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ABSTRACT

We consider the problem of efficient simulation estimation of the density function at the tails, and the
probability of large deviations for an average of independent, identically distributed light-tailed random
variables. The latter problem has been extensively studied in literature where state independent exponential
twisting based importance sampling has been shown to be asymptotically efficient and a more nuanced
state dependent exponential twisting has been shown to have a stronger bounded relative error property. We
exploit the saddle-point based representations that exist for these rare quantities, which rely on inverting
the characteristic functions of the underlying random variables. We note that these representations reduce
the rare event estimation problem to evaluating certain integrals, which may via importance sampling be
represented as expectations. Further, it is easy to identify and approximate the zero-variance importance
sampling distribution to estimate these integrals. We identify such approximating importance sampling
measures and argue that they possess the asymptotically vanishing relative error property.

1 INTRODUCTION

Let (Xi : i≥ 1) denote a sequence of independent, identically distributed (iid) light tailed random variables
(their moment generating function is finite in a neighborhood of zero) taking values in ℜ. In this paper we
consider the problem of efficient simulation estimation of the probability density function of X̄n =

1
n ∑

n
i=1 Xi

at points away from EXi, and the tail probability P(X̄n ≥ x̄) for x̄ > EXi.
The problem of efficient simulation estimation of the tail probability density function has not been

studied in the literature. The problem of efficiently estimating P(X̄n ≥ x̄) via importance sampling, besides
being of independent importance, may also be considered a building block for more complex problems
involving many streams of i.i.d. random variables (see, for e.g., Parekh and Walrand (1989), for a queueing
application; Glasserman and Li (2005) for applications in credit risk modeling). This problem has been
extensively studied in rare event simulation literature (see, for e.g., Sadowsky and Bucklew (1990), Sadowsky
(1996), Glasserman and Wang (1997), Blanchet et al. (2009), Dieker and Mandjes (2005), Glasserman and
Juneja (2008)).

In this article, we build upon the well known saddle point based representations for the probability
density function of X̄n (see, e.g., Jensen (1995), Butler (2007)). Furthermore, using Parseval’s relation,
similar representations for P(X̄n ≥ x̄). These representations allow us to write the quantity of interest αn
as a product cn×βn where cn ∼ αn (that is, cn/αn→ 1 as n→ ∞) and is known in closed form. So the
problem of interest is estimation of βn, which is an integral of a known function. Note that βn→ 1 as
n→ ∞. In the literature, asymptotic expansions exist for βn, however they require computation of third
and higher order derivatives of the log-moment generating function of Xi. This is particularly difficult in
higher dimensions. In addition, it is difficult to control the bias in such approximations. In Dey and Juneja
(2011) we further extend our analysis to allow X ′i s to take values in a multi-dimension Euclidean space.
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We note that the integral βn can be expressed as an expectation of a random variable using importance
sampling. Furthermore, the zero variance estimator for this expectation is easily ascertained. We approximate
this estimator by an implementable importance sampling distribution and prove that the resulting unbiased
estimator of αn has the desirable asymptotically vanishing relative error property. More tangibly, the
estimator of the integral βn has the property that its variance converges to zero as n→ ∞.

The organization of this paper is as follows: In Section 2 we briefly review the popular performance
evaluation measures used in rare event simulation, and the existing literature on estimating P(X̄n ≥ x̄).
Then, in Section 3, we develop an importance sampling estimator for the density of X̄n and show that it has
asymptotically vanishing relative error. In Section 4, we devise an integral representation for P(X̄n ≥ x̄)
and develop an importance sampling estimator for it and again argue that it has asymptotically vanishing
relative error. We end with a small numerical experiment in Section 5.

2 RARE EVENT SIMULATION, A BRIEF REVIEW

Let αn = EnYn =
∫

YndPn be a sequence of rare event expectations in the sense that αn→ 0 as n→ ∞, for
non-negative random variables (Yn : n ≥ 1). Here, En is the expectation operator under Pn. For example,
when αn = P(Bn), Yn corresponds to the indicator of the event Bn.

Importance sampling involves expressing αn =
∫

YnLndP̃n = Ẽn[YnLn], where P̃n is another probability
measure such that Pn is absolutely continuous w.r.t. P̃n, with Ln = dPn

dP̃n
denoting the associated Radon-

Nikodym derivative, or the likelihood ratio, and Ẽn is the expectation operator under P̃n. The importance
sampling unbiased estimator α̂n of αn is obtained by taking an average of generated iid samples of YnLn
under P̃n. Note that by setting

dP̃n =
Yn

En(Yn)
dPn

the simulation output YnLn is En(Yn) almost surely, signifying that such a P̃n provides a zero variance
estimator for αn.

2.1 Popular Performance Measures

The relative width of the confidence interval obtained using the central limit theorem approximation is
proportional to the ratio of the standard deviation of the estimator divided by its mean. Therefore, the latter
is a good measure of efficiency of the estimator. Note that under naive simulation, when Yn = I(Bn) (for
any set D, I(D) denotes its indicator), the standard deviation of each sample of simulation output equals√

αn(1−αn) so that when divided by αn, the ratio increases to infinity as αn→ 0.
Below we list some criteria that are popular in evaluating the efficacy of the proposed importance

sampling estimator (see Asmussen and Glynn (2008)). Here, Var(α̂n) denotes the variance of the estimator
α̂n under the appropriate importance sampling measure.

A given sequence of estimators (α̂n : n≥ 1) for quantities (αn : n≥ 1) is said

• to be weakly efficient or asymptotically efficient if

limsup
n→∞

√
Var(α̂n)

α
1−ε
n

< ∞

for all ε > 0;
• to be strongly efficient, or to have bounded relative error if

limsup
n→∞

√
Var(α̂n)

αn
< ∞;
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• to have asymptotically vanishing relative error if

lim
n→∞

√
Var(α̂n)

αn
= 0.

2.2 Literature Review

Recall that (Xi : i≥ 1) denote a sequence of independent, identically distributed light tailed random vectors
taking values in ℜ. Let F(·) denote the distribution function of Xi. Denote its moment generating function
by M(·), so that

M(θ) := E
[
eθX1

]
.

The characteristic function (CF) of Xi is given by

ϕ(θ) := E
[
eιθX1

]
where θ ∈ℜ and ι =

√
−1.

Let Λ(θ) := lnM(θ) denote the cummulant generating function (CGF) of Xi. Define Θ to be the
effective domain of M(θ), that is

Θ := {θ ∈ℜ|Λ(θ)< ∞} .

Throughout this article we assume that 0 ∈Θo, the interior of Θ, so that (Xi : i≥ 1) are light tailed.
Now consider the problem of estimating P(X̄n ≥ x̄), for x̄ > EXi. Let θ ∗ solve

Λ
′(θ) = x̄.

(Here, Λ′ denotes the gradient of Λ). Throughout the paper we further assume that such a θ ∗ ∈Θo exists.
For θ ∈Θo, let

dFθ (x) = exp(θx−Λ(θ))dF(x)

denote the exponentially twisted distribution associated with F when the twisting factor equals θ .
For estimating P(X̄n ≥ x̄), Sadowsky and Bucklew (1990) propose an importance sampling distribution

under which each Xi is iid with the new distribution Fθ ∗ . Then, they prove that under this importance
sampling distribution, the resulting estimator of P(X̄n ≥ x̄) is weakly efficient. See Asmussen and Glynn
(2008) and Juneja and Shahabuddin (2006) for a sense in which this distribution approximates the zero
variance estimator for P(X̄n ≥ x̄). Since, Λ′(θ ∗) = x̄, it is easy to see that under the exponentially twisted
distribution Fθ ∗ , each Xi has mean x̄.

As mentioned in the introduction, Blanchet et al. (2009) consider a variant importance sampling
measure where the distribution of X j depends on the generated (X1, . . . ,X j−1). Modulo some technical
conditions, they choose an exponentially twisted distribution to generate X j so that its mean under the new
distribution equals 1

n− j+1(nx̄−∑
j−1
i=1 Xi). They prove that the resulting estimator is strongly efficient.

Later in Section 5, we compare the performance of the proposed algorithm to the one based on
exponential twisting proposed by Sadowsky and Bucklew (1990).

3 EFFICIENT ESTIMATION OF PROBABILITY DENSITY FUNCTION OF X̄n

In this section we first develop a well known saddlepoint based representation for the probability density
function (pdf) of X̄n in Proposition 1 (see, e.g., Jensen (1995), Butler (2007)). We then develop an
approximation to the zero variance estimator for this pdf. Our main result is Theorem 1, which states that
the proposed estimator has asymptotically vanishing relative error.

Some notation is needed in our analysis. Let Λ′′(θ) denote the second derivative of Λ(θ) for θ ∈Θo.
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Proposition 1 Suppose Λ′′(θ) is strictly positive for some θ ∈ Θo. Furthermore, suppose that |ϕ|γ is
integrable for some γ ≥ 1. Then fn , the density function of X̄ , exists for all n ≥ γ and its value at any
point x̄ is given by:

fn(x̄) =
√

n
2π

exp [n{Λ(θ)−θ x̄}]√
Λ′′(θ)

∫
v∈ℜ

ψ

(
n−

1
2 Λ
′′(θ)−

1
2 v,θ ,n

)
×φ(v)dv, (1)

where
ψ(y,θ ,n) = exp [n×η(y,θ)]

and
η(y,θ) =

1
2

Λ
′′(θ)y2 +Λ(θ + ιy)− (θ + ιy)x̄−Λ(θ)+θ x̄.

The proof of Proposition (1) follows from Cauchy’s theorem for analytic functions of complex variables.
See for example Daniels (1954).

Expansion of the integral in (1) is available (see Jensen (1995)). For example, the following is
well-known (recall that θ ∗ solves the equation Λ′(θ) = x̄):
Proposition 2 Under conditions outlined in Proposition 1,∫

v∈ℜ

ψ

(
n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗,n

)
×φ(v)dv = 1+o

(
1√
n

)
.

A proof of Proposition 2 can be found in Jensen (1995). We also present a proof after we state Theorem
1, as this proof requires analysis that may be used with minor variations to prove Theorem 1.

3.1 Monte Carlo Estimation

We propose to estimate the integral in (1) by Monte-Carlo simulation. Specifically, we write it as∫
v∈ℜ

ψ

(
n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗,n

)
φ(v)
g(v)

g(v)dv

where g(v) is a density supported on ℜ. Now if V1,V2, . . . ,VN are iid with distribution given by the density
g, then the estimator given by

f̂n(x̄) :=
( n

2π

) 1
2 exp [n{Λ(θ ∗)−θ ∗x̄}]√

Λ′′(θ ∗)

1
N

N

∑
i=1

ψ

(
n−

1
2 Λ′′(θ ∗)−

1
2 v,θ ∗,n

)
φ(Vi)

g(Vi)

is an unbiased estimator for fn(x̄).

3.1.1 Approximating the Zero Variance Estimator

Note that to get a zero variance estimator for this estimator we need

g(v)∝ ψ

(
n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗,n

)
φ(v).

We now argue that
ψ

(
n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗,n

)
∼ 1 (2)

for all v = o(n
1
6 ). We may then select an IS g that is asymptotically similar to φ for v = o(n

1
6 ). In the

further tails, we allow g to have fatter power law tails to ensure that large values of V in the simulation
do not contribute substantially to the variance. To see (2), we need further analysis.
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Note that from definition of η(v,θ) it easily follows that

η(0,θ) = 0, η
′′(0,θ) = 0 and η

′′′(v,θ) = (ι)3
Λ
′′′(θ + ιv) (3)

for all θ , while
η
′(0,θ ∗) = 0 (4)

for a saddle point θ ∗ (i.e., Λ′(θ ∗) = x̄). Here η ′ , η ′′ and η ′′′ are the first, second and third derivatives of
η w.r.t. the second argument v, with the first argument θ held fixed.

Since η ′′′ is continuous, it follows from the three term Taylor series expansion,

η(v,θ) = η(0,θ)+η
′(0,θ)v+

1
2

η
′′(0,θ)v2 +

1
6

η
′′′(ṽ,θ)v3 ,

(where ṽ≤ |v|) (3) and (4) above, that for any given ε we can choose δ1 small enough so that

|η(v,θ ∗)− 1
3!

η
′′′(0,θ ∗)v3| ≤ ε(Λ′′(θ ∗))

3
2 |v|3 for |v|< δ1.

Equivalently,

|η(v,θ ∗)− 1
3!

Λ
′′′(θ ∗)(ιv)3| ≤ ε(Λ′′(θ)∗)

3
2 |v|3 for |v|< δ1. (5)

We choose δ1 so that we also have for |v|< δ1:∣∣∣∣ 1
3!

Λ
′′′(θ ∗)(ιv)3

∣∣∣∣< 1
8

Λ
′′(θ ∗)|v|2, (6)

and
|η(v,θ ∗)|< 1

8
Λ
′′(θ ∗)|v|2. (7)

Now, since

ψ

(
n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗,n

)
= exp

{
nη

(
n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗

)}
= exp

{
n
6

Λ
′′′
(

θ
∗+ ιn−

1
2 Λ
′′(θ ∗)−

1
2 ṽ
)(

n−
1
2 Λ
′′(θ ∗)−

1
2 ιv
)3
}
,

where ṽ is between v and the origin, continuity of Λ′′′ in the neighborhood of θ ∗ implies (2).

3.1.2 Proposed Importance Sampling Density

We now define the form of the IS density g. We first show the structure of g. Later we specify how the
parameters are chosen to achieve asymptotically vanishing relative error. For a ∈ (0,∞), b ∈ (0,∞), and
α ∈ (1,∞),

g(v) =
{

b×φ(v) when |v|< a
C
|v|α when |v| ≥ a. (8)

Note that if we put

p :=
∫
|v|<a

g(v)dv = b
∫
|v|<a

φ(v)dv = b× (2Φ(a)−1) ,

where Φ(·) is the standard Normal CDF, then

C =
(1− p)∫
|v|≥a

dv
|v|α

> 0
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if p < 1.
Assumption 1 below is important for coming up with the proposed IS density. The following observation

helps in its statement: Note, from the definitions of ψ and η , that for any θ ∈Θo,

exp
{
−v2

2

}
ψ

(
n−

1
2 Λ
′′(θ)−

1
2 v,θ ,n

)
is a characteristic function. In fact, defining

ϕθ (u) := Eθ

[
eιu·(X1−x̄)

]
= e−ιu·x̄ M (θ + ιu)

M(θ)
,

where Eθ denotes the expectation operator under the distribution Fθ , we have

exp
{
−v2

2

}
ψ

(
n−

1
2 Λ
′′(θ)−

1
2 v,θ ,n

)
=

[
exp
{
− v2

2n
+η

(
n−

1
2 Λ
′′(θ)−

1
2 v,θ

)}]n

=

(
Eθ

[
eιn−

1
2 Λ′′(θ)−

1
2 v(X1−x̄)

])n

=
[
ϕθ

(
n−

1
2 Λ
′′(θ)−

1
2 v
)]n

.

Therefore, exp
{
−v2

}
ψ2
(

n−
1
2 Λ′′(θ)−

1
2 v,θ ,n

)
is also a characteristic function.

Assumption 1 There exist α0 > 1 and γ ≥ 1 such that∫
u∈ℜ

|u|α0 |ϕ0(u)|γ du =
∫

u∈ℜ

|u|α0 |M (ιu)|γ du < ∞.

Now we are in position to specify the parameters of the proposed IS density. Recall that δ1 was chosen
so that (5), (6) and (7) hold. We choose qδ1 < 1 so that |ϕθ ∗(v)|< qδ1 for |v| ≥ δ1. Set

α = α0

and
an = δ1

√
nΛ′′(θ ∗) .

Let pn = bn× (2Φ(an)−1). Due to the well known fact that

1−Φ(x)∼ 1√
2πx

exp(−x2/2),

we have
(2Φ(an)−1)∼ 1− 2√

2πnΛ′′(θ ∗)δ1
exp(−nδ

2
1 Λ
′′(θ ∗)/2).

Note that for g to be a valid density function, we need pn < 1. Select bn to be a sequence of positive real
numbers that converges to 1 in such a way that bn < 1/(2Φ(an)−1) and

lim
n→∞

q2n−γ

δ1
n

1+α

2

(1−bn(2Φ(an)−1))
= 0. (9)

For example, it is easy to see that bn = 1−1/nξ for any ξ > 0 satisfies (9). For each n, let gn denote
the pdf of the form (8) with parameters α , an and bn chosen as above. Figure 1, illustrates the shape of gn.

Let En and Varn denote the expectation and variance, respectively, w.r.t. the density gn.
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Figure 1: Dotted curve is the normal density function, while solid line is the density of the proposed IS
density.

Theorem 1 Under Assumption 1,

En

ψ2
(

n−
1
2 Λ′′(θ ∗)−

1
2 v,θ ∗,n

)
g2

n(V )

=
∫

v∈ℜ

ψ2
(

n−
1
2 Λ′′(θ ∗)−

1
2 v,θ ∗,n

)
φ 2(v)

gn(v)
dv = 1+o(n−

1
2 ).

Consequently, from Proposition 2 it follows that

Varn

ψ

(
n−

1
2 Λ′′(θ ∗)−

1
2 V,θ ∗,n

)
φ(V )

g(V )

→ 0

so that the proposed estimator for fn(x̄) has asymptotically vanishing relative error.

The following lemma from Feller (1971) is useful to prove Theorem 1.
Lemma 1 For any λ , β ∈ C,

|exp(λ )−1−β | ≤
(
|λ −β |+ |β |

2

2

)
exp(ω) for all ω ≥max{|λ |, |β |} .

Proof of Proposition 2: Writing ζ3(θ
∗) = Λ′′′(θ ∗)Λ′′(θ ∗)−3/2 we have∣∣∣∣∫v∈ℜ

ψ(n−
1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗,n)φ(v)dv−1

∣∣∣∣ =

∣∣∣∣∫v∈ℜ

{ψ(n−
1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗,n)−1}φ(v)dv

∣∣∣∣
≤

∫
v∈ℜ

∣∣∣∣ψ(n−
1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗,n)−1− ζ3(θ

∗)

6
√

n
(ιv)3

∣∣∣∣φ(v)dv

=
1√
2π

(I1 + I2) ,

where

I1 =
∫
|n−

1
2 Λ′′(θ ∗)−

1
2 v|<δ1

∣∣∣∣exp
{

nη(n−
1
2 Λ
′′(θ ∗)−1v,θ ∗)

}
−1−n

Λ′′′(θ ∗)

3!

(
ιn−

1
2 Λ
′′(θ ∗)−

1
2 v
)3
∣∣∣∣exp

{
−v2

2

}
dv ,

I2 =
∫
|n−

1
2 Λ′′(θ ∗)−

1
2 v|≥δ1

∣∣∣∣exp
{

nη(n−
1
2 Λ
′′(θ ∗)−1v,θ ∗)

}
−1−n

Λ′′′(θ ∗)

3!

(
ιn−

1
2 Λ
′′(θ ∗)−

1
2 v
)3
∣∣∣∣exp

{
−v2

2

}
dv .
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We apply Lemma (1) with

λ = n×η

(
n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗

)
and β = n

Λ′′′(θ ∗)

3!

(
ιn−

1
2 Λ
′′(θ ∗)−

1
2 v
)3

.

Since |β |
2

2 = Cv6

n , where C is a constant independent of n, and for |n− 1
2 Λ′′(θ ∗)−

1
2 v|< δ1, we have from (7),

(6) and (5), respectively,

|λ |= n
∣∣∣η (n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗

)∣∣∣≤ n
1
8

Λ
′′(θ ∗)(n−

1
2 Λ
′′(θ ∗)−

1
2 v)2 =

|v|2

8
,

|β |= n
∣∣∣∣ 1
3!

Λ
′′′(θ ∗)

(
ιn−

1
2 Λ
′′(θ ∗)−

1
2 v
)3
∣∣∣∣≤ n

1
8

Λ
′′(θ ∗)(n−

1
2 Λ
′′(θ ∗)−

1
2 v)2 =

|v|2

8

and

|λ −β | = n
∣∣∣∣η (n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗

)
− 1

3!
Λ
′′′(θ ∗)

(
ιn−

1
2 Λ
′′(θ ∗)−

1
2 v
)3
∣∣∣∣

≤ n ε(Λ′′(θ ∗))
3
2 |n−

1
2 Λ
′′(θ ∗)−

1
2 v|3 = ε|v|3√

n
.

From Lemma (1) it follows that the integrand in I1 is dominated by

exp
{

v2

8

}
×
(

ε|v|3√
n

+
Cv6

n

)
× exp

{
−v2

2

}
= exp

{
−3v2

8

}(
ε|v|3√

n
+

Cv6

n

)
.

Since ε is arbitrary we have I1 = o(n−
1
2 ).

Next we have

I2 ≤
∫
|n−

1
2 Λ′′(θ ∗)−

1
2 v|≥δ1

∣∣∣∣exp
{
−v2

2

}
ψ(n−

1
2 Λ
′′(θ ∗)−

1
2 v,θ ∗,n)

∣∣∣∣ dv

+
∫
|n−

1
2 Λ′′(θ ∗)−

1
2 v|≥δ1

(
1+
∣∣∣∣ζ3(θ

∗)v3

6

∣∣∣∣)exp
{
−v2

2

}
dv

=
∫
|Λ′′(θ ∗)−

1
2 v|≥δ1

√
n

∣∣∣ϕθ ∗

(
n−

1
2 Λ
′′(θ ∗)−

1
2 v
)∣∣∣n dv

+
∫
|Λ′′(θ ∗)−

1
2 v|≥δ1

√
n

(
1+
∣∣∣∣ζ3(θ

∗)v3

6

∣∣∣∣)exp
{
−v2

2

}
dv .

Recall that qδ1 < 1 is such that |ϕθ ∗(v)|< qδ1 for |v| ≥ δ1. Therefore, we have

I2 ≤ qn−γ

δ1

∫
v∈ℜ

∣∣∣ϕθ ∗

(
n−

1
2 Λ
′′(θ ∗)−

1
2 v
)∣∣∣γ dv+

∫
|Λ′′(θ ∗)−

1
2 v|≥δ1

√
n

(
1+
∣∣∣∣ζ3(θ

∗)v3

6

∣∣∣∣)exp
{
−v2

2

}
dv

= qn−γ

δ1
n

1
2
√
|Λ′′(θ ∗)|

∫
v∈ℜ

|ϕθ ∗(u)|γ du+
∫
|Λ′′(θ ∗)−

1
2 v|≥δ1

√
n

(
1+
∣∣∣∣ζ3(θ

∗)v3

6

∣∣∣∣)exp
{
−v2

2

}
dv .

It follows that I2 = o(n−α) for any α .

The key step in the proof of Theorem 1 relies on expressing∫
v∈ℜ

ψ2(n−
1
2 Λ′′(θ ∗)−

1
2 v,θ ∗,n)φ 2(v)

gn(v)
dv
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as the sum of I3 and I4, where

I3 =
∫
|Λ′′(θ ∗)

1
2 v|<δ1

√
n

ψ2(n−
1
2 Λ′′(θ ∗)−

1
2 v,θ ∗,n)φ 2(v)

gn(v)
dv

and

I4 =
∫
|Λ′′(θ ∗)

1
2 v|≥δ1

√
n

ψ2(n−
1
2 Λ′′(θ ∗)−

1
2 v,θ ∗,n)φ 2(v)

gn(v)
dv.

Substituting the value of gn(v), we get

I3 =
1
bn

∫
|Λ′′(θ ∗)

1
2 v|<δ1

√
n

ψ
2(n−

1
2 Λ
′′(θ ∗)v,θ ∗,n)φ(v)dv

and
I4 =

1
Cn

∫
|Λ′′(θ ∗)

1
2 v|<δ1

√
n
|v|αψ

2(n−
1
2 Λ
′′(θ ∗)v,θ ∗,n)φ 2(v)dv.

The proof now proceeds as the proof of Proposition 2 and shows that I3 = 1+o(n−
1
2 ) and that I4→ 0

as n→ ∞. The proof can be found in Dey and Juneja (2011).

4 EFFICIENT ESTIMATION OF THE TAIL PROBABILITY P(X̄n ≥ x̄)

In this section we consider the problem of efficient estimation of P(X̄n ≥ x̄) for x̄ > E[X1]. As discussed in
the introduction, this relies on using a saddlepoint representation of P(X̄n ≥ x̄) obtained using Parseval’s
relation. Let θ ∗ denote the solution to the equation Λ′(θ) = x̄. Since, Λ′(0) = EX1 and Λ′ is strictly
increasing, it follows that θ ∗ > 0.

Let
Yn =

√
n(X̄n− x̄).

Let hn,θ ,x̄(·) be the density function of Yn when each Xi has distribution function Fθ , where,

dFθ (x) = exp(θx)M(θ)−1dF(x) = exp(θx−Λ(θ))dF(x).

The following relation follows:

P[X̄ ≥ x̄] = enΛ(θ ∗)−nθ ∗x̄
∫

∞

0
e−
√

nθ ∗yhn,θ ∗,x̄(y)dy

=
en{Λ(θ ∗)−θ ∗x̄}
√

nθ ∗

∫
∞

0

√
nθ
∗ e−

√
nθ ∗yhn,θ ∗,x̄(y)dy

=
en{Λ(θ ∗)−θ ∗x̄}

2π
√

nθ ∗

∫
∞

−∞

e−ιt
√

nx̄

1+ ιt√
nθ ∗

M
(

θ ∗+ ιt√
n

)
M(θ ∗)

n

dt ,

where the last equality follows from Parseval’s relation applied to the exponential density
√

nθ ∗ e−
√

nθ ∗y

and the density of Y . Now by the change of variable t = Λ′′(θ ∗)−1/2v and rearrangement of terms, the last
integral may be re-expressed as,

en{Λ(θ ∗)−θ ∗x̄}

2πθ ∗
√

nΛ′′(θ ∗)

∫
∞

−∞

1
1+ ιv

θ ∗
√

nΛ′′(θ ∗)

exp

[
n

{
Λ

(
θ
∗+

ιv√
nΛ′′(θ ∗)

)
−Λ(θ ∗)− ιvx̄√

nΛ′′(θ ∗)

}]
dv

=
en{Λ(θ ∗)−θ ∗x̄}

θ ∗
√

2πnΛ′′(θ ∗)

∫
∞

−∞

ψ(v,θ ∗,n)φ(v)
1+ ιv

θ ∗
√

nΛ′′(θ ∗)

dv , (10)
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Table 1: Comparison of the proposed methodology (PM) with optimal state independent exponential twisting
(OET).

n=60 cn = 3.54×10−4

N OET PM Variance reduction
1000 3.17×10−4 3.16×10−4 42.78

10000 3.25×10−4 3.23×10−4 47.28
100000 3.24×10−4 3.26×10−4 47.75
n=120 cn = 8.62×10−7

N OET PM Variance reduction
1000 8.20×10−7 8.29×10−7 77.85

10000 8.33×10−7 8.36×10−7 75.89
100000 8.24×10−7 8.25×10−7 91.99
n=180 cn = 2.42×10−9

N OET PM Variance reduction
1000 2.33×10−9 2.31×10−9 80.60

10000 2.36×10−9 2.44×10−9 105.56
100000 2.30×10−9 2.36×10−9 98.79

where ψ(v,θ ∗,n) is as defined in the last section. Expansion of (10) is well-known (see, Jensen (1995))
from where it follows that (10) converges to 1 as n→ ∞.

We again estimate the integral in (10) by Monte-Carlo simulation. Specifically, we re-express it as∫ +∞

−∞

ψ(v,θ ,n)φ(v)(
1+ ιv

θ ∗
√

nΛ′′(θ ∗)

)
g(v)

g(v)dv ,

where g(v) is a density whose support is ℜ. Again, if V1,V2, . . . ,VN are iid samples from the density g,
then the estimator given by

P̂[X̄ ≥ x̄] :=
en{Λ(θ ∗)−θ ∗x}

θ ∗
√

2πnΛ′′(θ ∗)

1
N

N

∑
i=1

ψ(Vi,θ
∗,n)φ(Vi)(

1+ ιVi

θ ∗
√

nK′′(θ ∗)

)
g(Vi)

is an unbiased estimator for P(X̄ ≥ x̄). Then, analogous to Theorem 1, we can show that:
Theorem 2 Under Assumption 1, for gn as in Theorem (1),

En

 ψ2(V,θ ∗,n)φ 2(V )(
1+ ιV

θ ∗
√

nΛ′′(θ ∗)

)2

g2
n(V )

=
∫ +∞

−∞

ψ2(v,θ ∗,n)φ 2(v)(
1+ ιv

θ ∗
√

nΛ′′(θ ∗)

)2

gn(v)

dv = 1+o(n−
1
2 ) as n→ ∞ .

The proof of Theorem 2 can be found in Dey and Juneja (2011). It follows that our estimator for
P(X̄ ≥ x̄) has asymptotically vanishing relative error.

5 NUMERICAL EXPERIMENTS

In this section we consider a simple numerical experiment to compare efficiency of the proposed method
with the one involving state independent exponential twisting proposed by Sadowsky and Bucklew (1990).
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We consider a sequence of rv’s (Xi : i≥ 1) that are iid exponentially distributed with mean 1. We estimate
the probability P(X̄n ≥ 1.5) for different values of n. Table 5 reports the estimates based on N generated
samples. cn denotes the exact asymptotic corresponding to the probability. In these experiments we set
an = 2, α = 2 and pn = 0.9 so that bn = pn/(2 ∗Φ(2)− 1) = 0.9/0.9545 = 0.9429. We also report the
variance reduction achieved by the proposed method over the one proposed by Sadowsky and Bucklew
(1990). This is substantial and it increases with increasing n.
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