0.8) -5.5(-0.6) -3.2(-0.7) -4.4(-1.6) 
Central -3.2(+1.3) -5.2(+0.3) -6.7(+3.0) -5.0( 0.0) 
Kendall -7.6(-0.4) -4.8(-1.4) -7.8(+1.6) -1.9(-1.6) 
Charles -14.3( 0.0) -15.0(+0.4) -2.2(+0.7) -19.0(-2.5) 
Park -32.8(-2.9) -11.0(-0.3) -3.2(+3.4) -1.9(-1.3) 
Downtown -9.3(+0.9) -3.6(+1.1) 0.0(+2.1) +2.0(+1.5) 
South Station -11.7(-3.8) -6.7(-0.6) +9.7(+3.4) +13.7(-0.2) 

 
Two hour aggregation is also compared for all blocks before and after calibration. The comparison 

shows that the improvement is considerable. It can be seen clearly from Figure 6 that before calibration, 
most of the blocks with high runtime values, which are all station blocks or blocks where congestion oc-
curs, are underestimated, while the blocks with small runtime values, which are in most cases less fre-
quently impacted by congestion, are estimated very well. This infers that free-run train movement is bet-
ter captured than that with dwell time and congestion. 
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Figure 6: Block runtime before and after calibration 

5 CONCLUSION 

Urban rail operations and control simulators are valuable tools for system evaluation. Calibration is one 
of the key steps for a simulator to be useful. An operations and control simulator is usually integrated 
with several stochastic models, and involves a number of inputs and parameters, which are difficult to 
calibrate without a systematic methodology. Based on a simulation done with SimMETRO, a calibration 
process is developed and solved by SPSA method. It provides not only an approach to systematically ad-
just the model parameters, but also fine-tuning the simulation input that are not strictly reliable, such as a-
priori passenger demand. The study shows that the calibration process improves the parameters and re-
fines the input, in some cases, significantly. The measurements comparisons done before and after cali-
bration show that the simulator behaves more closely to the actual system observations with relatively 
small computational effort. This proves that the method is sound and the algorithm is efficient. 
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