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ABSTRACT

Model building is time-consuming and requires expertise in different areas. In this paper, we propose a data-
driven approach for automatic model generation using pre-built and validated model components (or building
blocks). We view this approach as an automated reuse of model components. Issues such as modularity and
composability of model components are addressed. Models can be generated by automatically selecting,
structuring and configuring the model components. The formulated rules can be structural and behavioral,
by which a relational representation of the desired model composite structure is incrementally constructed.
An example of generating a rail network model is given to demonstrate the steps.

1 INTRODUCTION

Building a valid simulation model is time intensive. It is a highly specialized activity which often necessitates
expertise in different areas. It is challenging to build valid and efficient models given the complexity and
scale of systems to be modeled nowadays. Having enriched the knowledge base of modeling and simulation
(M&S), simulationists start to consider issues related to automatic model generation (AMG). AMG renders
simulation studies more efficient and effective. This does not only improve the process of simulation itself
but also better integrates simulation with its applications, such as simulation-based design, engineering,
training, etc.

Many AMG attempts used formal model specifications as the basis for simulation model (or code)
generation (Balci et al. 1990, Kang 1997, Son et al. 2000, Son et al. 2003, Posse and Bolduc 2003, Foeken
and Voskuijl 2010). The formal specification could be in the form of inter alia a specification language, a
meta-model or their graphical representations.

Some recent works are inclined to data integration (Randell and Bolmsjö 2001, Shephard et al. 2004,
Jeong and Allan 2004, Lucko et al. 2010). The goal is set to generate simulation models directly from
external data sources using data structuring and analysis algorithms for creating and configuring the model.
Hence such an approach is also referred to as being data-driven (Huang and Verbraeck 2009, Bergmann
and Strassburger 2010). According to Bergmann and Strassburger (2010), approaches of (semi-) AMG can
be classified into three main categories:

1. Parametric approaches: Models are generated based on existing simulation building blocks (stored
in simulation libraries) which are selected and configured based on parameters.
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2. Structural approaches: Model generation is based on data describing the structure and layout of
a system, typically from relevant computer aided design (CAD) and computer aided engineering
(CAE) systems.

3. Hybrid-knowledge-based approaches: These approaches combine artificial intelligence (AI) methods
(e.g. expert systems and neuronal nets) with both of the above approaches.

Component-based modeling (or component-based software in general) and its advantages are extensively
discussed in literature. It is founded on a paradigm which is common to all engineering disciplines: complex
systems can be obtained by assembling components (building blocks), e.g. see Simon (1996)’s parable of
the two watchmakers; composition is used to build complex components from simpler ones (Gössler and
Sifakis 2005). A complex system can be recursively decomposed into sub-systems until an elementary
level is reached, where a sub-system can no longer be reduced; the criterion for reduction is functionality
(Simon 1996). Such a decomposition (or composition if we observe it bottom-up rather than top-down)
forms the system and the model of the system into a hierarchal structure.

The behavior of a model component is determined by the collective behavior of its sub-components,
and varying the composite structure of a component can alter the behavior of that component. In other
words, component-based modeling requires not only the information about what components the model is
composed of, but also the information about the model composite structure. If both types of information
can be obtained directly or indirectly from available data sources, it is feasible to develop a fully automated
model generator. With this approach, simulation models are generated by the composite of pre-built and
validated model components using data structuring and analysis methods and techniques. In this case,
sufficient data sources are required but not formal model specifications.

The authors argue that using data is preferable in many cases than model specifications for the following
reasons. First, defining model specification takes considerable time for large-scale models and requires
personnel that have proficiency in using the specification. Second, as CAD systems are more frequently
employed in recent years, design data are often available for use; and similarly, the advances in data collection
and storage technology enabled many organizations and institutions to accumulate a large amount of data.
Third, large-scale models are often built for systems that have long life cycles. Although developing a
model component library inevitably introduces great complexity and cost, it is still beneficial in terms of
model reuse and modification in a long term perspective. Additionally, fully automated model generation
using pre-built and validated model components can minimize errors caused during model specification.
If successfully designed and implemented, AMG could make it easier to integrate M&S into the design,
operation, and control processes of a system.

This paper discusses such a data-driven approach for component-based model generation. It addresses
the principles of model component design and how model generation may be approached by analyzing the
data. An example of generating a simulation model of a rail transport network is given to illustrate how
each part/step of the AMG is completed.

2 PRINCIPLES OF MODEL COMPONENT DESIGN

Parasuraman and Riley (1997) defines automation as the execution by a machine agent (usually a computer)
of a function that was previously carried out by a human. The AMG described in this paper is the automated
reuse of model components. This approach proposes to generate models (re-)using a library of (pre-build
and validated) model components based on the analysis of the available data sources. Therefore, the first
step is to develop a model component library that is suitable for automated reuse. Developing simulation
models that are intended for reuse shows many similarities with software engineering development (Pidd and
Robinson 2007). The goals and qualities of software design (Sommerville 1996, Braude and Bernstein 2010),
such as sufficiency, understandability, modularity, cohesion, coupling, robustness, flexibility, reusability,
information hiding, efficiency and reliability, can be equally applied to simulation model design. However,
model component design has its own focuses.
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Model components are sometimes termed as model building blocks (MBBs) (Valentin and Verbraeck
2002, Verbraeck and Valentin 2008). According to Verbraeck et al. (2002), a building block is a self-
contained, interoperable, reusable and replaceable unit that encapsulates its internal structure and provides
useful services to its environment through precisely defined interfaces. Model components or MBBs are
the basic units in constructing simulation models. Therefore, if a MBB could represent a distinct physical
phenomena, a logical process, a method, etc., as how it is distinguished in real life, the modelers and domain
experts could easily identify and allocate the components to populate larger models. In this way, domain
specificity and knowledge are integrated into the model by the identification, terminology and behavior of
MBBs (Valentin and Verbraeck 2002).

Over-sizing or under-sizing MBBs can be avoided by dividing them according to core functionalities.
The criteria used to do so are in some cases obvious or intuitive, in others domain expertise has to be
consulted. Questions such as “is it likely that model users need to change some functionalities of the
model” shall be asked during the design process.

The essence in designing components is composability. Composability is the capability to select and
assemble simulation components in various combinations into valid simulation systems to satisfy specific
user requirements (Petty and Weisel 2003). According to Simon (1996)’s near decomposability concept (a
property of complex systems), (1) the interactions between sub-systems in a complex system are weaker
than the interactions within them, and (2) each sub-system in a decomposed system is almost autonomous,
i.e., each has independent functionality but still provides value to the overall system by maintaining a weak
connection with it. From a modeling perspective, near decomposability or composability of model can be
achieved through the modularity of its components.

Port-based modeling is proposed in many M&S literature for its modular principles, e.g., Zeigler et al.
(2000), Paredis et al. (2001), Liang and Paredis (2004), Breedveld (2009). The interface of a port-based
model (PBM) consists of input and output ports, through which all interactions with the environment occurs.
The interactive relations are represented by couplings (sometimes also called connections or bonds). The
model can place a value on one of its ports, but the actual destination of the output is not determined until
the model becomes a component in a larger model and the coupling relation is specified; therefore, a PBM
can (1) be developed as a stand-alone unit, (2) be placed in a model repository and reactivated at will,
and (3) be reused in any context in which its behavior is appropriate and coupling to other components
makes sense (Zeigler et al. 2000). The model interacts with its environment only via its ports; thereby,
direct dependencies between components are eliminated (Röhl and Morgenstern 2007). For these reasons,
we consider port-based modeling and its principles adequate for model component design, as they fulfill
Simon (1996)’s near decomposability concept.

In our research, the Discrete Event System Specification (DEVS), a formalism for port-based modeling
defined by Zeigler et al. (2000), is used to specify the model components. In the DEVS formalism, sub-
systems at an elementary level (that can no longer be reduced according to certain criteria) are represented
by atomic models and sub-systems at higher levels are represented by coupled models; see Zeigler et al.
(2000). Take rail network modeling, for instance, the atomic models can be rail vehicles, track segments,
sensors, signals, etc. Each has dedicated ports for information exchange. The coupled models are stations,
intersections, block systems, etc., each of which is composed of atomic models or smaller coupled models.

In general, the model component development process follows the conventional M&S process. However,
as the development of model component is intended for reuse during design and test, the modeler shall place
more emphasis on model decomposition strategies, and the modularity and composability of individual
component to enable the automation of the reuse process.

3 MODEL COMPOSITE AND HIERARCHY

Structural composition as a model generation strategy is powerful because it links to the essence of design as
understood in system theoretical terms. In Zeigler et al. (2000), system design is understood as the process
of going from a lower to a higher level of system epistemology, namely from the level of the generative (or
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lower order structure) systems to that of a higher order structure system. The designer uses components,
with the knowledge of their inner structure and behavior as his or her basic vocabulary, and connects them
within new structures, encoding new knowledge that was not available in the previous step. The result of
this design activity can in turn be analyzed by simulating it, which corresponds to automatically translating
the structure system to a data system. Following the concept of closure under coupling, defined in Zeigler
et al. (2000), the resultant of the coupling of DEVS models is also a DEVS model, making it possible to
incrementally develop a hierarchy of more and more complex model components, whose patterns of state
changes could not have been specified all at once. Furthermore, the hierarchical composition of models
makes it possible to separate the different levels of organization which are relevant for system analysis.
This makes model understanding easier as long as the world view guiding the component library definition
coincides with the world view of the end users. There is, however, a challenge in hierarchical composition
of models. First, a model library must be developed and this development process follows a top-down
hierarchical decomposition of the system, in order to identify the different entities relevant in the domain
of application. Such a decomposition is done according to a certain functional perspective, which per
definition excludes many aspects of the system of interest. This will result in a component that cannot be
used to assemble a useful model in some other context. This must be strongly communicated to the end
users of the model library. An advantage of a data driven AMG is that it ensure the model components
will be used in accordance with the pragmatic frame that led to their development, since the process of
component selection and structuring is automated and beyond the reach of the user.

4 AUTOMATIC MODEL GENERATION

As mentioned earlier, once developed and validated, a model component library integrates domain specificity
and knowledge by the identification, terminology and behavior of the model components. When we, as
human modeler, want to construct a larger model from model components, we need to know (1) what
components to use, and (2) how to configure and structure them together. For the automated process, the
same information is required.

AMG is centered on a model generation algorithm (MGA) that constructs models from selecting,
configuring and structuring the components. Model selection heuristics, that represent domain knowledge
of whether the component is relevant to a modeling goal, are used to guide the search and composite of
the applicable components (Lee and Zobel 1996). They are useful for defining the inferential rules of the
model composite algorithm. Applicability conditions are the formulated rules of selecting, configuring and
eventually structuring a model component. There are two kinds of applicability conditions as stated by
Gruber (1993): structural preconditions and behavioral preconditions.

1. Structural preconditions are used to associate model components with objects that are given in the
initial structure of the modeled system.In the simplest cases, model components can be directly
associated with real (existing) components. Structural preconditions are also used for identifying
structural abstractions, i.e., model composite relations.

2. Behavioral preconditions state the required dynamic conditions under which a model component
applies or shall be configured. They are used to determine which or whether certain model
behavior will occur. Behavioral preconditions also can be used for identifying dynamic structural
abstractions. During simulation experiments, behavioral preconditions may change so that some
model components need to be removed, replaced, reconfigured or restructured.

In principle, if the applicability conditions of a model component hold, then the component will be
selected, configured and structured accordingly. The information needed by the MGA to infer sufficient
applicability conditions is derived from the available data sources. In some cases, if the modeled system
has a simple structure, the model can be directly generated. However, in many cases, the system is complex
and the data sources that describe the system do not contain a structure and relational logic that can be
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Figure 1: Component-based model generation with a data-driven approach.

directly applied to the desired model structure and to create the coupling relations. Therefore, intermediate
data structures are often employed to incrementally construct a relational representation of the model
(component) structure.

Figure 1 shows how data are utilized in the context of AMG. The scope of our research covers two parts.
The first is to use data and model components for AMG. The second part is to analyze the simulation output
in comparison with the available data in order to perform automatic model calibration (AMC). The data of
these two parts are of different nature. For AMG, the data analysis results shall reflect the structural and
behavioral preconditions that are the basis for constructing the (initial) model structure and initializing the
model state. These data come from design, process planning, operational scheduling, resource allocation,
etc. In AMC, the model is adjusted in an iterative process where the data from the real system and the
simulation output data are compared and analyzed. The analysis may detect divergences that are caused by
behavioral preconditions which are not possible to discover during the AMG process, because the source
of the behavioral preconditions is not observed or is not observable from the real system so that there are
not direct data sources that could reflect such behavioral preconditions. The data used in AMC is typically
collected during the operation of the real system. In this paper we focus on AMG but not AMC.

5 DATA SOURCES AND KNOWLEDGE DISCOVERY FOR MODEL GENERATION

The advance of computer aided technologies (such as computer aided design and engineering, enterprise
resource planning, manufacturing process management) together with the rise of data collection technology
and inexpensive storage media in recent years have enabled organizations to accumulate a vast amount of data
(Tan et al. 2005). For AMG, data are useful if they contain information about model component selection,
initialization and structuring so that a complete model can be built which satisfies user requirements.
Relevant data sources typically contain information with the following categories.

• Data describing geomatics, geometry or topology of a system or sub-systems.
• Data describing orders or demands.
• Data describing resources.
• Data describing operations or processes.
• Data describing products or services.

Depending on the application domain, different types of data can be of value for AMG. They can
be gathered during the design phase (such as CAD data), planning phase (such as crew and resource
scheduling), operation phase (such as data collected by sensors), etc. Simulation data (from other models)
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may be an additional source if the results are credible. In public transport simulation, for example, the
results from road traffic simulation (of private road transport) are often used as inputs to study the mutual
influence between them. Because the data are not produced for the purpose of model building, often a few
steps need to be completed in order to generate models from these data sources. In this regard, the concepts
and techniques of data mining are applicable, as the “Automatic Model Generation” box in Figure 1 can
be seen as knowledge discovery, i.e., data⇒knowledge⇒model. The knowledge needed is a composite
structure graph by which the available model components can be directly mapped and coupled.

The terms of data mining (DM) and knowledge discovery in database (KDD) are sometimes used
interchangeably. Nonetheless, the former is a step of the latter. KDD is the overall process of converting
data into knowledge. The process includes data selection, preprocessing, data mining and data pattern
postprocessing (Fayyad et al. 1996). Data preprocessing includes activities such as data cleaning, nor-
malization, aggregation, subsetting, and transformation (Tan et al. 2005, Kononenko and Kukar 2007).
The Industrial Standard Process for Data Mining (Chapman et al. 2000 or www.crisp-dm.org) provides a
reference of different phases in data mining projects, their respective tasks and relationships. And many
literatures discuse the theory, tasks, methods and techniques of DM, e.g., Kleinberg et al. (1998), Hand
et al. (2001), Coppi (2002), Han and Kamber (2005), Tan et al. (2005), Sumathi and Sivanandam (2006),
Kononenko and Kukar (2007). In the next section we will explain by means of an example how information
for AMG may be extracted from the data.

6 AN AMG EXAMPLE

Figure 2 shows a generated simulation model of the tram network in The Hague, The Netherlands. The
network covers over 150 km2 with 14 tram lines, 135 km tracks and 539 stops. A rail simulation model
component library called LIBROS (Huang et al. 2010, Huang et al. 2011) is first developed according to
the principles and concepts discussed in Section 2 and 3. Based on our experience, manually constructing
such a large model could be problematic because of the long time needed (5∼6 weeks per 10 km) and the
risk of errors. The data used for AGM in this example are: (1) CAD data which describe the blueprint of
the rail tracks and stop locations, (2) timetables that schedule the tram services, (3) service configurations

Figure 2: The Hague tram network model.
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Figure 3: From CAD objects to model structure: an example.

that define the routes of the tram lines, (4) vehicle types that are used for the tram lines, and (5) line
transformation data that specify the locations where one line may change to another.

CAD data can provide useful structural information. However, they only contain a list of geometric
primitives that describe each object (Flynn and Jain 1991). Geometric inference is needed to identify
and recognize the objects and object relations and represent them in data structures that could be easily
translated into model structures. This step is often complex and needs to be divided it into a number
of sub-steps that incrementally construct the desired (hierarchical) model structure. Figure 3 shows an
example of the steps. (a) is a fraction of the rail infrastructure representing the infrastructure blueprint by
means of CAD data. Each line and arc object represents a rail track segment that contains information
about its geometry, but there is no orientation or connectivity information. (By orientation we mean that
the track segments in the model shall indicate the direction of the traffic current.) These information are
obtained first through traversing the whole rail network (graph traversal) starting from the sources where
the vehicles are generated, i.e., at the terminal stations. (b) shows the result of this step. Each track segment
becomes a vectorial object being indexed by another and represented in a directed graph data structure. In
(c) the point locations (indicated by “x” in the figure) are detected where more than two track segments
connect. At the same time, the point type is determined (diverging points are the ones with 1 in track and
2 out tracks; diverging contrariwise; crossing points are the ones with 2 in tracks and 2 out tracks but one
direction does not interfere with the other). These points are inserted into the graph structure. (They are
not objects in the CAD data but are a part of the simulation model.)
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Figure 4: The model composite structure tree: an example.

Based on the type of the points, their position and connectivity, we can determine different patterns of
intersections. In the example, each of I∼IV and VI consists of 1 converging point, 1 crossing point and 1
diverging point. These points are positioned in a specific way and together with the tracks they form a “Y”
shape. V has a square shape where 4 crossing points are connected next to each other. These points and
the related track segments are aggregated, as shown in (d), and node transformations in the graph structure
are performed at this step. The nodes of (c) are the points, whereas the nodes of (d) are the groups of I∼VI
each of which contains a sub-graph. In (d) a second-order node transformation is performed by which
II∼VI are aggregated to VII, forming a “butterfly” shape.

The model composite structure insofar is illustrated in Figure 4. Under the top level infrastructure (the
root VIII) as in the example, there are 2 aggregation I and VII, the “Y” intersection and the “butterfly”
intersection. Both have corresponding (coupled) model components in the LIBROS library. The composite
members are used to configure and couple the model components at model generation stage. Additionally,
control units are instantiated in coupled models when appropriate. In the example, each intersection has a
control unit that monitors the correct operation of that intersection. (This is a part of the model component
itself.) Service configuration data are used to configure the routes so that the points can switch to the
correct position for the vehicles moving along the right route. The generated infrastructure model is shown
in (f) which is a fraction of the model in Figure 2.

Stations, block sections and the other types of intersections are generated in a similar way. For example,
a station occupies a certain length of track whose starting point is indicated in the CAD data. The timetable
data of that station are also loaded into the model of that station for modeling and statistics purposes.
Vehicles are generated at terminal stations according to the scheduled services.

7 CONCLUSIONS AND FUTURE WORK

This paper discussed component-based model generation with a data-driven approach. As many organizations
possess a large amount of data, using them more efficiently and effectively in simulation studies could not
only improve the quality of simulation itself but also better integrate simulation with its applications, such
as simulation-based design, simulation-based engineering, simulation-based training, etc. Based on the
experience in developing simulation model building blocks and using different data sources in generating
large-scale rail network models, we high-lighted and clarified a couple of issues in model component
design and automatic model generation, such as the modularity, the composability and the incremental
construction of model composite structure. We also gave an example of automated generation of a rail
network model using available data sources. Future research will focus on automatic model calibration.
Different data analysis methods and techniques will be investigated to estimate the model parameters.
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