
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

SENSITIVITY ESTIMATION OF SABR MODEL VIA DERIVATIVE OF RANDOM VARIABLES

NAN CHEN
YANCHU LIU

The Chinese University of Hong Kong
709A William Mong Engineering Building

Shatin, N. T., HONG KONG

ABSTRACT

We derive Monte Carlo simulation estimators to compute option price sensitivities under the SABR stochastic
volatility model. As a companion to the exact simulation method developed by Cai, Chen and Song (2011),
this paper uses the sensitivity of “vol of vol” as a showcase to demonstrate how to use the pathwise method
to obtain unbiased estimators to the price sensitivities under SABR. By appropriately conditioning on
the path generated by the volatility, the evolution of the forward price can be represented as noncentral
chi-square random variables with stochastic parameters. Combined with the technique of derivative of
random variables, we can obtain fast and accurate unbiased estimators for the sensitivities.

1 INTRODUCTION

The ubiquitous existence of the volatility smile and skew poses a great challenge to the practice of risk
management in fixed and foreign exchange trading desks. In foreign currency option markets, the implied
volatility is often relatively lower for at-the-money options and becomes gradually higher as the strike price
moves either into the money or out of the money. Traders refer to this stylized pattern as the volatility
smile. In the equity and interest rate markets, a typical aspect of the implied volatility, which is also known
as the volatility skew, is that it decreases as the strike price increases. The fact that different options are
corresponding to different implied volatilities entails that we have to model these smiles accurately in order
to achieve a stable hedging.

The stochastic alpha-beta-rho (SABR) model, introduced by Hagan et al. (2002), draws popularity
in the financial industry to model implied volatilities in foreign exchange and interest rate markets. It
requires a small handful set of parameters but fits the volatility smiles very well. Hagan et al. (2002)
develop an asymptotic expansion for the implied volatility of European call options using the singular
perturbation technique. This closed-form expression admits clear interpretation of model parameters and
yields a convenient way to calibrating the model to the market. In addition, this model is also capable of
generating correct co-movements between the underlying and its smile curve, which overcomes a salient
drawback of other conventional local volatility models such as Dupire (1994) and Derman and Kani (1994).

Despite the above attractive features of the SABR model, computation involving this model is very
challenging. As shown in the next section, we can see that the model consists of two stochastic differential
equations (SDE) to describe the respective evolution of the underlying price and its volatility. The volatility
process is governed by a geometric Brownian motion. The price follows a constant-elasticity-variance
(CEV) type diffusion, coupled with the stochastic volatility. Furthermore, the two processes entangle
with each other via two correlated Brownian motions. Except for some trivial examples, the complicated
structure of the model — nonlinearity of the CEV type diffusion, coupled price and volatility processes,
and correlated Brownian motions — prevents us from obtaining closed form solutions to European option
pricing.
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The literature, so far, mainly relies on partial-differential-equation (PDE) based approaches to find
various asymptotic expansions for option prices under the SABR model. One may refer to Hagan et al.
(2002), Berestycki, Busca and Florent (2004), Henry-Labordère (2005), Hagan, Lesniewski and Woodward
(2005), Obłój (2008), and Wu (2010) for further reference on this approach. However, it can only lead to
approximations at most, which perform well only under a crucial assumption that the time-to-maturity of
options is small. Thus the expansion is not the true option price under the SABR model. As shown by
Benaim and Friz (2009), the behavior of the expansion formula obtained by Hagan et al. (2002) is not
consistent with the arbitrage-free prices for options with extreme strike prices. Cai, Chen and Song (2011)
also report discrepancies between this approximation and the true option price through some numerical
experiments.

In light of the absence of closed-form option pricing formula and the drawback of PDE-based asymptotic
expansions, Cai, Chen and Song (2011) construct a simulation scheme to generate samples from the exact
distribution of the SABR model. It initiates a probabilistic approach to tackle the computational issues
of the model. The aim of this paper is to investigate an accompanying method to estimate the price
sensitivities under the model. We use the pathwise derivative (PD) method mainly to generate unbiased
sensitivity estimates. As illustrated by Glasserman (2004), this method is convenient in the settings, such
as the Black-Scholes model, where the transition density of the underlying price process is known and
sampling from the exact distribution is possible. However, we do not have closed-form representations
for the probability density of the SABR model, which imposes a significant obstacle to the application
of the above two methods. The key idea of this paper is that by appropriately conditioning on the path
generated by the volatility processes, the probability law of the underlying price can be represented in
terms of noncentral chi-square random numbers, making it possible to apply the PD method. In addition,
Cai, Chen and Song (2011) use intensively the inverse transform method to generate random variables in
the exact simulation procedure. This makes a special form of PD — derivative of random variables (see,
e.g., Fu (2006)) — become very useful in the derivation.

This paper is organized as follows. In Section 2, we introduce the SABR model and present its
relationship with the time-changed squared Bessel process. On the basis of this theoretical foundation, we
review the exact simulation algorithm proposed by Cai, Chen and Song (2011). Section 3 develops the PD
estimators for the SABR model. Due to the page limitation, we only consider the sensitivity with respect to
vol of vol when the process is with an absorbing boundary. We show the merits of our algorithm through
some numerical examples in Section 4.

2 THE SABR MODEL AND ITS EXACT SIMULATION SCHEME

2.1 The Model

Consider a probability space (Ω,F ,P), on which two independent standard Brownian motions {(W 1
t ,W

2
t ) :

t ≥ 0} are defined. Assume that G 1 and G 2 are the natural σ -algebra filtrations generated by them,
respectively, and let F = G 1⊗G 2. The SABR model describes the dynamics of an asset’s forward price
and its volatility. Denote Ft and αt to be their respective values at time t, 0 ≤ t ≤ T . The model is then
given by the solution to the following SDEs:

dFt = αtF
β

t · [
√

1−ρ2dW 1
t +ρdW 2

t ], F0 = f , (1)
dαt = ναt ·dW 2

t , α0 = α, (2)

where β and ν are two positive constants and β ∈ [0,1]. Apparently, the volatility αt follows a geometric
Brownian motion and Ft is governed by a CEV-type diffusion. Except for such cases as β = 0 or β = 1, the
nonlinearity in αtF

β

t distinguishes this model from the class of affine stochastic volatility models proposed
by Duffie, Pan and Singleton (2000). Therefore we cannot apply the exact simulation scheme of Broadie
and Kaya (2004) and Broadie and Kaya (2006) directly for this model.
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By using the singular perturbation techniques in PDEs, Hagan et al. (2002) prove that we still can use
the celebrated Black formula to evaluate a vanilla European call on the forward price F struck at K under
the SABR model (1-2). The option price at time 0 equals

c( f ,α) = E[(FT −K)+|F0 = f ,α0 = α] = [ f N(d+)−KN(d−)], (3)

where T is the time to the maturity of the option, N(·) is the cumulative probability distribution function
of a standard normal, and

d± =
log( f/K)± 1

2 σ2
imT

σim
√

T
.

The most intriguing contribution of their paper is that they find a closed-form approximation to the implied
volatility σim. By fine-tuning the values of parameters ρ , β , ν , and α , one can easily fit the curve of
σim to the observed implied volatility curves very well under various market environments. The model
also demonstrates high stability in the fitted parameter values even in the presence of large market noises.
These attractive features win popularity for the SABR model among practitioners in the financial industry,
especially in the interest rate and foreign exchange markets. However, as mentioned in the introduction,
the PDE-based expansion methods suffer from some discrepancies in calculation, which motivates us to
pursue this work.

Cai, Chen and Song (2011) investigate a Monte Carlo recipe to simulate the SABR model exactly from
its marginal distribution. The theoretical foundation of our algorithm lies in the relationship between the
SABR model and noncentral chi-squared random variables, which is summarized in Theorem 1. A subtle
issue will arise around the behavior of the forward price process F at the boundary 0. The paper shows
that Ft is always nonnegative for all t ≥ 0. However, under some parameter ranges, it can reach 0 and the
characterization of (1-2) alone is not sufficient to determine the process uniquely. Additional specifications
about its behavior at 0 are hence needed to complete the description. They consider two major ways to
specify the boundary conditions for Y in this paper: absorbing boundary and reflecting boundary. Roughly
speaking, the former one forces the process to stay at 0 once it reaches the boundary; the latter is to
“bump” F back to the positive part immediately after it hits 0. More rigorous mathematical treatments on
the boundary classification for a general SDE can be found in Borodin and Salminen (2002). From now
on, we focus on the absorbing boundary specification only, although the simulation methods by Cai, Chen
and Song (2011) and this paper are applicable to deal with the reflecting boundary specification.

Introduce a parameter

δ := 1− β

(1−β )(1−ρ2)
.

It determines the behavior of F around the boundary 0. Let Q(x; µ,λ ) and f (x; µ,λ ) denote, respectively,
the cumulative distribution function and the probability density function of a noncentral chi-square random
variable with µ degrees of freedom and noncentrality parameter λ . In the meanwhile, denote q(x; µ) to be
the cumulative distribution function of a central chi-square random variable with µ degrees of freedom.
Closed-form expressions of both functions are given in the appendix. We have
Theorem 1 (Theorem 2.1 of Cai, Chen and Song (2011)) Fix T > 0 and suppose that α0, αT ,

∫ T
0 α2

u du
are simulated. Let

A =
1

(1−ρ2)
∫ T

0 α2
u du

(
F(1−β )

0
1−β

+
ρ

ν
(αT −α0)

)2

.

The transitional distribution of FT can be expressed in terms of noncentral chi-square distributions. More
precisely, when δ ≥ 0 and F has an absorbing boundary at 0 or δ < 0,

P
[

FT = 0
∣∣∣F0,α0,αT ,

∫ T

0
α

2
s ds
]
= 1−q(A;2−δ ) ;
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and

P
[

FT ≤ u
∣∣∣F0,α0,αT ,

∫ T

0
α

2
s ds
]
= 1−Q(A;2−δ ,C(u)) ,

for any u > 0, where

C(u) =
1

(1−ρ2)
∫ T

0 α2
s ds
· u2(1−β )

(1−β )2 .

2.2 Review of Exact Simulation of the SABR

On the basis of the distribution decomposition presented by Theorem 1, Cai, Chen and Song (2011) propose
an exact simulation scheme for the SABR model to generate sample pairs of FT and αT . It takes the
following three steps:

2.2.1 Sampling from αT

Since the volatility process αt is governed by a geometric Brownian motion, it follows that

αT = α0 exp
[
−1

2
ν

2T +νW 2
T

]
.

Note that W 2
T ∼ N(0,T ). Accordingly, to sample from αT , we can generate a standard normal random

variable Z and let

αT = α0 · exp
[
−1

2
ν

2T +ν
√

T Z
]
. (4)

2.2.2 Sampling
∫ T

0 α2
s ds for given αT

Given αT , the conditional distribution of
∫ T

0 α2
s ds is related to the Hartman-Waston distribution shown

by Cai, Chen and Song (2011), which is highly unstable in numerical performance. To circumvent this
difficulty, they suggest a Laplace transform inversion-based approach to simulate

∫ T
0 α2

s ds.
Let h(x) = 1/x. Denote

Fh(y) := P
[

h
(∫ T

0
α

2
s ds
)
≤ y
∣∣∣α0,αT

]
for y≥ 0 and its Laplace transform

F̂h(θ) :=
∫ +∞

0
e−θuFh(u)du

for θ > 0. Cai, Chen and Song (2011) prove that:
Theorem 2 (Proposition 3.2 of Cai, Chen and Song (2011)) The Laplace transform of Fh(u) is given by

F̂h(θ) =
1
θ

exp

{
−
[φln(αT /α0)(θν2/α2

0 )]
2− [ln(αT/α0)]

2

2ν2T

}
,

where
φx(λ ) = arcosh(λe−x + cosh(x)).

Through some numerical inversion algorithms such as Abate and Whitt (1992), we can obtain Fh from
F̂h. Set

V = F−1
h (U), U ∼U(0,1). (5)

It is straightforward to show that h−1(V ) follows the same distribution as
∫ T

0 α2
s ds. Finding V defined in

(5) amounts to solving an equation Fh(V ) =U for a given U . We can solve it numerically.

3874



Chen and Liu

2.2.3 Generate FT

We can simulate FT from its conditional distribution law shown in Theorem 2. The idea is to apply the
inverse transform method instead. Recall that there is an atom in the distribution of FT at 0. Therefore we
conduct the following procedure to accomplish the simulation: first generate U ∼U(0,1); if

U ≤ 1−q(A;2−δ ) ,

then set FT = 0; otherwise, we use some numerical methods to find Û which solves

1−Q
(
A;2−δ ,C(Û)

)
=U, (6)

and then set FT = Û .

3 PATHWISE ESTIMATOR FOR SABR MODEL

In this section we start to construct unbiased sensitivity estimators for the SABR model. Due to the page
limitation, we use the sensitivity with respect to ν as a showcase. The main methodology we adopt is
derivatives of random variables. It is worth pointing out that unbiased estimators of other sensitivities are
achievable in a similar manner. The authors leave a more comprehensive investigation in the future work.

3.1 Derivatives of Random Variables

We would like to use the PD method to derive the unbiased estimator. Generically speaking, it runs as
follows. Suppose that we have collected a class of random variables {D(θ ,ω) : θ ∈ Θ} on a common
probability space (Ω,F ,P), where ω ∈Ω and θ is the parameter whose sensitivity we are interested in.
The method suggests that we can interchange the order of differentiation and expectation, under some
appropriate conditions, to get an unbiased estimator to dE[H(D(ω,θ))]/θ . That is,

d
dθ

E[H(D(ω,θ))] = E
[

H ′(D(ω,θ)) · d
dθ

D(ω,θ)

]
. (7)

Consider a special case of the above general method. Assume that the cumulative distribution function
of D(ω,θ) is known as G(x;θ) for any given θ ∈Θ. Then, in distribution, we have

D(θ)
d
= G−1(U ;θ),

where U ∼U(0,1) and θ ∈Θ. Under this representation, Eq. (7) and the implicit function theorem implies
that

d
dθ

E[H(D(θ))] =
d

dθ
E[H(G−1(U ;θ))] = E

[
H ′(D(θ)) · d

dθ
G−1(U,θ)

]
= E

[
H ′(D(θ)) ·

(
−∂G(x;θ)/∂θ

∂G(x;θ)/∂x

)∣∣∣
x=D(θ)

]
.

Then, we obtain an unbiased estimator for dE[H(D(θ))]/θ as

H ′(D(θ)) ·
(
−∂G(x;θ)/∂θ

∂G(x;θ)/∂x

)∣∣∣
x=D(θ)

Such methodology leading to a PD estimator is referred to as derivative of random variables in the simulation
literature (see, e.g., Fu (2006)). This method grants us much convenience in deriving the PD estimator for
the SABR model since we use extensively the inverse transform method to simulate random variables in
the aforementioned exact simulation scheme.
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3.2 Unbiased Sensitivity to ν

Consider the call option c( f ,α) (cf. (3)). Conditioning on αT and
∫ T

0 α2
s ds, we have the following

representation:

c( f ,α) = E

[
ψ

(
ν ;αT ,

∫ T

0
α

2
s ds
)∣∣∣F0 = f ,α0 = α

]
,

where

ψ(ν ;αT ,
∫ T

0
α

2
s ds) = E

[
(FT −K)+

∣∣∣αT ,
∫ T

0
α

2
s ds
]
.

Note that FT , αT and
∫ T

0 α2
s are all influenced by the vol of vol ν . We include it into the arguments of

the function ψ to emphasize this dependency. We shall study the PD estimator to the sensitivity of c with
respect to ν in this section. Taking derivatives under the expectation, we have

∂c
∂ν

= E

[
∂ψ

∂ν
+

∂ψ

∂ [αT ]
· ∂αT

∂ν
+

∂ψ

∂ [
∫ T

0 α2
s ds]
·

∂ [
∫ T

0 α2
s ds]

∂ν

∣∣∣F0 = f ,α0 = α

]
. (8)

For ∂ψ/∂ν , ∂ψ/∂αT and ∂ψ/∂
∫ T

0 α2
s ds inside the expectation of (8), the following theorem states

unbiased estimators for them. We can easily establish it through the technique of derivative of random
variables.
Theorem 3 Introduce a dummy variable Θ. The derivatives ∂ψ/∂ν , ∂ψ/∂αT and ∂ψ/∂

∫ T
0 α2

s ds admit
a uniform representation such as

∂ψ

∂Θ
=−E

[
1{FT≥K; Q(A;2−δ ,C(FT ))<q(A;2−δ )} ·

(
∂Q(A;2−δ ,C(u))/∂Θ

∂Q(A;2−δ ,C(u))/∂u

)∣∣∣
u=FT
|ν ;αT ,

∫ T

0
α

2
s ds
]
.

In particular, when Θ = ν ,(
∂Q(A;2−δ ,C(u))/∂ν

∂Q(A;2−δ ,C(u))/∂u

)∣∣∣
u=FT

=
2(β −1)ρ(αT −α0) f (A;2−δ ,C(FT ))

(Q(A;4−δ ,C(FT ))−Q(A;2−δ ,C(FT )))F
1−2β

T ν2
·

(
F1−β

0
1−β

+
ρ

ν
(αT −α0)

)
;

when Θ = αT , (
∂Q(A;2−δ ,C(u))/∂ [αT ]

∂Q(A;2−δ ,C(u))/∂u

)∣∣∣
u=FT

=
2(1−β )ρ f (A;2−δ ,C(FT ))

(Q(A;4−δ ,C(FT ))−Q(A;2−δ ,C(FT )))F
1−2β

T ν

·

(
F1−β

0
1−β

+
ρ

ν
(αT −α0)

)
;

and when Θ =
∫ T

0 α2
s ds,(

∂Q(A;2−δ ,C(u))/∂ [
∫ T

0 α2
s ds]

∂Q(A;2−δ ,C(u))/∂u

)∣∣∣
u=FT

=
(β −1)(1−ρ2)

F1−2β

T

·
(

f (A;2−δ ,C(FT )) ·A
(Q(A;4−δ ,C(FT ))−Q(A;2−δ ,C(FT )))

+
C(FT )

2

)
.
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Next, we consider ∂αT/∂ν and ∂ [
∫ T

0 α2
s ds]/∂ν . The derivation of the first one is straightforward.

Thanks to Eq. (4),

∂αT

∂ν
= αT · (−νT +ν

√
T Z). (9)

As for the latter, recall that we simulate it through the distribution of h(
∫ T

0 α2
s ds), with h being a reciprocal

function, and observe the relationship

∂ [
∫ T

0 α2
s ds]

∂ν
=−

(∫ T

0
α

2
s ds
)2

·
∂ [h(

∫ T
0 α2

s ds)]
∂ν

.

Therefore it is sufficient that we know how to obtain ∂ [h(
∫ T

0 α2
s ds)]/∂ν . Applying the method of derivatives

of random variables yields
∂ [h(

∫ T
0 α2

s ds)]
∂ν

=− Ḟh(y)
fh(y)

∣∣∣
y=h(

∫ T
0 α2

s ds)
, (10)

where fh(y) is the probability density function of h(
∫ T

0 α2
s ds) and

Ḟh(y) =
∂Fh(y)

∂ν
.

From Section 2, the Laplace transform of Fh is explicitly available. Hence, the Laplace transform of
fh should be given by

f̂h(θ) =
∫

∞

0
e−θu fh(u)du =

∫
∞

0
e−θudFh(u) = θ · F̂h(θ),

where the third equality uses integration-by-parts. Meanwhile, Lemma 1 in Glasserman and Liu (2010)
implies that the Laplace transform of Ḟh(y) can be expressed in the form

ˆ̇Fh(θ) :=
∫

∞

0
e−θuḞh(u)du =

∂

∂ν
F̂h(θ).

In summary, to evaluate the right hand side of (10), we apply the numerical inversion method of Abate
and Whitt (1992) on θ F̂h(θ) and ∂ F̂h(θ)/∂ν to produce fh and Ḟh.

At the end of this section, we present a complete description about the exact simulation of the SABR
model and its accompanying PD estimation of ν :

1. Simulate αT from α0 and at the same time use (9) to obtain ∂αT/∂ν .
2. Given αT , generate a sample of h(

∫ T
0 α2

s ds) and take h−1 on it to get
∫ T

0 α2
s ds. Substitute h(

∫ T
0 α2

s ds)
to the right hand side of (10) to evaluate ∂ [h(

∫ T
0 α2

s ds)]/∂ν .
3. Simulate FT . Evaluate (FT −K)+ and

∂ψ

∂ν
+

∂ψ

∂ [αT ]
· ∂αT

∂ν
+

∂ψ

∂ [
∫ T

0 α2
s ds]
·

∂ [
∫ T

0 α2
s ds]

∂ν

by Theorem 3.

Averaging across a large number of samples, we can obtain unbiased estimators for both price and sensitivity.
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4 NUMERICAL EXAMPLES

In this section, we conduct some numerical experiments to illustrate the accuracy of our method. The
following three tables show that the estimator developed in the last section performs well under a wide range
of parameters. Especially, Table 1, 2, and 3 test the performance of our estimators under different values
of ν , β , and α0, respectively. The codes for all experiments were written in MATLAB 7.9.0 (R2009b),
and were implemented on a PC desktop with an Intel core2 Q9400 2.66GHZ processor.

For the purpose of comparison, we use the closed-form formula in Hagan et al. (2002) as our benchmark
to price a European call option. In the meanwhile, differentiating the formula with respect to ν produces
an approximation to the sensitivity. We document the outcomes in the columns under the “Analytical”
category in the tables. We also compare our results with those given by the Euler discretization method,
which are shown in the “Euler” columns.

One interesting common feature in these experiments is that, although the Euler discretization scheme
can generate comparable results to price the European option, it performs very poorly in the sensitivity
estimation. We need to investigate this more deeply in our future work.

Table 1: Price and Sensitivity with respect to ν for a European Call Option with strike price K = 100 under
different values of ν . The other parameters are F0 = 100, ρ = −0.2, β = 0.8, α0 = 0.3, and T = 0.75.
We simulate 100,000 sample paths for both Euler and our exact simulation methods. The numbers in the
parentheses are the standard errors of Monte Carlo.

Analytical Euler Exact
ν Price Greek Price Greek Price Greek

0.2 4.1313 0.0821 4.1134(0.0198) 0.0007(0.0006) 4.1337(0.0197) 0.0827(0.0123)
0.5 4.1777 0.2273 4.1984(0.0203) 0.0004(0.0007) 4.1821(0.0203) 0.2178(0.0157)
0.8 4.2677 0.3725 4.2697(0.022) 0.0013(0.0007) 4.2659(0.0204) 0.3621(0.0202)

Table 2: Price and Sensitivity with respect to ν for a European Call Option with strike price K = 100 under
different values of β . The other parameters are identical to Table 1.

Analytical Euler Exact
β Price Greek Price Greek Price Greek

0.2 0.261 0.0061 0.2625(0.0012) 0.0001(0.00004) 0.262(0.0012) 0.0062(0.0007)
0.5 1.0388 0.0238 1.0338(0.0048) -0.0001(0.0002) 1.0373(0.0048) 0.0251(0.0029)
0.8 4.1313 0.0821 4.1134(0.0198) 0.0007(0.0006) 4.1337(0.0197) 0.0827(0.0123)

Table 3: Price and Sensitivity with respect to ν for a European Call Option with strike price K = 100 under
different values of α0. The other parameters are identical to Table 1.

Analytical Euler Exact
α0 Price Greek Price Greek Price Greek
0.3 4.1313 0.0821 4.1134(0.0198) 0.0007(0.0006) 4.1337(0.0197) 0.0827(0.0123)
0.6 8.246 0.1341 8.1424(0.0415) 0.0018(0.0014) 8.2038(0.0414) 0.1454(0.0266)
0.8 10.9749 0.152 10.6697(0.057) 0.0008(0.0019) 10.9841(0.0568) 0.1392(0.0347)
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A PROOF OF THEOREM 3

Proof. From the generation algorithm for FT in Section 2.2.3, we can see:

FT = 0 ·1{U≤1−q(A;2−δ )}+Û ·1{U>1−q(A;2−δ )},

where Û satisfies equation (6). Moreover, the fact that

1−Q(A;2−δ ,C(0)) = 1−q(A;2−δ )

implies the continuity of FT , as a function of U , at U = 1−q(A;2−δ ). Therefore,

∂FT

∂Θ
=

∂Û
∂Θ
·1{U>1−q(A;2−δ )}. (11)

Applying the implicit function theorem to equation (6), we have

∂Û
∂Θ

=−∂Q(A;2−δ ,C(u))/∂Θ

∂Q(A;2−δ ,C(u))/∂u

∣∣∣
u=Û

. (12)

For the dummy variable Θ, if we differentiate under the expectation sign,

∂ψ

∂Θ
=

∂

∂Θ
E

[
(FT −K)+

∣∣∣αT ,
∫ T

0
α

2
s ds
]
= E

[
1{FT≥K} ·

∂FT

∂Θ

]
.

Combining this with (11) and (12), we can easily show the first half of the theorem statements. Some
straightforward computation can lead to the results in the second half. We omit them in the interest of
space.

B NONCENTRAL CHI-SQUARE DISTRIBUTIONS

We use the concept of noncentral chi-square distributions in several points of the paper. Here we introduce
it briefly. A noncentral chi-square random variable χ2(µ;λ ) with µ degrees of freedom and noncentrality
parameter λ has probability density function

f (x; µ,λ ) =
1
2

exp
(
−x+λ

2

)( x
λ

) µ−2
4

I µ

2−1

(√
λx
)

for x > 0, where Ia is the modified Bessel function of the first kind given by

Ia(x) =
+∞

∑
k=0

(x/2)a+2k

k!Γ(a+ k+1)

and Γ denotes the gamma function. Its cumulative distribution function is given by

Q(x; µ,λ ) = P[χ2(µ;λ )≤ x] =
∫ x

0
f (y; µ,λ )dy.

The central chi-square random variable χ2(µ) is just a special example of the noncentral chi-square random
variable when λ = 0. Its distribution density is given by

g(x; µ) =
e−x/2x(µ/2)−1

2µΓ(µ/2)
.

and its cumulative distribution functions of χ2
µ is

q(x; µ) = P[χ2(µ)≤ x] =
∫ x

0
g(y; µ)dy.
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