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ABSTRACT

We present a new fully sequential procedure for selecting the best among a finite number of simulated
systems. While many fully sequential selection procedures make a decision based on pairwise comparison,
the new procedure compares systems in a group of three and uses some properties of a bivariate Brownian
motion process exiting a circle or an ellipse for its derivation.

1. INTRODUCTION

The selection-of-the-best problem is to select the best system among a finite number of simulated systems
and has been studied actively in the context of simulation ranking and selection (R&S). There exist at least
three different approaches for the selection-of-the-best problem: the indifference-zone (IZ) method, the
Bayesian method, and the optimal computing budget allocation (OCBA) method. The indifference-zone
(IZ) method finds the best or a near-best with a guarantee on the probability of correct selection (PCS)
while the other two methods maximize the PCS under a limited computational budget. In the IZ approach,
a decision maker is assumed to be indifferent among systems whose means are within a user-specified
constant of the true best system and the user-specified constant is called the indifference zone parameter.
Kim and Nelson (2006b) gives a review of R&S procedures with the IZ method. See Chick (2006) for a
thorough review of the Bayesian and OCBA methods.

Among selection procedures that take the IZ approach, fully sequential procedures are shown to be
highly efficient. Fully sequential procedures with elimination take a single basic observation from each
alternative still in play at each stage and eliminate systems from further consideration when there is a
clear evidence that they are inferior. Kim and Nelson (2001) present fully sequential procedures that are
useful in simulation environments. Kim and Nelson (2006a) and Malone et al. (2005) show that if variance
estimates are updated as more observations are available, the performance of fully sequential procedures
can be even further improved.

Many fully sequential procedures observe the partial sums of differences between a pair of systems
and their statistical validity is derived using some properties of a univariate Brownian motion process.
In this paper, we present a new fully sequential selection procedure that compares systems in a group
of three rather than in a pair. The new procedure still takes the IZ approach but uses some proper-
ties of bivariate Brownian motion processes exiting a circle or an ellipse. The idea is to eliminate a
system when it is worse than two systems simultaneously by some considerable amount although the
amount is not big enough to eliminate the system in pairwise comparison. We also approximate an upper
bound on the probability of correct selection and provide some arguments on why the procedure should work.
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The remainder of the paper is organized as follows. In Section 2, we define the problem and provide
notation and assumptions. Section 3 presents our new procedure and Section 4 provides some arguments on
a guarantee about correct selection of the new procedure. In Section 5 experimental results are discussed,
followed by concluding remarks in Section 6.

2. BACKGROUND

In this section, we introduce notation and assumptions. Then we define the selection-of-the-best problem
and a brief overview of a popular fully sequential procedure based on pairwise comparisons.

2.1 Notation and Assumptions

We assume that there are k simulated systems (k ≥ 2). Let Xi j be an observation from replication (or batch)
j of system i for i = 1, . . . ,k and j = 1,2, . . .. The set of all systems is defined as S = {1, . . . ,k}. The mean
and variance of the outputs from system i are defined as µi = E[Xi j] and σ2

i = Var[Xi j], respectively.

Assumption 1. Let Xi j represent the jth observations from system i. Then

Xi j
IID∼ N(µi,σ

2
i ), j = 1,2, . . . ,

where IID∼ represents ‘are independent and identically distributed as’ and N denotes normal distribution
with mean µi and variance σi. Moreover, Xi j and X` j′ are independent for any j , j′.

Assumption 1 implies that the output data from each system is marginally IID normally distributed
and systems are simulated independently (thus no common random numbers).

Assumption 2. µ1−δ ≥ µ2 ≥ . . . ≥ µk−1 ≥ µk for δ ∈ R+.

Without loss of generality, we assume that system 1 is the best and at least δ better than any alternative
system. The user-specified parameter δ is the IZ parameter, a practically meaningful difference worth
detecting. Then selection-of-the-best is to guarantee that under Assumptions 1 and 2 the following
probability statement holds:

PCS = Pr{select system 1} ≥ 1−α.

Some notation is defined as follows. Let c be a positive integer, I(.) be the indicator function, an integer
n0 ≥ 2 be the initial sample size of each system, r be the current number of replications. For i, ` = 1,2, . . . ,k,
we define

X̄i(r) ≡ 1
r

r
∑

j=1

Xi j, the sample mean of system i based on the first r observations;

σ2
i` ≡ σ2

i +σ
2
` , the variance of the difference between systems i and `;

R(r;a,b,d) ≡ max

{

0,
bd
a
− a

2c
r

}

for a positive integer c and any a,b,d ∈ R+;

g(η) ≡
c

∑

`=1

(−1)`+1
(

1− 1
2
I(` = c)

)

exp

{

−η(2c− `)`
c

}

for a positive integer c;

W(t) ≡ a standard Brownian motion process;

W(t,∆) ≡ a standard Brownian motion process with drift ∆;
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Figure 1: Triangular continuation region and decisions.

To illustrate how a typical fully sequential procedure works, we present a procedure from Wang and
Kim (2011) under known variances, which is an extended version of a procedure due to Paulson (1964).

Procedure (P)

Setup: Select the nominal level 1−α and the IZ parameter δ. Calculate η from g(η) = α/(k− 1). Set
I = {1,2, . . . ,k}, take one observation from each system. Set r = 1 and go to Screening.

Screening: Set Iold
= I. Let

I =



















i : i ∈ Iold and
r

∑

j=1

(Xi j−X` j) ≥ −R(r;δ,η,σ2
i`) for i, ` ∈ Iold and i , `



















.

Stopping Rule: If |I| = 1, then stop and select the remaining system as the best one. Otherwise, take one
additional observation Xi,r+1 from each active system i ∈ I, set r = r+1, and go to Screening.

Remark: When c < ∞, R(r; ·) defines a triangular continuation region as shown in Figure 1 but when
c =∞, it becomes a parallel line.

A typical fully sequential procedure observes
∑r

j=1(Xi j − X` j), a partial sum of differences between
systems i and ` and one system is eliminated whenever the partial sum exits a triangular continuation region
defined by (−R(r; ·),R(r; ·)).

3. NEW PROCEDURE

In this section, we propose a new procedure under the assumption that variances are known. The new
procedure is as follows:

3994



Kim and Dieker

New Procedure

Setup: Select the nominal level 1−α and the IZ parameter δ. Set β = 2α/(k−1) and calculate
η = −λ ln β

1−β for λ ∈ R+ (the choice of λ will be discussed later in Section 4). Set I = {1,2, . . . ,k}
and take one observation from each system. Set r = 1 and go to Screening.

Screening: If |I| ≥ 3, for each possible group of 3 systems in I, apply [Screening-a]. Else if
|I| = 2, apply [Screening-b]:

Screening-a: Sort systems based on sample means X̄[1](r) ≥ X̄[2](r) ≥ X̄[3](r) where [i] is the
identity of a system with the ith largest sample mean in the current group. System [3] is
eliminated from I if





















∑r
j=1(X[1] j−X[3] j)

η×
σ2

[1][3]

δ





















2

+





















∑r
j=1(X[2] j−X[3] j)

η×
σ2

[2][3]

δ





















2

≥ 1. (1)

Screening-b: Sort the survived systems X̄[1](r) ≥ X̄[2](r) and system [2] is eliminated from I if





















∑r
j=1(X[1] j−X[2] j)

η×
σ2

[1][2]

δ





















2

≥ 1. (2)

Stopping Rule: If |I| = 1, return the survived system as the best. Otherwise, set r = r+1, obtain
one additional observations for all i ∈ I, and repeat [Screening].

Note that (1) defines an ellipse and the inequality implies that system [3] is eliminated when the
coordinate of the partial sums of differences between systems [1] and [3] and systems [2] and [3] exits the
region defined by the ellipse. When there are only two systems still in play, (2) implies that system [2]
is eliminated when the partial sum between systems [1] and [2] is greater than η×σ2

[1][2]/δ, which is the
same rule as in Procedure (P) when c =∞.

4. PROBABILITY OF CORRECT SELECTION

The new procedure is not statistically valid but heuristic. However, we can approximate the lower bound
on probability of correct selection (PCS) for k = 3 when variances are known and equal and means follow
a slippage configuration (SC) in which µ1− δ = µ2 = µ3. The SC is considered as the most difficult mean
configuration in many R&S procedures for the-selection-of-the-best problem (Kim and Nelson 2006b).
Then we discuss how to use the bound for k = 3 to make the new procedure work for general k at the end
of this section.

Under the known and equal variances, σ2
1 = σ

2
2 = σ

2
3 = σ

2 and σ2
i` = 2σ2. We assume that the three

systems satisfy Assumptions 1. There are three ways of making an incorrect selection (ICS) which defines
the following three events:

ICS1 ≡ the event that system 1 is eliminated first;

ICS2 ≡ the event that system 2 is eliminated first and then system 1 is eliminated; and

ICS3 ≡ the event that system 3 is eliminated first and then system 1 is eliminated.

Then the probability of incorrect selection is defined as follows:

Pr{ICS} = Pr
{

eliminate system 1
}

= Pr{ICS1}+Pr{ICS2}+Pr{ICS3}.
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W1(t,−δs)

W2(t,−δs)

∆ = (−δs,−δs)

η/δs

W1(t,−δs)

W2(t,−δs)

∆ = (−δs,−δs)

η/δs

Figure 2: The first quadrant of the circle for the new procedure.

Some additional notation is needed.

Ci`(r) ≡
r

∑

j=1

Xi j−X` j

σi`
;

Ci(r) ≡ (C1i(r), . . . ,Ci−1,i(r),Ci+1,i(r), . . . ,Cki(r)); and

O(a) ≡ {(x,y) ∈ R2 : x2
+ y2
= a2}.

4.1 ICS1

Consider Pr{ICS1}. The event ICS1 occurs if C1(r) = (C21(r),C31(r)) exits the inside region defined by the
circle O(η

√
2σ/δ) through the first quadrant and C2(r) and C3(r) have not crossed the circle through the

first quadrant yet. The first quadrant of the circle is shown in Figure 2. Let ICSb represent the event C1(r)
hits O(η

√
2σ/δ) in the first quadrant. Then Pr{ICS1} ≤ Pr{ICSb}. Note that if Assumption 1 holds, then it

is clear that a discrete process C1(r) behaves like a continuous process

W(t,∆) =

[

W1(t,−δs)
W2(t,−δs)

]

= ∆t+Σ1/2W(t),

where

δs =
δ
√

2σ
, ∆ =

[

−δs

−δs

]

, Σ =

[

1 0.5
0.5 1

]

, W(t) =

[

W1(t)
W2(t)

]

,

and W1(t) and W2(t) are independent standard Brownian motion processes. Moreover, Σ = QΛQT where

Q =

[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]

, Λ =

[

1.5 0
0 0.5

]

, and QT is a transpose of Q.
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√

2
3η/δs

( 1√
3
η

δs
,
η

δs
)

(− 2√
3
δs,0)

π/3

Figure 3: The circle from Figure 2 becomes an ellipse under the linear transformation Λ−1/2QT .

The event ICSb can be approximated by the event that W(t,∆) first hits O(η/δs) through the first
quadrant. Whether or not W(t,∆) exits the circle requires studying the Euclidean norm of W(t,∆). The
difficulty is that the coordinate processes are not independent. We first transform W(t,∆) into a vector with
independent coordinate processes by left-multiplying by Λ−1/2QT . Note that QT performs a clockwise
rotation by π/4 and that Λ−1/2 stretches the rotated circle into an ellipse as shown in Figure 3.

After this linear transformation, the process becomes

Λ
−1/2QTW(t,∆) =













− 2√
3
δs

0













t+W(t),

a vector of independent standard Brownian motion processes with drift. It is clear that the event ICSb is
the event that a Brownian motion with drift (− 2√

3
δs,0) first hits the ellipse at a point with −π/3 < θ < π/3

or equivalently 1√
3
η

δs
≤ x ≤

√

2
3
η

δs
. We next discuss how to find a tight upper bound for Pr{ICSb} using

intuition from the theory of large deviations.

Consider two lines LU = {(x,y) ∈ R2 : x = 1√
3
η

δs
} and LL = {(x,y) ∈ R2 : x = −

√

2
3
η

δs
} and a circle

O(
√

2
3η/δs). Figure 4 shows LU , LL, and the circle. Let C be the curve which consists of part of the line

LU and part of the circle. That is,

C =



















(x,y) ∈ R+×R+ : x2
+ y2
=















√

2
3
η

δs















2

for
1
√

3

η

δs
≤ x ≤

√

2
3
η

δs
and (

1
√

3

η

δs
,y),otherwise



















.

Then the following is true:

Pr{ICSb} ≤ Pr{the Brownian motion with drift (−2δs/
√

3,0) hits the curve C before LL} (3)
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LL LU

−
√

2
3η/δs

( 1√
3
η

δs
,
η

δs
)( 1√

6
η

δs
, 1√

2
η

δs
)

√

1
3η/δs

π/3

Figure 4: The lines LU , LL, and the circle O(
√

2
3
η

δs
).

The hitting distribution of a multidimensional drifting Brownian motion through fixed lines on either
side of the stochastic process is well-known and readily implementable (e.g., Karlin and Taylor 1975). For
this reason, instead of (3), it may be tempting to bound Pr{ICSb} from above by the probability that the
drifting Brownian motion hits LU before LL. This probability is small, but we can invoke the theory of
large deviations (Dembo and Zeitouni 1998) to deduce that this bound will not be sharp. Indeed, large
deviation theory predicts that the most likely way in which this event happens is for the process to hit LU

around the point ( 1√
3
η

δs
,0). Since this point is ‘far’ from the thick line in Figure 4, the bound will not

be sharp. By allowing a ‘dent’ in LU in the right place as in Figure 4, if the process hits LU before LL,
then large deviation theory predicts that each point along the dent is equally likely to be the hitting point.
It is therefore a tighter upper bound.As the curve C is in part line and in part circle, the analysis of the
probability on the right-hand side of (3) is considerably more delicate.

We condition on the point where the drifting Brownian motion first hits the circle O(
√

2
3η/δs).

Pr{ICSb} ≤ Pr{hit the curve C before hitting the ellipse}
≤ Pr{hit the circle in −π3 < θ <

π
3 }+

Pr{hit curve C before hitting the ellipse| hit the circle in π3 < θ <
5π
3 }×

Pr{hit the circle in π3 < θ <
5π
3 }

≤ Pr{hit the circle in −π3 < θ <
π
3 }+

Pr{hit line LU before LL| hit the circle in π3 < θ <
5π
3 }×Pr{hit the circle in π3 < θ <

5π
3 }

=

∫ π/3

−π/3

e{−
2
√

2
3 ηcosθ}

2πI0( 2
√

2
3 η)

dθ+2
∫ π

π/3

e{
4
√

2
3 ηcosθ}− e{−

4
√

2
3 η}

e{
4
3 η}− e{−

4
√

2
3 η}

e{−
2
√

2
3 ηcosθ}

2πI0( 2
√

2
3 η)

dθ, (4)
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where Iν(z) is a Bessel function defined as Iν(z) =
∑∞

q=0
(z/2)2q+ν

q!Γ(q+ν+1) for the gamma function Γ(·) and

Pr{hit line LU before LL| hit the circle in π3 < θ <
5π
3 } is from Theorem 5.2 of Karlin and Taylor (1975).

Note that the hitting distribution of a drifting Brownian motion to a circle is known explicitly and called
the Von Mises distribution. This distribution is closely related to the theory of Markov intertwinings and
Bessel processes, see Rogers and Pitman (1981) for details.

4.2 ICS2 and ICS3

Now consider Pr{ICS2}. This implies that C2(r) = (C12(r),C32(r)) exits the inner region defined by the
circle through the first quadrant before C1(r) or C3(r) does. The corresponding continuous process is

W(t,∆) =

[

W1(t, δs)
W2(t,0)

]

= ∆t+Σ1/2W(t),

where

δs =
δ
√

2σ
, ∆ =

[

δs

0

]

, Σ =

[

1 0.5
0.5 1

]

, W(t) =

[

W1(t)
W2(t)

]

.

We apply the linear transformation to make the coordinate process independent and obtain an independent
coordinate process

Λ
−1/2QTW(t,∆) =













δs√
3
−δs













t+W(t).

For system 2 to be eliminated first, Λ−1/2QTW(t,∆) should hit the ellipse for −π3 < θ <
π
3 . Remember that

Λ
−1/2QTW(t,∆) is a corresponding continuous process of Λ−1/2QT C2(r) and

Λ
−1/2QT C2(r) = Λ−1/2QT





















∑r
j=1(X1 j−X2 j)√

2σ
∑r

j=1(X3 j−X2 j)√
2σ





















=





















∑r
j=1(X1 j−2X2 j+X3 j)√

6σ
∑r

j=1(X3 j−X1 j)√
2σ





















.

Thus one can see that the value of the vertical axis ofΛ−1/2QTW(t,∆) when a hitting occurs is approximately
the value of C31(r) at that time. Once the hitting to the ellipse occurs, C31(r) starting from the hitting point
should hit η/δs before −η/δs to ensure that system 1 is eliminated (thus, ICS2).

Now we derive the value of the vertical axis, y, as a function of θ when a hitting occurs on the ellipse
for −π3 < θ <

π
3 . As the equation of the ellipse is

























x
√

2
3
η

δs

























2

+

















y
√

2 η
δs

















2

= 1,

we get the coordinate of the horizontal axis

x =

√

2
3
η

δs

√

√

√

√

1−
















y
√

2 η
δs

















2

for − π
3
< θ <

π

3
.

Then

tanθ =
y

√

2
3
η

δs

√

1−
(

y√
2 η
δs

)2
=

√
3γ

√

1−γ2
where γ =

y
√

2 η
δs

.
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After some algebra, we get

γ = ±

√

(tanθ)2

3+ (tanθ)2
and y = ±

√
2
η

δs

√

(tanθ)2

3+ (tanθ)2
.

This implies that when Λ−1/2QTW(t,∆) hits the ellipse for −π3 < θ < 0,

C31(r) ≈























−
√

2 η
δs

√

tanθ2
3+tanθ2 , −

π
3 < θ < 0

√
2 η
δs

√

tanθ2
3+tanθ2 , 0 < θ < π3 .

Thus,

Pr{ICS2} ≤ Pr{C31(r) reaches η/δs before −η/δs | starting from the hitting point}×
Pr{C2(r) first hits the ellipse for −π3 < θ <

π
3 }

≤ Pr{C31(r) reaches η/δs before −η/δs | starting from the hitting point}×

Pr{C2(r) first hits circle O(
√

2
3η/δs) for −π3 < θ <

π
3 }

=

∫ 0

− π3

exp(−2
√

2η
√

tanθ2
3+tanθ2 )− exp(−2η)

exp(2η)− exp(−2η)
e{

2
√

2
3 ηcos(θ+π/3)}

2πI0( 2
√

2
3 η)

dθ+

∫ π
3

0

exp(2
√

2η
√

tanθ2
3+tanθ2 )− exp(−2η)

exp(2η)− exp(−2η)
e{

2
√

2
3 ηcos(θ+π/3)}

2πI0( 2
√

2
3 η)

dθ. (5)

Under the assumption of equal variances and µ2 = µ3, the probability of ICS3 is equal to that of ICS2
and thus it will have the same bound as in (5).

We take η in a form of η = −λ ln α
1−α for k = 3 because the form is in a similar form of a constant in

Procedure (P) or Paulson (1964). More specifically, when c =∞, Procedure(P) takes the constant equal
to −0.5ln( β1−β ) where β = α/(k− 1). The values of (4) and (5) for various λ are given in Table 1 when

σ2
= 1, µ1 = µ2 = 0, µ3 = 0.3, δ = 0.3 and α = 0.05 with 10,000 macro replications:

Table 1: Approximate values of bounds (4) and (5) under three different values of λ.

λ (4) (5)
0.6 0.0685 0.0181
0.65 0.0550 0.0143
0.7 0.0441 0.0113

The number of possible groups of three that contains system 1 and two alternatives that are not members
of other groups is (k−1)/2. To apply the procedure for a general k, we heuristically takes η = −λ ln β

1−β
where β = 2α/(k−1), which is same as splitting the overall error α into (k−1)/2 groups of three using the
Bonferroni bounds. Paulson’s procedure splits α into (k−1) pairs.

5. EXPERIMENTS

In this section, we test the performance of the new procedure under various mean configurations and
compare it with Procedure(P). The number of systems k varies over 3,5,10,25,and 100 and the nominal
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confidence level is 1−α = 0.95. Two mean configurations are considered: SC and monotonic decreasing
means configuration (MDM). Under SC, µ1 = δ and µi = 0 for i = 2, . . . ,k. Under MDM, µi = (2− i)δ. We
consider equal variances only and variances are set to σ2

i = 1 for all i.

Tables 2 and 3 show some preliminary results of the new procedure: average total number of obser-
vations (REP) and estimated PCS based on 10,000 macro replications for the new procedure for various k
under the SC and MDM configurations, respectively. They also shows REP for Paulson’s procedure from
Section 2 for comparison. At least the first three digits in REP are meaningful and the estimated PCS are
meaningful up to the hundredth digit.

The new procedure outperforms Paulson for all configurations for both values of λ except λ = 0.7 and
k = 3. We see more savings under MDM configuration and the amount of savings increases as k increases.
This implies that the new procedure is more effective in eliminating inferior systems than Procedure (P).
Although Table 1 shows that λ = 0.7 is needed to guarantee the lower bound on PCS is close to the nominal
level, our results show that λ = 0.6 results in estimated PCS more close to the nominal value while satisfying
the PCS requirement.

Table 2: Total number of replications and estimated PCS under the SC configuration.

New (λ = 0.6) New (λ = 0.7) Procedure (P)
k REP PCS REP PCS REP
3 122 0.955 145 0.973 141
5 238 0.953 290 0.974 292
10 529 0.952 638 0.973 693
25 1423 0.954 1715 0.979 2044
100 6108 0.952 7603 0.982 9978

Table 3: Total number of replications and estimated PCS under the MDM configuration.

New (λ = 0.6) New (λ = 0.7) Procedure (P)
k REP PCS REP PCS REP
3 96 0.974 114 0.986 117
5 144 0.992 169 0.996 192
10 209 0.999 244 0.999 306
25 296 1.000 348 1.000 479
100 421 1.000 505 1.000 847

6. CONCLUSION

We present a new fully sequential procedure that takes a different paradigm than existing procedures.
The new procedure compares systems in a group of three and inferior systems tend to be eliminated
faster than the procedures based on pairwise comparisons. The discussion in the paper is based on the
assumption that variances are known and equal, which is unrealistic. The relaxation of the assumption
of equal variances requires more complicated linear transformation to obtain independent components in
the continuous bivariate Brownian motion process. A procedure designed under known variances can be
extended to unknown variances by adopting variance updates as in Kim and Nelson (2006a) or Malone
et al. (2005). Extending the new procedure to unknown and unequal variances is a topic of our ongoing
research.
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