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ABSTRACT

We consider a constrained optimization problem over a discrete set where noise–corrupted observations of
the objective and constraints are available. The problem is challenging because the feasibility of a solution
cannot be known for certain, due to the noisy measurements of the constraints. To tackle this issue, we
propose a new method that converts constrained optimization into the unconstrained optimization problem
of finding a saddle point of the Lagrangian. The method applies stochastic approximation to the Lagrangian
in search of the saddle point. The proposed method is shown to converge, under suitable conditions, to
the optimal solution almost surely (a.s.) as the number of iterations grows. We present the effectiveness of
the proposed method numerically in two settings: (1) inventory control in a periodic review system, and
(2) staffing in a call center.

1 INTRODUCTION

We consider the simulation–based optimization problem of the form:

min
θ∈C∩Zd

f 0(θ) (1)

s/t f i(θ)≤ 0, 1≤ i≤ r,

where C is a nonempty closed convex subset of Rd , and f i : Zd → R (0 ≤ i ≤ r) has no analytic form
and thus must be computed only through simulation at each θ in Zd . Such functions f i often arise in
the setting of a complex stochastic system where one performance measure is described by f 0 and the
other performance measures are denoted by f i (1≤ i≤ r). One such example is an inventory system with
discrete demand processes, where the goal is to minimize the average ordering and holding costs per unit
time while achieving a prescribed level of customer service.

The problem of minimizing an unconstrained function over a discrete set has received a considerable
amount of attention from the research community, and a number of methods are proposed in the literature;
see Goldsman and Nelson (1994), Andradóttir (1995), Yan and Mukai (1992), Ho, Sreenivas, and Vakili
(1992), Shi and Olafsson (2000), Hong and Nelson (2006), Kleywegt, Shapiro, and Homem-de-mello (2001),
Gelfand and Mitter (1989), Glover (1989), and Liepins and Hilliard (1989). For more comprehensive survey,
see Nelson (2010), Henderson and Nelson (2006), and Fu (2002).

However, when the simulation–based optimization problem has stochastic constraints, a limited number
of methods are available in the literature. In the presence of one stochastic constraint, Andradóttir et al.
(2005) and Andradóttir and Kim (2010) propose a two–phase procedure where the first phase identifies all
feasible solutions or near–feasible solutions with a pre–specified probability of correct identification, and
the second phase solves the problem with the solutions identified in the first phase. Batur and Kim (2001)
apply a ranking and selection procedure to identify a feasible solution while Pujowidianto et al. (2009)
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address how to allocate computer time in an optimal way among the solutions in order to maximize the
probability of correctly identifying the optimal solution. These methods have a requirement that all the
solutions be simulated as least once, so they are more appropriate to the setting where the domain of f 0

is finite and contains a small number of elements.
In the presence of multiple constraints, the idea of replacing a constrained optimization problem with

an unconstrained one by adding a penalty function to the objective function has been investigated; Li et al.
(2009) combine a penalty function type method with a random search scheme, and Whitney et al. (2001)
incorporate a penalty function type method into a gradient–based search scheme. However, the convergence
of these methods is not guaranteed or is based on restrictive assumptions that are difficult to verify.

Another way of transforming a constrained problem to an unconstrained one is to use the Lagrangian
function. The idea of using the Lagrangian function has already been adopted when the decision variables
are continuous (see Kushner and Sanvicente (1975) and p. 177 of Kushner and Clark (1978) for example),
but this idea has never been explored in the setting of discrete decision variables. This paper explores this
idea in the discrete setting and studies the effectiveness of this approach. One of our motivations is that
in the deterministic optimization problem, the Lagrangian method has certain advantages over the penalty
function type methods because most penalty function type methods suffer from numerical instabilities as
the controlling parameter becomes too large or too small, see Murray (1967) for example.

Our proposed approach, therefore, observes that the minimizer of the constrained problem (1) can
be found by finding the saddle point of the corresponding Lagrangian L : Zd ×Rr

+ → R defined by
L(θ ,λ ) = f 0(θ)+∑

r
i=1 λ i f i(θ) for θ ∈ Zd and λ = (λ 1, . . . ,λ r) ∈Rr

+; i.e., if L has a saddle point (θ∗,λ∗)
satisfying L(θ∗,λ ) ≤ L(θ∗,λ∗) ≤ L(θ ,λ∗) for all θ ∈C∩Zd and λ ∈ Rr

+, then θ∗ is a minimizer of f 0

subject to the constraints f i ≤ 0 for 1≤ i≤ r. From this observation, we reformulate (1) as

max
λ∈Rr

+

min
θ∈C∩Zd

L(θ ,λ ) (2)

and propose a gradient–based method to solve (2). In particular, we wish to apply stochastic approximation
to L (and hence update θ in the steepest descent direction and λ in the steepest ascent direction in each
iteration) in search of the saddle point of L. Stochastic approximation requires gradient estimates of L in
each iteration, but θ is integer–valued; therefore, the gradient of L with respect to θ cannot be defined
in a traditional way. To overcome this obstacle, we extend L from Zd×Zr

+ to Rd×Rr
+ by extending f i

(0 ≤ i ≤ r) from a discrete domain to a continuous domain and using the extended f is to construct the
extended L, and compute the gradient of the extended L in the usual way. The gradient of the extended L is
then used in each iteration of stochastic approximation in search of the solution to (2). The main theorem
of this paper (Theorem 1) proves that this procedure is convergent to the optimal solution of the original
problem (1) a.s. under suitable conditions.

We illustrate the effectiveness of our proposed method numerically in two settings: (1) inventory
control in a periodically–reviewed single–item inventory system, and (2) staffing in a call center that
handles multiple types of calls while maintaining a satisfactory level of customer service. The proposed
method performs displays good performance when compared with alternative approaches.

The main advantages of the proposed method can be summarized as follows: (1) it is designed to
handle stochastic constraints when the number of feasible solutions is large or infinite, (2) it is shown to
be convergent to the optimal solution a.s. under certain technical conditions, and (3) it shows promising
numerical performance in various examples.

This paper is organized as follows. In Section 2, we introduce some definitions. Section 3 describes
our proposed method formally and states the main theorem (Theorem 1) of this paper. Numerical results
are presented in Section 4.
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2 DEFINITIONS

In this section, we introduce some definitions that will be used throughout this paper. For a positive
integer m, Zm, Rm, and Rm

+ denote the set of m–dimensional integer vectors, the set of m–dimensional real
vectors, and the set of m–dimensional nonnegative real vectors, respectively. We view vectors as columns
and write xT to denote the transpose of a vector x ∈ Rm. For x ∈ Rm, we write its jth component as x j,
so x = (x1, . . . ,xm). By ‖x‖, we denote ((x1)2 + · · ·+(xm)2)1/2. For a subset I of {1, . . . ,m}, χI is an
m–dimensional vector whose jth entry is 1 when j belongs to I and 0 otherwise (1≤ j ≤ m). We denote
χ{ j} by e j (1≤ j ≤ m).

For x ∈ R, bxc and dxe denote the largest integer less than or equal to x and the smallest integer
greater than or equal to x, respectively. For x = (x1, . . . ,xm) ∈Rm, bxc and dxe denote (bx1c, . . . ,bxmc) and
(dx1e, . . . ,dxme), respectively. We denote the closest integer point to x ∈ Rm by [x].

For a function g : Rm → R, a vector ξ ∈ Rm is said to be a subgradient of g at x ∈ Rm if g(y) ≥
g(x)+ ξ T (y− x) for all y ∈ Rm. If g is convex, then a subgradient of g at x exists at every x ∈ Rm (see
Theorem 23.4 in p. 217 of Rockafellar (1970)).

For a function g : Rm→ R, the partial derivative of g with respect to the jth component at x ∈ Rm is
denoted by ∂g(x)/∂x j for 1≤ j ≤ m if the partial derivative exists.

For x ∈ R, max(0,x) is x if x≥ 0, and zero otherwise.

3 PROBLEM FORMULATION

3.1 General Approach

We consider the following problem

min
θ∈C∩Zd

f 0(θ) (3)

s/t f i(θ)≤ 0, 1≤ i≤ r,

where C is a nonempty closed convex subset of Rd and we can observe f i : Zd → R (0 ≤ i ≤ r) via
simulation at each θ ∈ Zd .

To convert (3) into an unconstrained problem, we consider the Lagrangian L : Zd×Rr
+→ R defined

as follows:

L(θ ,λ ) = f 0(θ)+
r

∑
i=1

λ
i f i(θ)

for θ ∈ Zd and λ = (λ 1, . . . ,λ r) ∈Rr
+. We observe that if θ∗ ∈C∩Zd and λ∗ = (λ 1

∗ , . . . ,λ
r
∗) ∈Rr

+ satisfy

i) θ∗ minimizes L(θ ,λ∗) over θ ∈C∩Zd , and
ii) For 1≤ i≤ r, λ i

∗ > 0 implies f i(θ∗) = 0 and λ i
∗ = 0 implies f i(θ∗)≤ 0,

then θ∗ is an optimal solution to (3). To see why this is true, we note that i) and ii) imply that θ∗ ∈F , where
F ,

{
θ ∈C∩Zd : f i(θ)≤ 0 for 1≤ i≤ r

}
. In addition, for any θ ∈F , we have f 0(θ∗)+∑

r
i=1 λ i

∗ f i(θ∗)≤
f 0(θ)+∑

r
i=1 λ i

∗ f i(θ), and hence, f 0(θ∗)≤ f 0(θ)+∑
r
i=1 λ i

∗
(

f i(θ)− f i(θ∗)
)
≤ f 0(θ).

Furthermore, it can be easily seen that i) and ii) are equivalent to the condition

L(θ∗,λ )≤ L(θ∗,λ∗)≤ L(θ ,λ∗)

for all θ ∈C∩Zd and λ ∈ Rr
+; i.e., (θ∗,λ∗) is a saddle–point of L.

Therefore, it is reasonable to attempt to find the optimal solution to (3) by solving

max
λ∈Rm

+

min
θ∈C∩Zd

L(θ ,λ ). (4)
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In our proposed method, we search for the solution to (4) by updating θ and λ iteratively using a
gradient–based method. One obstacle to this approach is that L has a discrete input variable θ , so it is
impossible to define the gradient of L with respect to θ in a traditional way. To overcome this, we extend
L from Zd ×Rr

+ to Rd ×Rr
+ and compute the gradient of the extended L in the usual way. In order to

extend L, we extend f i (0≤ i≤ r) from Zd to Rd and use the extended functions to extend L. In particular,
we denote the extension of f i by f̂ i ( f̂ i : Rd → R) for 0≤ i≤ r and define L̂ : Rd×Rr

+→ R by

L̂(θ ,λ ) = f̂ (θ)+
r

∑
i=1

λ
i f̂ i(θ)

for θ ∈ Rd and λ = (λ 1, . . . ,λ r) ∈ Rr
+.

Our proposed method then solves

max
λ∈Rr

+

min
θ∈C∩Rd

L̂(θ ,λ ) (5)

in the hope of solving (4). We observe that if (θ̂∗, λ̂∗) solves (5), then θ̂∗ solves the following problem:

min
θ∈C∩Rd

f̂ 0(θ) (6)

s/t f̂ i(θ)≤ 0, 1≤ i≤ r

(see Theorem 2.18 in p. 48 of Zangwill (1969)), which can be viewed as a relaxed version of (3). Thus the
remaining question is the relationship between the solution to (6) and the solution to (3). The following
proposition confirms their relationship in the case where the solution to (6) is an integer point; see Luo
and Lim (2011) for a proof.

Proposition 1 Suppose that there exists a solution to (6), say θ̂∗, and that θ̂∗ ∈ Zd . Then θ̂∗ is a solution
to (3). Therefore, if (θ̂∗, λ̂∗) is a saddle point of L̂, i.e.,

L̂(θ̂∗,λ )≤ L̂(θ̂∗, λ̂∗)≤ L̂(θ , λ̂∗)

for all θ ∈C∩Rd and λ ∈ Rr
+, and θ̂∗ is an integer point, then θ̂∗ is an optimal solution to (3).

Given the relationship between the saddle point of L̂ and the solution to (3), the proposed method
applies stochastic approximation to L̂ in order to search for the saddle point. Denoting the nth estimator of
the saddle point of L̂ by (θn,λn), we update θn and λn as follows. Given (θ1,λ1), . . . ,(θn,λn), we observe a
quantity−Dn(θn,λn) that guides us towards the steepest descent direction in θ (−Dn(θn,λn) can interpreted
as the negative of the derivative of L̂ with respect to θ if L̂ is differentiable in θ or the negative of the
subgradient of L̂ in θ if L̂ is convex in θ ). We then update θn by the recursion

θn+1 = ΠC (θn− cnDn(θn,λn)) ,

where ΠC(θ) is the closest point in C to θ ∈ Rd with respect to the norm ‖ · ‖. (cn : n≥ 1) is a sequence
of positive real numbers.

Using the fact that

∂ L̂(θ ,λ )/∂λ
i = f̂ i(θ)

for 1≤ i≤ r provided that the partial derivative exists, we update λn by the recursion

λ
i
n+1 = max

(
0,λ i

n + cnF i(θn)
)
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for 1≤ i≤ r, where F i(θn) is an observation of f̂ i at θn.
Finally, we assume that there exists a known bound K for a saddle point of L̂; i.e., there exists a positive

constant K such that |θ̂ i
∗| ≤ K for 1≤ i≤ d and |λ̂ i

∗| ≤ K for 1≤ i≤ r, where (θ̂∗, λ̂∗) is a saddle point of
L̂. With this additional information, we project (θn,λn) onto B , {(θ ,λ ) ∈Rd×Rr : |θ i| ≤ K for 1≤ i≤
d, |λ i| ≤ K for 1≤ i≤ r} and the projected point is (θn+1,λn+1).

Our proposed method takes the following form in general:

Algorithm 1: General Form of the Proposed Method
Step 0. Initialize: Select a starting point (θ0,λ0) ∈ Zd×Rr. Set n = 0.
Step 1. Update θn and λn: Generate observations Dn(θn,λn) and F i(θn) for 1≤ i≤ r and set

θ n+1 = ΠC (θn− cnDn(θn,λn)) ,

λ
i
n+1 = max

(
0,λ i

n + cnF i(θn)
)

for 1≤ i≤ r.
Step 2. Project (θ n+1,λ n+1) onto B and set the projected point equal to (θn+1,λn+1).
Step 3. Let n = n+1 and go to Step 1.

To investigate the asymptotic behavior of ((θn,λn) : n≥ 1), we focus on the case where f̂ i (0≤ i≤ r)
is convex. In this case, differentiability of f̂ i is not necessary; only Dn needs to be an unbiased estimate
of a subgradient of L̂ in θ and F i needs to be an unbiased estimate of f̂ i for 1 ≤ i ≤ r. Below are the
assumptions of the main theorem (Theorem 1). For a proof of Theorem 1, see Luo and Lim (2011).

A1. (cn : n≥ 1) is a sequence of positive numbers satisfying ∑
∞
n=1 cn = ∞ and ∑

∞
n=1 c2

n ≤ ∞.
A2. f̂ 0 is strictly convex and f̂ i (1≤ i≤ r) is convex.
A3. There exists η ∈C such that f̂ i(η)< 0 for 1≤ i≤ r. The optimal value of (6) is finite.
A4. E [Dn(θn,λn)|Fn] is a subgradient of L̂ at (θn,λn) as a function of θ ; i.e.,

L̂(θ ,λn) ≥ L̂(θn,λn)+E [Dn(θn,λn)|Fn]
T (θ −θn) (7)

for all θ ∈ Rd . In addition, we have

E
[
F i(θn)|Fn

]
= f̂ i(θn) (8)

for 1≤ i≤ r and n≥ 1,

E
[
‖Dn(θn,λn)−E [Dn(θn,λn)|Fn]‖2|Fn

]
< σ

2, (9)

for n≥ 1, and

E
[
(F i(θn)−E

[
F i(θn)|Fn

]
)2|Fn

]
< σ

2 (10)

for 1 ≤ i ≤ r and n ≥ 1 for some positive constant σ2, where Fn is the σ–field generated by
(θ1,λ1), . . . ,(θn,λn).

Theorem 1 Under A1–A4, i) there exists a saddle point (θ̂∗, λ̂∗) of L̂, ii) θ̂∗ is unique, and iii) θn→ θ̂∗
a.s. as n→ ∞. By Proposition 1, if θ̂∗ is an integer point, then θ̂∗ is a solution to (3).
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3.2 Extension via Piecewise Linear Interpolation

The continuous extensions f̂ i (0≤ i≤ r) introduced in Section 3.1 can be chosen arbitrarily. However to
make our procedure more concrete, we introduce one possible way of extending functions from Zd to Rd .
In particular, we consider extending a function h : Zd → R via the piecewise linear interpolation over a
particular partition of Rd as follows. For θ ∈ Rd , we let p = bθc and q = (q1, . . . ,qd) = θ − p. σ is the
permutation of (1, . . . ,d) such that σ( j) is the index of the jth largest of q1, . . . ,qd (if qσ( j) = qσ(k) for
some j and k, then let σ( j)> σ(k) when j > k). We set U0 = /0 and U j = {σ(1), . . . ,σ( j)} for 1≤ j ≤ d.
We define h̃ : Rd → R by

h̃(θ) =
(

1−qσ(1)
)

h(p)+
(

qσ(1)−qσ(2)
)

h(p+χU1)

+ · · ·+
(

qσ(d−1)−qσ(d)
)

h
(

p+χUd−1

)
+qσ(d)h(p+χUd ) . (11)

By construction, h̃(θ) = h(θ) for θ ∈ Zd , so h̃ is a continuous extension of h over Rd .
Even though h̃ is not differentiable at some points in Rd , a subgradient of h̃ can be easily computed

when h̃ is convex. We define ϕ h̃(θ) = (ϕ h̃ j(θ) : j = 1, . . . ,d) by

ϕ h̃ j(θ) = h̃(p+χUk)− h̃(p+χUk−1) (12)

for θ ∈ Rd , where q j = qσ(k).
The following propositions prove that ϕ h̃(θ) is a subgradient of h at θ ∈ Rd when h̃ is convex; see

Luo and Lim (2011) for proofs.

Proposition 2 Let h : Zd → R be given and h̃ : Rd → R be defined by (11). For any θ ∈ Rd and δ > 0,
i) there exists θδ ∈ Rd such that ‖θ −θδ‖ ≤ δ , ii) h̃ is differentiable at θδ , iii) ϕ h̃(θ) = ϕ h̃(θδ ), and iv)
ϕ h̃(θδ ) is the gradient of h̃ at θδ .

Proposition 3 Let h : Zd → R be given and h̃ and ϕ h̃ be defined by (11) and (12), respectively. If h̃ is
convex, then ϕ h̃(θ) is a subgradient of h̃ at θ ∈ Rd .

We are now ready to discuss how this strategy of constructing an extension can be adopted in the
proposed method. We define the extensions f̃ i : Rd → R (0≤ i≤ r) via the linear interpolation by

f̃ i(θ) =
(

1−qσ(1)
)

f i(p)+
(

qσ(1)−qσ(2)
)

f i(p+χU1)

+ · · ·+
(

qσ(d−1)−qσ(d)
)

f i (p+χUd−1

)
+qσ(d) f i (p+χUd ) (13)

for θ ∈Rd , where p, q, σ , U0, . . . ,Ud are defined as before. Using these functions, a continuous extension
L̃ : Rd×Rr→ R of L is defined as

L̃(θ ,λ ) = f̃ 0(θ)+
r

∑
i=1

λ
i f̃ i(θ)

for θ ∈ Rd and λ ∈ Rr
+.

We next define ϕ f̃ i(θ) = (ϕ f̃ i
j(θ) : j = 1, . . . ,d) for 0≤ i≤ r by

ϕ f̃ i
j(θ) = f̃ i(p+χUk)− f̃ i(p+χUk−1) (14)

for θ ∈ Rd , where q j = qσ(k). Propositions 2 and 3 justify our choice of ϕ f̃ i as a subgradient of f̃ i.
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With the f̃ is as the extended functions, our proposed method proceeds as follows. We denote the nth
estimator of the saddle point of L̃ by (θn,λn). Given (θ1,λ1), . . . ,(θn,λn), we observe f i (0 ≤ i ≤ r) at
pn +χUk for 0≤ k ≤ d, and presume that

Y i
n(k) = f i(pn +χUk)+ εn(k), (15)

where pn = bθnc, qn = (q1
n, . . . ,q

d
n) = θn− pn, σn is the permutation of (1, . . . ,d) such that σn( j) is the

index of the jth largest of q1
n, . . . ,q

d
n (if qσn( j)

n = qσn(k)
n for some j and k, then let σn( j) > σn(k) when

j > k), U0 = /0, Uk = {σn(1), . . . ,σn(k)} for 1≤ k≤ d, and (εn(k) : 0≤ k≤ d,n≥ 1) are mean zero random
variables. We then update θn and λn by the recursion

θn+1 = ΠC (θn− cnDn(θn,λn)) ,

λ
i
n+1 = max

(
0,λ i

n + cn

(
(1−qσ(1)

n )Y i
n(0)+ · · ·+qσ(d)

n Y i
n(d)

))
for 1≤ i≤ r, where the jth element of Dn(θn,λn) is Y 0

n (k)−Y 0
n (k−1)+∑

r
i=1 λ i

n
(
Y i

n(k)−Y i
n(k−1)

)
with

q j
n = qσ(k)

n . We then project (θn+1,λn+1) onto B and the projected point becomes (θn+1,λn+1).
We observe that under the assumption that the εn(k)s are mean zero random variables, (14) and (15)

imply

E [Dn(θn,λn)|(θ1,λ1), . . .(θn,λn)] = ϕ f̃ (θn)+
r

∑
i=1

λ
i
nϕ f̃ i(θn).

Below is the proposed method when we adopt the above procedure.

Algorithm 2: Proposed algorithm with Extensions via Linear Interpolation
Step 0. Initialize: Select a starting point (θ0,λ0) ∈ Zd×Rr. Set n = 0.
Step 1. Update θn and λn: Generate an observation Y i

n(k) of f i at pn + χUk for 0 ≤ i ≤ r and
0≤ k ≤ d, where pn and the Uks are defined as before. Set

θ n+1 = ΠC (θn− cnDn(θn,λn)) ,

λ
i
n+1 = max

(
0,λ i

n + cn

(
(1−qσ(1)

n )Y i
n(0)+ · · ·+qσ(d)

n Y i
n(d)

))
,

where the jth element of Dn(θn,λn) isY 0
n (k)−Y 0

n (k−1)+∑
r
i=1 λ i

n
(
Y i

n(k)−Y i
n(k−1)

)
with q j

n = qσ(k)
n .

Step 2. Project (θ n+1,λ n+1) onto B and set the projected point equal to (θn+1,λn+1).
Step 3. Let n = n+1 and go to Step 1.

To analyze the behavior of ((θn,λn) : n ≥ 1) generated from Algorithm 2, we shall impose some
assumptions. In particular, we require:

A5. f̃ 0 is strictly convex and f̃ i (1≤ i≤ r) is convex.
A6. There exists η ∈ Rd such that f̃ i(η) < 0 for 1 ≤ i ≤ r. Let f∗ = minθ∈C∩Rd f̃ 0 subject to
f̃ i(θ)≤ 0 for 1≤ i≤ r and assume f∗ is finite.
A7. The εn( j)s are random variables satisfying

E [εn( j)|Fn] = 0

and
E
[
εn( j)2|Fn

]
< κ

2

for 0 ≤ j ≤ d, n ≥ 1, and some positive constant κ2, where Fn is the σ–field generated by
(θ1,λ1), . . . ,(θn,λn).
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From Theorem 1, we have the following corollary.

Corollary 2 Under A1 and A5–A7, i) there exists a saddle point (θ̃∗, λ̃∗) of L̃, ii) θ̃∗ is unique, and iii)
θn→ θ̃∗ a.s. as n→ ∞. By Proposition 1, if θ̃∗ is an integer point, then θ̃∗ is the solution to (3).

4 NUMERICAL RESULTS

In this section, we investigate the performance of the proposed algorithms in the following two settings:
(1) inventory control in a periodically–reviewed single–item inventory system, and (2) staffing in a call
center that handles multiple types of calls while maintaining a satisfactory level of customer service.

We compare the proposed method to the methods proposed by Whitney et al. (2001) and Ahmed et al.
(1997).

The method proposed in Whitney et al. (2001) incorporates a penalty function type method into the
objective function. At the nth iteration of the method proposed by Whitney et al. (2001), we generate
∆n = (∆1

n, . . . ,∆
d
n), where the ∆i

ns are independent and identically distributed (iid) random variables taking
values +1 or −1 with equal probability. Denoting the nth estimator of the optimal solution to (3) by θn,
we then generate an observation Y i

+ of f i at θn +∆n and an observation Y i
− of f i at θn−∆n for 0≤ i≤ r,

and update θn by the recursion
θn+1 = ΠC∩Bθ

(θn− [anHn(θn)]) ,

where the jth component of Hn(θn) is

((Y 0
++bn

r

∑
i=1

max(0,Y i
+))− (Y 0

−+bn

r

∑
i=1

max(0,Y i
−)))/(2∆

j
n)

for 1≤ j≤ d and ΠC∩Bθ
is the projection onto the set C∩Bθ with Bθ , {θ ∈Rd : |θ j| ≤K for 1≤ j≤ d}.

(an : n≥ 1) and (bn : n≥ 1) are sequences of positive real numbers.
On the other hand, at the nth iteration of the method proposed by Ahmed et al. (1997), we set the

neighborhood N (θn) of θn as

N (θn) = {θ ∈ Zd : ‖θ −θn‖= 1}, (16)

and choose a candidate for θn+1, say θ ′n, from N (θn) with equal probability. We then generate iid
observations of fi (1≤ i≤ r) at θ ′n and compute the sample mean and standard deviation, say f̂ i and σ̂ i,
of those observations. We consider θ ′n feasible if

f̂ i− tn−1,1−α σ̂
i ≤ 0

for 1≤ i≤ r, where tn−1,1−α is the upper 1−α critical point for the t distribution with n−1 degrees of
freedom. If θ ′n is considered feasible by this criterion, we generate an observation Yn of f 0 at θn and an
observation Y ′n of f 0 at θ ′n, and accept θ ′n as θn+1 if Y ′n ≤ Yn or exp(−(Y ′n−Yn)/Tf ) > Un, where Tf is
a positive constant and Un is a random variable uniformly distributed between 0 and 1. If Y ′n > Yn and
exp(−(Y ′n−Yn)/T ) ≤Un, then θn is chosen as θn+1. If θ ′n is not considered feasible, then θn is chosen
as θn+1. We repeat this procedure M times after which Tf is replaced by Tf R, where R < 1 is a positive
constant. The procedure is repeated M times again until Tf is replaced by Tf R again. This process is
repeated until a stopping criterion is satisfied.

The subsequent sections report the performance of the proposed method and other competing methods.

4.1 Inventory Control in a Periodic Review System

We consider a finite–horizon, periodically–reviewed, single–item inventory system with integer–valued iid
demands and full backlogging. Orders are received at the beginning of each period, the demand for the
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period arrives next, and we review the inventory position (= on hand stock minus backorders plus any
outstanding orders) to make an ordering decision. The ordering decisions are made according to the (s,S)
policy. If the inventory position is less than s, an order for the amount of S minus the inventory position
is placed. Otherwise, no action is taken. The order lead time is assumed to be zero. When an order of x
units is placed, the ordering cost of K + cx is incurred, where K is the fixed setup cost per order and c is
the unit cost. A holding cost of h per unit per period is charged against any unit left at the end of each
time period. The service level is measured using the fill rate, which is defined as the fraction of demand
that is met directly from stock on hand. By f (s,S), we denote the average ordering and holding costs per
period over 1,000 time periods when the inventory position at the beginning of the first period is initialized
at S and the system is governed by the (s,S) policy. By g(s,S), we denote the fill–rate over 1,000 time
periods when the inventory position at the beginning of the first period is initialized at S and the system
is governed by the (s,S) policy. Our goal is to determine the values s and S, say s∗ and S∗, that minimize
f (s,S) subject to the constraint that g(s,S) is greater than or equal to a prescribed level β .

We apply Algorithm 2, and the methods proposed by Whitney et al. (2001) and Ahmed et al. (1997) to
find (s∗,S∗). Whenever we observe f at each point in F1 , {(x,y)∈Z2 : 1≤ x≤ 100,1≤ y≤ 100,x≤ y} in
all three methods, the inventory system is simulated over 1,000 time periods, the ordering and holding costs
are averaged over the 1,000 time periods, and the average of 20 iid such replications is used as an observation
of f . Likewise, whenever we observe g at each point in F1, the inventory system is simulated over 1,000
time periods, the demand which is met directly from stock over the 1,000 periods is divided by the total
demand over the 1,000 periods, and the average of 20 iid such replications is used as an observation of g.
θ1 is set as (100,100) for all the three methods and λ1 = 275 is used for Algorithm 2. The parameters used
are cn = 500/(0.1N/60+n) for the first 10% of the total iterations available, cn = 50/(0.1N/60+n) for
the rest of the iterations available, an = 300/(0.1N/40+n),bn = 400,α = 0.95,Tf = 100,R = 0.6,M = 10,
K = 100,c = 3,h = 3, β = 0.95, and demand in each time period follows a Poisson distribution with a
mean of 30.

To compare the estimates of (s∗,S∗) produced by the proposed method and other methods to the true
values, s∗ and S∗ are estimated by evaluating f (s,S) and g(s,S), using the average of 100 iid replications at
each point in F1 and selecting the values s and S that minimize the estimated f value while the estimated
g value is greater than or equal to β . The “true” optimal solution estimated this way is (s∗,S∗) = (18,60).

Table 1: Averages and standard deviation of θl(N)+1.

Algorithm 2 Whitney et al. (2001) Ahmed et al. (1997)

N Mean Std Mean Std Mean Std

1000 (15,64) 8.8 (23,62) 15.7 (88,107) 13.3
2000 (17,61) 3.7 (18,61) 10.7 (75,106) 19.9
4000 (18,60) 1.4 (16,60) 3.7 (34,77) 21.1
8000 (18,60) 0.5 (17,60) 1.5 (24,66) 17.0
12000 (18,60) 0.3 (16,60) 0.9 (21,63) 14.6
16000 (18,60) 0.3 (16,60) 0.8 (19,61) 13.5
20000 (18,60) 0.3 (16,60) 0.8 (18,61) 12.8

(s∗,S∗) (18, 60) (18, 60) (18, 60)

Denoting the number of simulation runs made at iteration n by tn and fixing the total number N of
simulation runs available, we compute θl(N)+1 where l(N) is the maximum number of iterations given the
N simulation runs available; i.e., l(N) is the largest integer satisfying t1 + · · ·+ tl(N) ≤ N. Thus, θl(N)+1
is the best estimate of (s∗,S∗) given the computational budget N. We notice that both f and g can be
simultaneously computed in a single simulation run, so tn = 60,40, and 20 for Algorithm 2, the method by

4021



Luo and Lim

Whitney et al. (2001), and the method by Ahmed et al. (1997), respectively. Table 1 reports the averages
(Mean) of θl(N)+1 generated by Algorithm 2, the method by Whitney et al. (2001), and the method by
Ahmed et al. (1997) based on 200 independent copies of θl(N) for each value of N. To measure how the
distribution of θl(N)+1 is spread out, the average of the sample standard deviation of θ 1

l(N)+1 and θ 2
l(N)+1 is

reported in Table 1.

4.2 Staffing in a Call Center

We consider a call center which handles three types of calls; calls that request technical support, calls that
ask for sales information, and calls that wish to check order status. An incoming call is one of the three
types with probability 0.5, 0.3, and 0.2, respectively. Calls arrive at the call center according to a Poisson
process with rate λ per minute. Calls that enter the center form a single queue of infinite capacity and are
served on a first come first serve basis. The call center opens at 8 AM and closes at 6 PM. After 6 PM, all
remaining calls should be handled before they exit the system. Thus, each simulation run starts and ends
with an empty system.

If a customer requests technical support, they must select one of the three products (products 1, 2, and
3) that they wish technical support for. We assume that the percentages of requests for the three products
are 25%, 34%, and 41%, respectively. The request for product i is served by a staff member of type i for
1 ≤ i ≤ 3, and the service time per customer requested by a staff member of type i follows a triangular
distribution with lower limit 3, upper limit 18, and mode 6. Staff members of type 4 are available to handle
the calls for all three products. They serve a customer only when there are no staff members of types 1, 2,
and 3 available. The service time per customer requested by a staff member of type 4 follows a triangular
distribution with lower limit 3, upper limit 18, and mode 6.

If a customer asks for sales information, then the customer is serviced by a staff member of type 5.
The service time per customer requested by a staff member of type 5 follows a triangular distribution with
lower limit 4, upper limit 45, and mode 15.

If a customer wishes to check order status, the request is handled by an automatic phone system, and
there is no limit on the number of such calls that the automatic phone system can handle. The service
time spent on the automated system follows a triangular distribution with lower limit 2, upper limit 4, and
mode 3. After this automated service, 15% of the customers ask for a salesperson and wait on line until
served by a staff member of type 5. The service time per customer requested by a staff member of type 5
in this case follows a triangular distribution with lower limit 4, upper limit 45, and mode 15.

Each staff member serves calls on a first come first serve basis. All service times are independent of
each other and independent of the arrival process.

We denote the number of staff members of type i by θ i (1≤ i≤ 5). By f (θ 1,θ 2,θ 3,θ 4,θ 5), we denote
the daily average operating costs, given the staffing level (θ 1,θ 2,θ 3,θ 4,θ 5). By g(θ 1,θ 2,θ 3,θ 4,θ 5), we
denote the fraction of calls waiting less than 90 seconds in the queue before they initiate their service, given
the staffing level (θ 1,θ 2,θ 3,θ 4,θ 5). The goal is to find the numbers of staff members of types 1,2,3,4,
and 5 minimizing f (θ 1,θ 2,θ 3,θ 4,θ 5) while ensuring that g(θ 1,θ 2,θ 3,θ 4,θ 5)≥ 0.8. The operating costs
consist of labor costs, which are $100 per day for staff members of types 1, 2, 3, and 5, and $200 per day
for a staff member of type 4.

We apply Algorithm 2, and the methods proposed by Whitney et al. (2001) and Ahmed et al.
(1997) to find the optimal values of θ i, say θ i

∗ (1 ≤ i ≤ 5). Whenever we observe f at each point in
F2 , {θ ∈ Z5 : 1 ≤ θ i ≤ 100 for 1 ≤ i ≤ 5} in all three methods, we simulate the system over 10 days,
and compute the average of the operating costs over the 10–day time horizon, and use the average of 10 iid
such replications as an observation of f . Likewise, whenever we observe the fraction of calls that wait less
than 90 seconds in the queue, we simulate the system over 10 days, divide the number of calls that waited
less than 90 seconds in the queue by the total number of calls over the 10–day time horizon, and use the
average of 10 iid such replications as an observation of g. θ1 is set as (50,50,50,50,50) for all the three
methods and λ1 = 10,000 is used for Algorithm 2. The parameters used are cn = 0.3/(0.1N/60+n) for
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the first 50% of the total iterations available, cn = 0.1/(0.1N/60+n) for the rest of the iterations available,
an = 0.5/(0.1N/20+n),bn = 20000,α = 0.95,Tf = 50,R = 0.4,M = 10, and λ = 10.

The optimal policy (θ 1
∗ ,θ

2
∗ ,θ

3
∗ ,θ

4
∗ ,θ

5
∗ ) is estimated by evaluating f (θ) and the fraction of calls waited

less than 90 seconds, using the average of 50 iid observations at each θ ∈F2. The “true” optimal solution
estimated this way is (8,9,11,1,39).

Table 2: Averages and standard deviation of θl(N)+1.

Algorithm 2 Whitney et al. (2001) Ahmed et al. (1997)

N Mean Std Mean Std Mean Std

1000 (25, 27, 25, 3, 43) 3.2 (15, 15, 16, 4, 40) 7.3 (26, 11, 10, 10, 40) 9.8
1500 (17, 19, 17, 1, 42) 2.8 (11, 12, 15, 3, 41) 6.3 (25, 10, 9, 10, 39) 9.2
2000 (12, 14, 14, 1, 43) 2.2 (9, 10, 13, 3, 41) 5.7 (24, 9, 8, 9, 39) 8.7
3000 (9, 11, 13, 1, 42) 1.1 (7, 9, 12, 3, 41) 4.9 (23, 9, 7, 9, 39) 8.2
4000 (8, 11, 12, 1, 42) 0.7 (7, 8, 12, 3, 40) 4.3 (22, 8, 7, 8, 39) 7.9
5000 (8, 11, 13, 1, 42) 0.5 (7, 8, 11, 3, 40) 4.3 (22, 8, 7, 8, 39) 7.8
6000 (8, 11, 12, 1, 42) 0.4 (7, 8, 11, 2, 40) 4.2 (21, 8, 7, 8, 39) 7.7
7000 (8, 11, 12, 1, 42) 0.3 (8, 8, 12, 2, 40) 4.2 (21, 7, 7, 8, 39) 7.6

(θ 1
∗ ,θ

2
∗ ,θ

3
∗ ,θ

4
∗ ,θ

5
∗ ) (8, 9, 11, 1, 39) (8, 9, 11, 1, 39) (8, 9, 11, 1, 39)

Denoting the number of simulation runs made at iteration n by tn and fixing the total number N of
simulation runs available, we compute θl(N)+1 where l(N) is the maximum number of iterations given the
N simulation runs available; i.e., l(N) is the largest integer satisfying t1 + · · ·+ tl(N) ≤ N. Thus, θl(N)+1

is the best estimate of (θ 1
∗ ,θ

2
∗ ,θ

3
∗ ,θ

4
∗ ,θ

5
∗ ) given the computational budget N. We note that both f and

g can be simultaneously computed in a single simulation run, so tn = 60,20, and 10 for Algorithm 2,
the method by Whitney et al. (2001), and the method by Ahmed et al. (1997), respectively. Table 2
reports the averages (Mean) of θl(N)+1 generated by Algorithm 2, the method by Whitney et al. (2001),
and the method by Ahmed et al. (1997) based on 50 independent copies of θl(N) for each value of N.
To measure how the distribution of θl(N)+1 is spread out, the average of the sample standard deviation of
θ 1

l(N)+1,θ
2
l(N)+1,θ

3
l(N)+1,θ

4
l(N)+1, and θ 5

l(N)+1 is reported in Table 2.
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Andradóttir, S., D. Goldsman, and S. H. Kim. 2005, December. “Finding the best in the presence of a
stochastic constraint”. In Proceedings of the 2005 Winter Simulation Conference, edited by M. E.
Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 732–738. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.
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