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Abstract

Motivated by problems arising in decentralized control problems and non-cooperative Nash games, we
consider a class of strongly monotone Cartesian variational inequality (VI) problems, where the mappings
either contain expectations or their evaluations are corrupted by error. Such complications are captured
under the umbrella of Cartesian stochastic variational inequality problems and we consider solving such
problems via stochastic approximation (SA) schemes. Specifically, we propose a scheme wherein the
steplength sequence is derived by a rule that depends on problem parameters such as monotonicity and
Lipschitz constants. The proposed scheme is seen to produce sequences that are guaranteed to converge
almost surely to the unique solution of the problem. To cope with networked multi-agent generalizations,
we provide requirements under which independently chosen steplength rules still possess desirable almost-
sure convergence properties. In the second part of this paper, we consider a regime where Lipschitz
constants on the map are either unavailable or difficult to derive. Here, we present a local randomization
technique that allows for deriving an approximation of the original mapping, which is then shown to be
Lipschitz continuous with a prescribed constant. Using this technique, we introduce a locally randomized
SA algorithm and provide almost sure convergence theory for the resulting sequence of iterates to an
approximate solution of the original variational inequality problem. Finally, the paper concludes with
some preliminary numerical results on a stochastic rate allocation problem and a stochastic Nash-Cournot
game.

1 Introduction

Multi-agent system-theoretic problems can collectively capture a range of problems arising from decentralized
control problems and noncooperative games. In static regimes, where agent problems are convex and agent
feasibility sets are uncoupled, the associated solutions of such problems are given by the solution of a
suitably defined Cartesian variational inequality problem. Our interest lies in settings where the mapping
arising in such problems is strongly monotone and one of the following hold: (i) Either the mapping contains
expectations whose analytical form is unavailable; or (ii) The evaluation of such a mapping is corrupted
by error. In either case, the appropriate problem of interest is given by a stochastic variational inequality
problem VI(X,F ) that requires determining an x∗ ∈ X such that

(x− x∗)TF (x∗) ≥ 0 for all x ∈ X, (1)

where

F (x) ,

E[Φ1(x, ξ)]
...

E[ΦN (x, ξ)]

 , (2)
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Φi : Di × Rd → Rni , Di ⊆ Rni , X is a closed and convex set, Di is an open set in Rni and
∑N
i=1 ni = n.

Furthermore, ξ : Ω→ Rd is a random variable, where Ω denotes the associated sample space and E[·] denotes
the expectation with respect to ξ.

Variational inequality problems assume relevance in capturing the solution sets of convex optimization
and equilibrium problems [11]. Their Cartesian specializations arise from specifying the set X as a Cartesian

product, i.e., X ,
∏N
i=1Xi. Such problems arise in the modeling of multi-agent decision-making problems

such as rate allocation problems in communication networks [18, 31, 35], noncooperative Nash games in
communication networks [1, 2, 39], competitive interactions in cognitive radio networks [20, 29, 30, 38], and
strategic behavior in power markets [16,17,32]. Our interest lies in regimes complicated by uncertainty, which
could arise as a result of agents facing expectation-based objectives that do not have tractable analytical
forms. Naturally, the Cartesian stochastic variational inequality problem framework represents an expansive
model for capturing a range of such problems.

Two broad avenues exist for solving such a class of problems. Of these, the first approach, referred to as
the sample-average approximation (SAA) method. In adopting this approach, one uses a set of M samples
{ξ1, . . . , ξM} and considers the sample-average problem where an expected mapping E[Φ(x, ξ)] is replaced

by the sample-average
∑M
j=1 Φ(x, ξj)/M . The resulting problem is deterministic and its solution provides

an estimator for the solution of the true problem. The asymptotic behavior of these estimators has been
studied extensively in the context of stochastic optimization and variational problems [23, 33]. The other
approach, referred to as stochastic approximation, also has a long tradition. First proposed by Robbins and
Monro [28] for root-finding problems and by Ermoliev for stochastic programs [8–10], significant effort has
been applied towards theoretical and algorithmic examination of such schemes (cf. [4,21,34]). Yet, there has
been markedly little on the application of such techniques to solution of stochastic variational inequalities,
exceptions being [14, 19]. Standard stochastic approximation schemes provide little guidance regarding the
choice of a steplength sequence, denoted by {γk}, apart from requiring that the sequence satisfies

∞∑
k=0

γk =∞ and

∞∑
k=0

γ2
k <∞.

The behavior of stochastic approximation schemes is closely tied to the choice of steplength sequences.
Generally, there have been two avenues traversed in choosing steplengths: (i) Deterministic steplength se-

quences: Spall [34, Ch. 4, pg. 113] considered diverse choices of the form γk = β
(k+1+a)α , where β > 0,

0 < α ≤ 1, and a ≥ 0 is a stability constant. In related work in the context of approximate dynamic
programming, Powell [27] examined several deterministic update rules. However, much of these results are
not provided with convergence theory. (ii) Stochastic steplength sequences: An alternative to a deterministic
rule is a stochastic scheme that updates steplengths based on observed data. Of note is recent work by
George et al. [12] where an adaptive stepsize rule is proposed that minimizes the mean squared error. In a
similar vein, Cicek et al. [7] develop an adaptive Kiefer-Wolfowitz SA algorithm and derive general upper
bounds on its mean-squared error.

Before proceeding, we note the relationship of the present work to three specific references. In [19],
Cartesian stochastic variational inequality problems with Lipschitzian mappings were considered with a focus
towards integrating Tikhonov and prox-based regularization techniques with standard stochastic gradient
methods. However, the steplength sequences were “non-adaptive” since the choices did not adapt to problem
parameters. Two problem-specific adaptive rules were developed in our earlier work on stochastic convex
programming. Additionally, local smoothing techniques were examined for addressing the lack of smoothness.
Of these, the first, referred to as the recursive steplength SA scheme, forms the inspiration for a generalization
pursued in the current work. Finally, in [40], we extended this recursive rule to accommodate stochastic
variational inequality problems. Note that the qualifier “adaptive” implies that the steplength rule adapts
to problem parameters such as Lipschitz constant, monotonicity constant and the diameter of the set. In
this paper, our goal lies in developing a distributed adaptive stochastic approximation scheme (DASA) that
can accommodate networked multi-agent implementations and cope with non-Lipschitzian mappings. More
specifically, the main contributions of this paper are as follows:

(i) DASA schemes for Lipschitzian CSVIs: We begin with a simple extension of the adaptive ste-
pength rule presented in [41] to the variational regime under a Lipschitzian requirement on the map. Yet,
implementing this rule in a centralized regime is challenging and this motivates the need for distributed coun-
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terparts that can be employed on Cartesian problems. Such a distributed rule is developed and produces
sequences of iterates that are guaranteed to converge to the solution in almost-sure sense.

(ii) DASA schemes for non-Lipschitzian CSVIs: Our second goal lies in addressing the absence or
unavailability of a Lipschitz constant by leveraging locally randomized smoothing techniques, again inspired
by our efforts to solve nonsmooth stochastic optimization problems [41]. In this part of the paper, we
generalize this natively centralized scheme for optimization problems to a distributed version that can cope
with Cartesian stochastic variational inequality problems.

The remainder of this paper is organized as follows. In Section 2, we provide a canonical formulation for
the problem of interest and motivate this formulation through two sets of examples. An adaptive steplength
SA scheme for stochastic variational inequality problems with Lipschitzian mappings and its distributed
generalization are provided in Section 3. By leveraging a locally randomized smoothing technique, in Sec-
tion 4, we extend these schemes to a regime where Lipschitzian assumptions do not hold. Finally, the paper
concludes with some preliminary numerics in Section 5.

Notation: Throughout this paper, a vector x is assumed to be a column vector. We write xT to
denote the transpose of a vector x, ‖x‖ to denote the Euclidean vector norm, i.e., ‖x‖ =

√
xTx, ‖x‖1 to

denote the 1-norm, i.e., ‖x‖1 =
∑n
i=1 |xi| for x ∈ Rn, and ‖x‖∞ to denote the infinity vector norm, i.e.,

‖x‖∞ = maxi=1,...,n |xi| for x ∈ Rn. We use ΠX(x) to denote the Euclidean projection of a vector x on a
set X, i.e., ‖x − ΠX(x)‖ = miny∈X ‖x − y‖. For a convex function f with domain domf , a vector g is a
subgradient of x̄ ∈ domf if f(x̄) + gT (x − x̄) ≤ f(x) holds for all x ∈ domf. The set of all subgradients
of f at x̄ is denoted by ∂f(x̄). We write a.s. as the abbreviation for “almost surely”. We use Prob(A) to
denote the probability of an event A and E[z] to denote the expectation of a random variable z. The Matlab

notation (u1;u2;u3) refers to a column vector with components u1, u2 and u3, respectively.

2 Formulation and source problems

In Section 2.1, we formulate the Cartesian stochastic variational inequality (CSVI) problem and outline the
stochastic approximation algorithmic framework. A motivation for studying CSVIs is provided through two
examples in Section 2.2, while a review of the main assumptions is given in Section 2.3.

2.1 Problem formulation and algorithm outline

Given a set X ⊆ Rn and a mapping F : X → Rn, the variational inequality problem, denoted by VI(X,F ),
requires determining a vector x∗ ∈ X such that (x−x∗)TF (x∗) ≥ 0 holds for all x ∈ X. When the underlying

set X is given by a Cartesian product, as articulated by the definition X ,
∏N
i=1Xi, where Xi ⊆ Rni , then

the associated variational inequality is qualified as a Cartesian variational inequality problem. Now suppose
that x∗ = (x∗1;x∗2; . . . ;x∗N ) ∈ X satisfies the following system of inequalities:

(xi − x∗i )TE[Φi(x
∗, ξi)] ≥ 0 for all xi ∈ Xi and all i = 1, . . . , N, (3)

where ξi : Ωi → Rdi is a random vector with some probability distribution for i = 1, . . . , N . Naturally,
problem (3) may be reduced to VI(X,F ) by noting that F may be defined as in (2), where n =

∑N
i=1 ni and

F : X → Rn. Then, VI(X,F ) is a stochastic variational inequality problem on the Cartesian product of the
sets Xi with a solution x∗ = (x∗1;x∗2; . . . ;x∗N ).

Much of the interest in this paper pertains to the development of stochastic approximation schemes for
VI(X,F ) when the components the map F is defined by (2). For such a problem, we consider the following
distributed stochastic approximation scheme:

xk+1,i = ΠXi (xk,i − γk,i(Fi(xk) + wk,i)) ,

wk,i , Φi(xk, ξk,i)− Fi(xk),
(4)

for all k ≥ 0 and i = 1, . . . , N , where Fi(x) , E[Φi(x, ξi)] for i = 1, . . . , N , γk,i > 0 is the stepsize for the ith
index at iteration k, xk,i denotes the solution for the i-th index at iteration k, and xk = (xk,1; xk,2; . . . ; xk,N ).
Moreover, x0 ∈ X is a random initial vector independent of any other random variables in the scheme and
such that E

[
‖x0‖2

]
<∞.
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2.2 Motivating examples

We consider two problems that can be addressed by Cartesian stochastic variational inequality framework.

Example 1 (Networked stochastic Nash-Cournot game). A classical example of a Nash game is a networked
Nash-Cournot game [15, 24]. Suppose a collection of N firms compete over a network of M nodes wherein
the production and sales for firm i at node j are denoted by gij and sij , respectively. Suppose firm i’s cost of
production at node j is denoted by the uncertain cost function cij(gij , ξ). Furthermore, goods sold by firm
i at node j fetch a random revenue defined by pj(s̄j , ξ)sij where pj(s̄j , ξ) denotes the uncertain sales price

at node j and s̄j =
∑N
i=1 sij denotes the aggregate sales at node j. Finally, firm i’s production at node j is

capacitated by capij and its optimization problem is given by the following1:

minimize E[fi(x, ξ)]

subject to xi ∈ Xi,

where x = (x1; . . . ;xN ) with xi = (gi; si), gi = (gi1; . . . ; giM ), si = (si1; . . . ; siM ), and

fi(x, ξ) ,
M∑
j=1

(cij(gij , ξ)− pj(s̄j , ξ)sij) ,

Xi ,

(gi, si) |
M∑
j=1

gij =

M∑
j=1

sij , gij , sij ≥ 0, gij ≤ capij , j = 1, . . . ,M

 .

Under the validity of the interchange between the expectation and the derivative operator, the resulting
equilibrium conditions of this stochastic Nash-Cournot game are compactly captured by the variational
inequality VI(X,F ) where X ,

∏N
i=1Xi and F (x) = (F1(x); . . . ;FN (x)) with Fi(x) = E[∇xifi(x, ξ)].

Example 2 (Stochastic composite minimization problem). Consider a generalized min-max optimization
problem given by

minimize Ψ(ψ1(x), . . . , ψm(x)) (5)

subject to x ∈ X ,
N∏
i=1

Xi, (6)

where Ψ(u1, . . . , um) is defined as

Ψ(u1, . . . , um) , max
y∈Y

{
m∑
i=1

uTi (Aiy + bi)− β(y)

}
,

while ψi(x) , E[φi(x, ξ)], ∇xjψi(x) = E[Hji(x, ξ)] for i = 1, . . . ,m, and β(y) is a Lipschitz continuous convex
function of y.

Under the assumption that the derivative and the expectation operator can be interchanged, it can
be seen that the solution to this optimization problem can be obtained by solving a Cartesian stochastic
variational inequality problem VI(X × Y, F ) where

F (x, y) ,


∑m
i=1∇x1ψi(x)(Aiy + bi)

...∑m
i=1∇xNψi(x)(Aiy + bi)

−
∑m
i=1A

T
i ψi(x) +∇yβ(y)

 =


E [
∑m
i=1H1i(x, ξ)(Aiy + bi)]

...
E [
∑m
i=1HNi(x, ξ)(Aiy + bi)]

E
[
−
∑m
i=1A

T
i φi(x, ξ) +∇yβ(y)

]
 .

Note that the specification that ψi(x) and its Jacobian are expectation-valued may be a consequence of not
having access to noise-free evaluations of either object. In particular, one only has access to evaluations
φi(x, ξ) and Jacobian evaluations given by Hji(x, ξ) = ∇xjφi(x, ξ).

1Note that the transportation costs are assumed to be zero.
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2.3 Assumptions

Our interest lies in the development of distributed stochastic approximation schemes for Cartesian stochastic
variational inequality problems as espoused by (4) and the associated global convergence theory in regimes
where the mappings are single-valued mappings that are not necessarily Lipschitz continuous. We let

X =

N∏
i=1

Xi,

and make the following assumptions on the set X and the mapping F .

Assumption 1. Assume the following:

(a) The set Xi ⊆ Rni is closed and convex for i = 1, . . . , N .

(b) The mapping F (x) is a single-valued Lipschitz continuous over the set X with a constant L.

(c) The mapping F (x) is strongly monotone with a constant η > 0:

(F (x)− F (y))T (x− y) ≥ η‖x− y‖2 for all x, y ∈ X.

Since F is strongly monotone, the existence and uniqueness of the solution to VI(X,F ) is guaranteed by
Theorem 2.3.3 of [11]. We let x∗ denote the solution of VI(X,F ).

Regarding the method in (4), we let Fk denote the history of the method up to time k, i.e., Fk =
{x0, ξ0, ξ1, . . . , ξk−1} for k ≥ 1 and F0 = {x0}, where ξk = (ξk,1 ; ξk,2 ; . . . ; ξk,N ). In terms of this definition,
we note that

E[wk,i | Fk] = E[Φi(xk, ξk,i) | Fk]− Fi(xk) = 0 for all k ≥ 0 and all i.

We impose some further conditions on the stochastic errors wk,i of the algorithm, as follows.

Assumption 2. The errors wk = (wk,1;wk,2; . . . ;wk,N ) are such that for some (deterministic) ν > 0,

E
[
‖wk‖2 | Fk

]
≤ ν2 a.s. for all k ≥ 0.

We use the following Lemma in establishing the convergence of method (4) and its extensions. This result
may be found in [26] (cf. Lemma 10, page 49).

Lemma 1. Let {vk} be a sequence of nonnegative random variables, where E[v0] < ∞, and let {αk} and
{µk} be deterministic scalar sequences such that:

E[vk+1|v0, . . . , vk] ≤ (1− αk)vk + µk a.s. for all k ≥ 0,

0 ≤ αk ≤ 1, µk ≥ 0, for all k ≥ 0,

∞∑
k=0

αk =∞,
∞∑
k=0

µk <∞, lim
k→∞

µk
αk

= 0.

Then, vk → 0 almost surely, limk→∞ E[vk] = 0, and for any ε > 0 and for all k > 0,

Prob ({vj ≤ ε for all j ≥ k}) ≥ 1− 1

ε

(
E[vk] +

∞∑
i=k

βi

)
.

3 Distributed adaptive SA schemes for Lipschitzian mappings

In this section, we restrict our attention to settings where the mapping F (x) is a single-valued Lipschitzian
map. In Section 3.1, we begin by developing an adaptive steplength rule for deriving steplength sequences
from problem parameters such as monotonicity constant, Lipschitz constant etc., where the qualifier adaptive
implies that the steplength choices “adapt” or are “self-tuned” to problem parameters. Unfortunately, in
distributed regimes, such a rule requires prescription by a central coordinator, a relatively challenging task
in multi-agent regimes. This motivates the development of a distributed counterpart of the aforementioned
adaptive rule and provide convergence theory for such a generalization in Section 3.2.
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3.1 An adaptive steplength SA (ASA) scheme

Stochastic approximation algorithms require stepsize sequences to be square summable but not summable.
These algorithms provide little advice regarding the choice of such sequences. One of the most common
choices has been the harmonic steplength rule which takes the form of γk = θ

k where θ > 0 is a constant.
Although, this choice guarantees almost-sure convergence, it does not leverage problem parameters. Nu-
merically, it has been observed that such choices can perform quite poorly in practice. Motivated by this
shortcoming, we present a steplength scheme for a centralized variant of algorithm (4):

xk+1 = ΠX (xk − γk(F (xk) + wk)) ,

wk , Φ(xk, ξk)− F (xk),
(7)

for k ≥ 0. The proposed scheme derives a rule for updating steplength sequences that adapts to problem
parameters while guaranteeing almost-sure convergence of xk to the unique solution of VI(X,F ).

A key challenge in practical implementations of stochastic approximation lies in choosing an appropriate
diminishing steplength sequence {γk}. In [41], we developed a rule for selecting such a sequence in a convex
stochastic optimization regime by leveraging three parameters: (i) Lipschitz constant of the gradients; (ii)
strong convexity constant; and (ii) diameter of the set X. Along similar directions, such a rule is constructed
for strongly monotone stochastic variational inequality problems and the results in this subsection bear
significant similarity to those presented in [41] with some key distinctions. First, these results are presented
for strongly monotone stochastic variational inequality problems and second, co-coercivity of the mappings
is not assumed, leading to a tighter requirement on the choice of steplengths.

Lemma 2. Consider algorithm (7), and let Assumptions 1 and 2 hold. Then, the following relation holds
almost surely for all k ≥ 0:

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ (1− 2ηγk + L2γ2

k)‖xk − x∗‖2 + γ2
kν

2. (8)

Proof. By the definition of algorithm (7) and the non-expansiveness property of the projection operator, we
have for all k ≥ 0,

‖xk+1 − x∗‖2 = ‖ΠX(xk − γk(F (xk) + wk))−ΠX(x∗ − γkF (x∗))‖2

≤ ‖xk − x∗ − γk(F (xk) + wk − F (x∗))‖2.

Taking expectations conditioned on the past, and by employing E[wk | Fk] = 0, we have

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 + γ2

k‖F (xk)− F (x∗)‖2 + γ2
kE
[
‖wk‖2 | Fk

]
− 2γk(xk − x∗)T (F (xk)− F (x∗))

≤ (1− 2ηγk + γ2
kL

2)‖xk − x∗‖2 + γ2
kν

2,

where the second inequality is a consequence of the strong monotonicity and Lipschitz continuity of F (x)
over X as well as the boundedness of E

[
‖wk‖2 | Fk

]
.

The upper bound (8) can be used to construct an adaptive stepsize rule. Note that inequality (8) holds
for any γk > 0. When the stepsize is further restricted so that 0 < γk ≤ η

L2 , we have

1− γk(2η − γkL2) ≤ 1− ηγk.

Thus, for 0 < γk ≤ η
L2 and by taking expectations, inequality (8) reduces to

E
[
‖xk+1 − x∗‖2

]
≤ (1− ηγk)E

[
‖xk − x∗‖2

]
+ γ2

kν
2 for all k ≥ 0. (9)

We begin by viewing E
[
‖xk+1 − x∗‖2

]
as an error ek+1 arising from employing the stepsize sequence γ0, γ1, . . . , γk.

Furthermore, the worst case error arises when (9) holds as an equality and satisfies the following recursive
relation:

ek+1(γ0, . . . , γk) = (1− ηγk)ek(γ0, . . . , γk−1) + γ2
kν

2.
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Motivated by this relationship, our interest lies in examining whether the stepsizes γ0, γ1 . . . , γk can be
chosen so as to minimize the error ek. Our goal lies in constructing a stepsize scheme that allows for claiming
the almost sure convergence of the sequence {xk} produced by algorithm (7) to the unique solution x∗ of
VI(X,F ). We formalize this approach by defining real-valued error functions ek(γ0, . . . , γk−1) as follows:

ek(γ0, . . . , γk−1) , (1− ηγk−1)ek−1(γ0, . . . , γk−2) + γ2
k−1ν

2 for k ≥ 1, (10)

where e0 is a positive scalar, η is the strong monotonicity constant and ν2 is an upper bound for the second
moments of the error norms ‖wk‖. We consider a choice of {γ0, γ1, . . . , γk−1} based on minimizing an upper
bound on the mean-squared error, namely e(γ0, γ1, . . . , γk−1), as captured by the following optimization
problem:

minimize ek(γ0, . . . , γk−1)
subject to 0 < γj ≤ η

L2 for all j = 0, . . . , k − 1.

To ensure convergence in an almost-sure sense, the sequence {γk} needs to satisfy
∑∞
j=0 γj = ∞ and∑∞

j=0 γ
2
j <∞. As the next two propositions show, these can indeed be achieved. In fact, the error ek+1 at

the next iteration can also be minimized by selecting γk as a function of only the most recent stepsize γk−1.
In what follows, we consider the sequence {γ∗k} given by

γ∗0 =
η

2ν2
e0 (11)

γ∗k = γ∗k−1

(
1− η

2
γ∗k−1

)
for all k ≥ 1. (12)

We provide a result showing that the stepsizes γi, i = 0, . . . , k− 1, minimize ek over (0, ηL2 ]k, where L is the
Lipschitz constant associated with F (x) over X.

Proposition 1 (An adaptive steplength SA (ASA) scheme). Let the error function ek(γ0, . . . , γk−1) be
defined as in (10), where e0 ≥ 0 is such that ν ≥ L

√
e0
2 , where L is the Lipschitz constant of F . Let the

sequence {γ∗k} be given by (11)–(12). Then, the following hold:

(a) For all k ≥ 0, the error ek satisfies ek(γ∗0 , . . . , γ
∗
k−1) = 2ν2

η γ∗k.

(b) For each k ≥ 1, the vector (γ∗0 , γ
∗
1 , . . . , γ

∗
k−1) is the minimizer of the function ek(γ0, . . . , γk−1) over the

set
Gk ,

{
α ∈ Rk : 0 < αj ≤

η

L2
for j = 1, . . . , k

}
.

More precisely, for any k ≥ 1 and any (γ0, . . . , γk−1) ∈ Gk, we have

ek(γ0, . . . , γk−1)− ek(γ∗0 , . . . , γ
∗
k−1) ≥ ν2(γk−1 − γ∗k−1)2.

The almost-sure convergence of the produced sequence holds for a family of steplength rules, as captured
by the folloing result.

Proposition 2 (Almost-sure convergence of ASA scheme). Let Assumptions 1 and 2 hold. Assume that the
stepsize sequence {γk} is generated by the following adaptive scheme:

γk = γk−1(1− cγk−1) for all k ≥ 1,

where c > 0 is a scalar and the initial stepsize is such that 0 < γ0 <
1
c . Then, the sequence {xk} generated

by algorithm (7) converges almost surely to a random point that belongs to the optimal set.

The proofs of Propositions 1 and 2 are omitted, as they follow from a more general results for a distributed
SA method, as discussed in the next subsection.
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3.2 A distributed adaptive steplength SA (DASA) scheme

Unfortunately, in multi-agent regimes, the implementation of the stepsize rule (11)-(12) requires a central
coordinator who can prescribe and enforce such rules. In this section, we extend the centralized rule to
accommodate a multi-agent setting wherein each agent chooses its own update rule, given the global knowl-
edge of problem parameters. In such a regime, given that the set X is the Cartesian product of closed and
convex sets X1, . . . , XN , our interest lies in developing steplength update rules in the context of method (4)
where the i-th agent chooses its steplength, denoted by γk,i, as per

γk,i = γk−1,i(1− ciγk−1,i),

with ci > 0 being a constant associated with agent i mapping Fi(x), while the initial stepsize γ0,i is suitably
selected. The following assumption imposes requirements on the stepsizes γk,i in (4).

Assumption 3. Assume that the following hold:

(3a) The stepsize sequences {γk,i}, i = 1, . . . , N , are such that γk,i > 0 for all k and i, with
∑∞
k=0 γk,i =∞

and
∑∞
k=0 γ

2
k,i <∞ for all i.

(3b) If {δk} and {Γk} are positive sequences such that δk ≤ min1≤i≤N γk,i and Γk ≥ max1≤i≤N γk,i for all
k ≥ 0, then

Γk − δk
δk

≤ β for all k ≥ 0,

where β is a scalar satisfying 0 ≤ β < η
L .

Remark: Assumption (3a) is a standard requirement on steplength sequences while Assumption (3b)
provides an additional condition on the discrepancy between the stepsize values γk,i at each iteration k. This
condition is satisfied, for instance, when γk,1 = . . . = γk,N , in which case β = 0.

When deriving an adaptive rule, we use Lemma 1 and a distributed generalization of Lemma 2, which is
given below.

Lemma 3. Consider algorithm (4). Let Assumptions 1 and 2 hold.

(a) The following relation holds almost surely for all k ≥ 0:

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ (1− 2(η + L)δk + 2LΓk + L2Γ2

k)‖xk − x∗‖2 + Γ2
kν

2,

where {δk} and {Γk} are positive sequences such that δk ≤ min1≤i≤N γk,i and Γk ≥ max1≤i≤N γk,i for
all k.

(b) If Assumption (3b) holds, then the following relation is valid for all k ≥ 0:

E
[
‖xk+1 − x∗‖2

]
≤ (1− 2(η − βL)δk + (1 + β)2L2δ2

k)E
[
‖xk − x∗‖2

]
+ (1 + β)2δ2

kν
2.

Proof. (a) From the properties of the projection operator, we know that a vector x∗ solves VI(X,F ) problem
if and only if x∗ satisfies x∗ = ΠX(x∗ − γF (x∗)) for any γ > 0. By the definition of algorithm (4) and the
non-expansiveness property of the projection operator, we have for all k ≥ 0 and all i,

‖xk+1,i − x∗i ‖2 = ‖ΠXi(xk,i − γk,i(Fi(xk) + wk,i))−ΠXi(x
∗
i − γk,iFi(x∗))‖2

≤ ‖xk,i − x∗i − γk,i(Fi(xk) + wk,i − Fi(x∗))‖2.

Taking the expectation conditioned on the past, and using E[wk,i | Fk] = 0, we have

E
[
‖xk+1,i − x∗i ‖2 | Fk

]
≤ ‖xk,i − x∗i ‖2 + γ2

k,i‖Fi(xk)− Fi(x∗)‖2 + γ2
k,iE

[
‖wk,i‖2 | Fk

]
− 2γk,i(xk,i − x∗i )T (Fi(xk)− Fi(x∗)).
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Now, by summing the preceding relations over i, we have

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 +

N∑
i=1

γ2
k,i‖Fi(xk)− Fi(x∗)‖2 +

N∑
i=1

γ2
k,iE

[
‖wk,i‖2 | Fk

]
− 2

N∑
i=1

γk,i(xk,i − x∗i )T (Fi(xk)− Fi(x∗)).

Using γk,i ≤ Γk and Assumption 2, we can see that
∑N
i=1 γ

2
k,iE

[
‖wk,i‖2 | Fk

]
≤ Γ2

kν
2 almost surely for all

k ≥ 0. Thus, from the preceding relation, we have

E
[
‖xk+1 − x∗‖2 | Fk

]
≤‖xk − x∗‖2 +

N∑
i=1

γ2
k,i‖Fi(xk)− Fi(x∗)‖2︸ ︷︷ ︸

Term1

+Γ2
kν

2

−2

N∑
i=1

γk,i(xk,i − x∗i )T (Fi(xk)− Fi(x∗))︸ ︷︷ ︸
Term2

. (13)

Next, we estimate Term 1 and Term 2 in (13). By using the definition of Γk and by leveraging the Lipschitzian
property of mapping F , we obtain

Term 1 ≤ Γ2
k‖F (xk)− F (x∗)‖2 ≤ Γ2

kL
2‖xk − x∗‖2. (14)

By adding and subtracting −2
∑N
i=1 δk(xk,i − x∗i )T (Fi(xk) − Fi(x∗)) from Term 2, and using

∑N
i=1(xk,i −

x∗i )
T (Fi(xk)− Fi(x∗)) = (xk − x∗)T (F (xk)− F (x∗)), we further obtain

Term 2 ≤− 2δk(xk − x∗)T (F (xk)− F (x∗))− 2

N∑
i=1

(γk,i − δk)(xk,i − x∗i )T (Fi(xk)− Fi(x∗)).

By Cauchy-Schwartz inequality, the preceding relation yields

Term 2 ≤− 2δk(xk − x∗)T (F (xk)− F (x∗)) + 2(γk,i − δk)

N∑
i=1

‖xk,i − x∗i ‖‖Fi(xk)− Fi(x∗)‖

≤ − 2δk(xk − x∗)T (F (xk)− F (x∗)) + 2(Γk − δk)‖xk − x∗‖‖F (xk)− F (x∗)‖,

where in the last relation, we use the definition of Γk and Hölder’s inequality. Invoking strong monotonicity
of the mapping F for bounding the first term and by utilizing the Lipschitzian property of the second term
of the preceding relation, we have

Term 2 ≤ −2ηδk‖xk − x∗‖2 + 2(Γk − δk)L‖xk − x∗‖2. (15)

The desired inequality is obtained by combining relations (13), (14), and (15).
(b) Assumption 3b implies that Γk ≤ (1 + β)δk. Combining this observation with the result of part (a), we
obtain almost surely for all k ≥ 0,

E
[
‖xk+1 − x∗‖2 | Fk

]
≤(1− 2(η − βL)δk + (1 + β)2L2δ2

k)‖xk − x∗‖2 + (1 + β)2δ2
kν

2.

Taking expectations in the preceding inequality, we obtain the desired relation.

The following proposition proves the almost-sure convergence of the distributed SA scheme when the
steplength sequences satisfy the bounds prescribed by Assumption 3b.

Proposition 3 (Almost-sure convergence of distributed SA scheme). Let Assumptions 1, 2, and 3 hold.
Then, the sequence {xk} generated by algorithm (4) converges almost surely to the unique solution of
VI(X,F ).
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Proof. Consider the relation of Lemma 3(a). For this relation, we show that the conditions of Lemma 1 are
satisfied, which will allow us to claim the almost-sure convergence of xk to x∗. Let us define vk , ‖xk − x∗‖2,
and

αk , 2(η − βL)δk − L2δ2
k(1 + β)2, µk , (1 + β)2δ2

kν
2. (16)

Next, we show that 0 ≤ αk ≤ 1 for k sufficiently large. Since γk,i tends to zero for all i = 1, . . . , N , we may
conclude that δk goes to zero as k grows. In turn, as δk goes to zero, for k large enough, say k ≥ k1, we have

1− (1 + β)2L2δk
2(η − βL)

> 0.

By Assumption 3b we have β < η
L , which implies η − βL > 0. Thus, we have αk ≥ 0 for k ≥ k1. Also,

for k large enough, say k ≥ k2, we have αk ≤ 1 since δk → 0. Therefore, when k ≥ max{k1, k2} we have
0 ≤ αk ≤ 1. Obviously, vk, µk ≥ 0.

From Assumption 3b we have δk ≤ γk ≤ (1 + β)δk for all k. Using these relations and the conditions
on γk,i given in Assumption 3a, we can show that

∑∞
k=0 δk = ∞ and

∑∞
k=0 δ

2
k < ∞. Furthermore, from

the preceding properties of the sequence {δk}, and the definitions of αk and µk in (16), we can see that∑∞
k=0 αk =∞ and

∑∞
k=0 µk <∞. Finally, by the definitions of αk and µk we have

lim
k→∞

µk
αk

= lim
k→∞

 (1 + β)2δkν
2

2(η − βL)
(

1− (1+β)2L2δk
2(η−βL)

)
 =

(1 + β)2(limk→∞ δk)ν2

2(η − βL)
(

1− (1+β)2L2(limk→∞ δk)
2(η−βL)

) ,
implying that limk→∞

µk
αk

= 0 since δk → 0. Hence, all conditions of Lemma 1 are satisfied and we may

conclude that ‖xk − x∗‖2 → 0 almost surely.

Proposition 3 states that under specified assumptions on the set X and mapping F , the stochastic errors
wk, and the stepsizes γk,i, the distributed SA scheme is guaranteed to converge to the unique solution of
VI(X,F ) almost surely. Our goal in the remainder of this section lies in providing a stepsize rule that aims
to minimize a suitably defined error function of the algorithm, while satisfying Assumption 3. To begin our
analysis, we consider the result of Lemma 3b for all k ≥ 0:

E
[
‖xk+1 − x∗‖2

]
≤ (1− 2(η − βL)δk + (1 + β)2L2δ2

k)E
[
‖xk − x∗‖2

]
+ (1 + β)2δ2

kν
2, (17)

where δk ≤ min1≤i≤N γk,i. When the stepsizes γk,i are further restricted so that 0 < δk ≤ η−βL
(1+β)2L2 , we have

1− 2(η − βL)δk + (1 + β)2L2δ2
k ≤ 1− (η − βL)δk.

Thus, for 0 < δk ≤ η−βL
(1+β)2L2 , from inequality (17) we obtain

E
[
‖xk+1 − x∗‖2

]
≤ (1− (η − βL)δk)E

[
‖xk − x∗‖2

]
+ (1 + β)2δ2

kν
2 for all k ≥ 0. (18)

Similar to the discussion in Section 3.1 in the context of the ASA scheme, let us view the quantity
E
[
‖xk+1 − x∗‖2

]
as an error ek+1 of the method arising from the use of the lower bounds δ0, δ1, . . . , δk

for the stepsize values γ0,i, γ1,i · · · , γk,i, i = 1, . . . , N . Relation (18) gives us an error estimate for algorithm
(4) in terms of the lower bounds δ0, δ1, . . . , δk. We use this estimate to develop an adaptive stepsize proce-
dure. Consider the case when (18) holds with equality, which is the worst case error. In this case, the error
satisfies the following recursive relation:

ek+1 = (1− (η − βL)δk)ek + (1 + β2)ν2δ2
k for all k ≥ 0.

Let us assume that we want to run the algorithm (4) for a fixed number of iterations, say K. The preceding
relation shows that eK depends on the lower bound values up to the Kth iteration. This motivates us to view
the lower bounds δ0, δ1, . . . , δK−1 as decision variables that can be used to minimize the corresponding upper
bound on the mean-squared error of the algorithm up to iteration K. Thus, the variables are δ0, δ1, . . . , δK−1

and the objective function is the error function eK(δ0, δ1, . . . , δK−1). We proceed to derive a rule for gen-
erating lower bounds δ0, δ1, . . . , δK by minimizing the error eK+1. Importantly, it turns out that δK is a

10



function of only the most recent bound δK−1. We define the real-valued error function ek(δ0, δ1, . . . , δk−1)
by considering an equality in (18):

ek+1(δ0, . . . , δk) ,(1− (η − βL)δk)ek(δ0, . . . , δk−1) + (1 + β2)ν2δ2
k for all k ≥ 0, (19)

where e0 is a positive scalar, {δk} is a sequence of positive scalars such that 0 < δk ≤ η−βL
(1+β)2L2 , L is the

Lipschitz constant of the mapping F , η is the strong monotonicity parameter of F , and ν2 is the upper
bound for the second moment of the error norms ‖wk‖ (cf. Assumption 2).

Now let us consider the stepsize sequence {δ∗k} given by

δ∗0 =
η − βL

2(1 + β)2ν2
e0 (20)

δ∗k = δ∗k−1

(
1−

(
η − βL

2

)
δ∗k−1

)
for all k ≥ 1, (21)

where e0 is the same initial error as for the errors ek in (19). In what follows, we often abbreviate
ek(δ0, . . . , δk−1) by ek whenever this is unambiguous. The next proposition shows that the lower bound

sequence {δ∗k} for γk,i given by (20)–(21) minimizes the errors ek over [0, η−βL
(1+β)2L2 ]k.

Proposition 4 (An adaptive lower bound steplength SA scheme). Let ek(δ0, . . . , δk−1) be defined as in (19),
where e0 is a given positive scalar, ν is an upper bound defined in Assumption 2, η and L are the strong
monotonicity and Lipschitz constants of the mapping F respectively and ν is chosen such that ν ≥ L

√
e0
2 .

Let β be a scalar such that 0 ≤ β < η
L , and let the sequence {δ∗k} be given by (20)–(21). Then, the following

hold:

(a) For all k ≥ 0, the error ek satisfies ek(δ∗0 , . . . , δ
∗
k) = 2(1+β)2ν2

η−βL δ∗k.

(b) For any k ≥ 1, the vector (δ∗0 , δ
∗
1 , . . . , δ

∗
k−1) is the minimizer of the function ek(δ0, . . . , δk−1) over the

set

Gk ,
{
α ∈ Rk : 0 <αj ≤

η − βL
(1 + β)2L2

, j = 1, . . . , k

}
.

More precisely, for any k ≥ 1 and any (δ0, . . . , δk−1) ∈ Gk, we have

ek(δ0, . . . , δk−1)− ek(δ∗0 , . . . , δ
∗
k−1) ≥ (1 + β)2ν2(δk−1 − δ∗k−1)2.

Proof. (a) To show the result, we use induction on k. Trivially, it holds for k = 0 from (20). Now, suppose

that we have ek(δ∗0 , . . . , δ
∗
k−1) = 2(1+β)2ν2

η−βL δ∗k for some k, and consider the case for k+ 1. From the definition

of the error ek in (19), we have

ek+1(δ∗0 , . . . , δ
∗
k) = (1− (η − βL)δ∗k)ek(δ∗0 , . . . , δ

∗
k−1) + (1 + β)2ν2(δ∗k)2

= (1− (η − βL)δ∗k)
2(1 + β)2ν2

η − βL
δ∗k + (1 + β)2ν2(δ∗k)2,

where the second equality follows by the inductive hypothesis. Thus,

ek+1(δ∗0 , . . . , δ
∗
k) =

2(1 + β)2ν2

η − βL
δ∗k

(
1− η − βL

2
δ∗k

)
=

2(1 + β)2ν2

η − βL
δ∗k+1,

where the last equality follows by the definition of δ∗k+1 in (21). Hence, the result holds for all k ≥ 0.

(b) First we need to show that (δ∗0 , . . . , δ
∗
k−1) ∈ Gk. By our assumption on e0, we have 0 < e0 ≤ 2ν2

L2 ,

which by the definition of δ∗0 in (20) implies that 0 < δ∗0 ≤
η−βL

(1+β)2L2 , i.e., δ∗0 ∈ G1. Using the induction on

k, from relations (20)–(21), it can be shown that 0 < δ∗k < δ∗k−1 for all k ≥ 1. Thus, (δ∗0 , . . . , δ
∗
k−1) ∈ Gk

for all k ≥ 1. Using the induction on k again, we now show that the vector (δ∗0 , δ
∗
1 , . . . , δ

∗
k−1) minimizes the
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error ek(δ0, . . . , δk−1) for all k ≥ 1. From the definition of the error e1 and the relation e1(δ∗0) = 2(1+β)2ν2

η−βL δ∗1
shown in part (a), we have

e1(δ0)− e1(δ∗0) = (1− (η − βL)δ0)e0 + (1 + β)2ν2δ2
0 −

2(1 + β)2ν2

η − βL
δ∗1 .

Using δ∗1 = δ∗0

(
1− η−βL

2 δ∗0

)
(cf. (21)), we obtain

e1(δ0)− e1(δ∗0) = (1− (η − βL)δ0)e0 + (1 + β)2ν2δ2
0 −

2(1 + β)2ν2

η − βL
δ∗0 + (1 + β)2ν2(δ∗0)2.

Since e0 = 2(1+β)2ν2

η−βL δ∗0 (cf. (20)), it follows that

e1(δ0)− e1(δ∗0) = −2(1 + β)2ν2δ0δ
∗
0 + (1 + β)2ν2δ2

0 + (1 + β)2ν2(δ∗0)2 = (1 + β)2ν2 (δ0 − δ∗0)
2
,

showing that the inductive hypothesis holds for k = 1. Now, suppose that

ek(δ0, . . . , δk−1)− ek(δ∗0 , . . . , δ
∗
k−1) ≥ (1 + β)2ν2(δk−1 − δ∗k−1)2. (22)

holds for some k and for all (δ0, . . . , δk−1) ∈ Gk. We next show that relation (22) holds for k + 1 and
for all (δ0, . . . , δk) ∈ Gk+1. To simplify the notation, we use e∗k+1 to denote the error ek+1 evaluated at
(δ∗0 , δ

∗
1 , . . . , δ

∗
k), and ek+1 when evaluating at an arbitrary vector (δ0, δ1, . . . , δk) ∈ Gk+1. Using (19) and part

(a), we have

ek+1 − e∗k+1 = (1− (η − βL)δk)ek + (1 + β)2ν2δ2
k −

2(1 + β)2ν2

η − βL
δ∗k+1.

Under the inductive hypothesis, we have ek ≥ e∗k (cf. (22)). When (δ0, δ1, . . . , δk) ∈ Gk, we have δk ≤
(η−βL)

(1+β)2L2 . Next, we show that (η−βL)
(1+β)2L2 ≤ 1

η−βL . By the definition of strong monotonicity and Lipschitzian

property, we have η ≤ L. Using η ≤ L and 0 ≤ β ≤ η
L we obtain

η ≤ (1 + β)L⇒ η − βL ≤ (1 + β)L

⇒(η − βL)2 ≤ (1 + β)2L2 ⇒ (η − βL)

(1 + β)2L2
≤ 1

η − βL
.

This implies that for (δ0, δ1, . . . , δk) ∈ Gk, we have δk ≤ 1
η−βL or equivalently 1 − (η − βL)δk ≥ 0. Using

this, the relation e∗k = 2(1+β)2ν2

η−βL δ∗k of part (a), and the definition of δ∗k+1, we obtain

ek+1 − e∗k+1 ≥ (1− (η − βL)δk)
2(1 + β)2ν2

η − βL
δ∗k + (1 + β)2ν2δ2

k −
2(1 + β)2ν2

η − βL
δ∗k

(
1− η − βL

2
δ∗k

)
= (1 + β)2ν2(δk − δ∗k)2.

Hence, we have ek − e∗k ≥ (1 + β)2ν2(δk−1 − δ∗k−1)2 for all k ≥ 1 and all (δ0, . . . , δk−1) ∈ Gk.

Remark: From Proposition 4, the minimizer (δ∗0 , . . . , δ
∗
k−1) of ek over Gk is unique up to a scaling by

a factor ρ ∈ (0, 1). Specifically, the solution (δ∗0 , . . . , δ
∗
k−1) is obtained for an initial error e0 ≥ 0 satisfying

ν ≥ L
√

e0
2 , where e0 can be chosen to be arbitrarily large by scaling ν appropriately. Suppose that in the

definition of the sequence {δ∗k}, ρe0 is employed instead of e0 for some ρ ∈ (0, 1). Then it can be seen (by
following the proof) that, for the resulting sequence, Proposition 4 would still hold. �

We have just provided an analysis in terms of a lower bound sequence {δk}. We may conduct a similar
analysis for an upper bound sequence {Γk}. In particular, from Lemma 3a we have

E
[
‖xk+1 − x∗‖2

]
≤ (1− 2(η + L)δk + 2LΓk + L2Γ2

k)E
[
‖xk − x∗‖2

]
+ Γ2

kν
2 for all k ≥ 0.
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When Γk−δk
δk
≤ β with 0 ≤ β < η

L , we have Γk
1+β ≤ δk, and we obtain the following relation:

E
[
‖xk+1 − x∗‖2

]
≤ (1− 2(η + L)

1 + β
Γk + 2LΓk + L2Γ2

k)E
[
‖xk − x∗‖2

]
+ Γ2

kν
2.

When Γk is further restricted so that 0 < Γk ≤ η−βL
(1+β)L2 , we have

E
[
‖xk+1 − x∗‖2

]
≤ (1− (η − βL)

1 + β
Γk)E

[
‖xk − x∗‖2

]
+ Γ2

kν
2 for all k ≥ 0.

Using the preceding relation and following a similar analysis as in the proof of Proposition 4, we can show
that the optimal choice of the sequence {Γ∗k} is given by

Γ∗0 =
η − βL

2(1 + β)ν2
e0, (23)

Γ∗k = Γ∗k−1

(
1− η − βL

2(1 + β)
Γ∗k−1

)
for all k ≥ 1, (24)

where e0 is such that 0 < e0 ≤ 2ν2

L2 .
In the following lemma, we derive a relation between two recursive sequences, which is employed within

our main convergence result for adaptive stepsizes {γk,i}.

Lemma 4. Suppose that sequences {λk} and {γk} are given with the following recursive equations for all
k ≥ 0,

λk+1 = λk(1− λk), γk+1 = γk(1− c̄γk),

where c̄ > 0 is a given constant and λ0 = c̄γ0. Then for all k ≥ 0, λk = c̄γk.

Proof. We use the induction on k. For k = 0, the relation holds since λ0 = c̄γ0. Suppose that for some k ≥ 0
the relation holds. Then, we have

γk+1 = γk(1− c̄γk)⇒ c̄γk+1 = c̄γk(1− c̄γk)⇒ c̄γk+1 = λk(1− λk)⇒ c̄γk+1 = λk+1.

Hence, the result holds for k + 1 implying that it holds for all k ≥ 0.

Using Lemma 4, we now present a relation between the lower and upper bound sequences given by {δ∗k}
and {Γ∗k}, respectively.

Lemma 5. Suppose that the sequences {δ∗k} and {Γ∗k} are given by relations (20)–(21) and (23)–(24),

respectively, where 0 < e0 ≤ 2ν2

L2 and 0 ≤ β < η
L . Then, for all k ≥ 0, Γ∗k = (1 + β)δ∗k.

Proof. Suppose that {λk} is defined by the following recursive equation

λk+1 = λk(1− λk), for all k ≥ 0,

where λ0 = (η−βL)2

4(1+β)2ν2 e0. To obtain the result, we apply Lemma 4 to sequences {λk} and {δ∗k}, and then to

sequences {λk} and {Γ∗k}. Specifically, Lemma 4 implies that λk = η−βL
2 δ∗k for all k ≥ 0. Invoking Lemma

4 for sequences {λk} and {Γ∗k}, we have λk = η−βL
2(1+β)Γ∗k. From the preceding two relations, we conclude that

Γ∗k = (1 + β)δ∗k for all k ≥ 0.

The relations (20)–(21) and (23)–(24), respectively, are essentially adaptive rules for determining the best
upper and lower bounds for stepsize sequences {γk,i}, where ”best” corresponds to the minimizers of the
associated error bounds. Having provided this intermediate result, our main result is stated next and shows
the almost-sure convergence of the distributed adaptive SA (DASA) scheme.
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Theorem 1 (A class of distributed adaptive steplength SA rules). Suppose that Assumptions 1 and 2 hold,
and assume that the set X is bounded. Suppose that, for all i = 1, . . . , N , the stepsizes {γk,i} in algorithm (4)
are given by the following recursive equations:

γ0,i = ric
D2(

1 +
η − 2c

L

)2

ν2

, (25)

γk,i = γk−1,i

(
1− c

ri
γk−1,i

)
for all k ≥ 1. (26)

where D , maxx∈X ‖x−x0‖, c is a scalar satisfying c ∈ (0, η2 ), ri is a parameter such that ri ∈ [1, 1 + η−2c
L ],

η is the strong monotonicity parameter of the mapping F , L is the Lipschitz constant of F , and ν is the upper
bound defined in Assumption 2. We assume that the constant ν is chosen large enough such that ν ≥ DL√

2
.

Then, the following hold:

(a) For any i, j = 1, . . . , N and k ≥ 0,
γk,i
ri

=
γk,j
rj

.

(b) Assumption 3b holds with β = η−2c
L , δk = δ∗k, Γk = Γ∗k, and e0 = D2, where δ∗k and Γ∗k are given by

(20)–(21) and (23)–(24), respectively.

(c) The sequence {xk} generated by algorithm (4) converges almost surely to the unique solution of VI(X,F ).

(d) The results of Proposition 4 hold for δ∗k when e0 = D2 and β = η−2c
L .

Proof. (a) Consider the sequence {λk} given by

λ0 =
c2

(1 + η−2c
L )2ν2

D2,

λk+1 = λk(1− λk) for all k ≥ 1.

Since for any i = 1, . . . , N , we have λ0 = (c/ri) γ0,i, using Lemma 4 we obtain λk = (c/ri)γk,i for all
i = 1, . . . , N and k ≥ 0. Hence, the desired relation follows.
(b) First we show that δ∗k and Γ∗k are well defined. Consider the relation of part (a). Let k ≥ 0 be arbitrarily
fixed. If γk,i > γk,j for some i 6= j, then we have ri > rj . Therefore, the minimum possible γk,i is obtained

with ri = 1 and the maximum possible γk,i is obtained with ri = 1 + η−2c
L . Now, consider (25)–(26). If,

ri = 1, and D2 is replaced by e0, and c by η−βL
2 , we get the same recursive sequence defined by (20)–(21).

Therefore, since the minimum possible γk,i is achieved when ri = 1, we conclude that δ∗k ≤ mini=1,...,N γk,i
for any k ≥ 0. This shows that δ∗k is well-defined in the context of Assumption 3b. Similarly, it can be shown

that Γ∗k is also well-defined in the context of Assumption 3b. Now, Lemma 5 implies that Γ∗k = (1 + η−2c
L )δ∗k

for any k ≥ 0, which shows that the inequality in Assumption 3b is satisfied with β = η−2c
L , where 0 ≤ β < η

L
since 0 < c ≤ η

2 .
(c) In view of Proposition 3, to show the almost-sure convergence, it suffices to show that Assumption 3
holds. Part (b) implies that Assumption 3b is satisfied by the given stepsize choices. As seen in Proposition
3 of [41], Assumption 3a holds for any positive recursive sequence {λk} of the form λk+1 = λk(1−aλk). Since
each sequence γk,i is a recursive sequence of this form, Assumption 3a follows from Proposition 3 in [41].

(d) It suffices to show that the hypotheses of Proposition 4 hold when e0 = D2 and β = η−2c
L . Relation

ν ≥ DL√
2

follows from ν ≥ L
√

e0
2 . Also, as mentioned in part (c), since 0 < c ≤ η

2 , the relation 0 ≤ β < η
L

holds for any choice of c within that range. Therefore, the conditions of Proposition 4 are satisfied.

Remark: Theorem 1 provides a class of adaptive stepsize rules for the distributed SA algorithm (4), i.e.,
for any choice of parameter c such that 0 < c ≤ η

2 , relations (25)–(26) correspond to an adaptive stepsize
rule for agents 1, . . . , N . Note that if c = η

2 , these adaptive rules will represent the centralized adaptive
scheme given by (11)–(12). �

In a distributed setting, each agent can choose its corresponding parameter ri from the specified range
[1, 1 + η−2c

L ]. This requires that all agents agree on a fixed parameter c and have a common estimate of
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parameters η and L. Yet, this scheme does not allow complete flexibility for the agents and requires some
global specification of parameters such as η, L, and c. In the next section, we address the setting where the
Lipschitz constant is unavailable in a global setting or when the mapping F may not be Lipschitzian are
addressed.

4 Non-Lipschitzian mappings and local randomization

A key shortcoming of the proposed DASA scheme, given by (25)-(26), is the requirement of the Lipschitzian
property of the mapping F with a known parameter L. However, in a range of problem settings, the following
may arise:
• Unavailability of a Lipschitz constant: In many settings, either the mapping may be non-Lipschitzian or
the estimation of such a constant may be problematic. It may also be that this constant may not be available
across the entire population of agents.
• Nonsmoothness in payoffs: Suppose the Cartesian stochastic variational inequality problem represents the
optimality conditions of a stochastic convex program with nonsmooth (random) objectives or the equilibrium
conditions of a stochastic Nash game in which the payoff functions are expectation-valued with random
nonsmooth integrands. In either setting, the integrands associated with each component’s expectation
are multi-valued. In such a setting, a randomization or smoothing technique applied to each agent’s payoff
which leads to an approximate mapping that can be shown to be Lipschitz and single-valued. The associated
Lipschitz constant can be specified in terms of problem parameters and smoothing specifications, allowing
us to develop a locally randomized SA algorithm for stochastic variational inequalities without Lipschitzian
mappings.

In Section 4.1, we present the rudiments of our randomization approach and discuss its generalizations
in Section 4.2. Finally, in Section 4.3, we present a distributed locally randomized SA scheme and provide
suitable convergence theory.

4.1 A randomized smoothing technique

In this part, we revisit a smoothing technique that has its roots in work by Steklov [36, 37] in 1907. Over
the years, it has been used by Bertsekas [3], Norkin [25] and more recently Lakshmanan and De Farias [22].
The following proposition in [3] presents this smoothing technique for a nondifferentiable convex function.

Proposition 5. Let f : Rn → R be a convex function and consider the function f ε(x)

f ε(x) , E[f(x− ω)] ,

where ω belongs to the probability space (Rn, Bn, P ), Bn is the σ−algebra of Borel sets of Rn and P is a
probability measure on Bn which is absolutely continuous with respect to Lebesgue measure restricted on Bn.
Then, if E[f(x− ω)] <∞ for all x ∈ Rn, the function f ε is everywhere differentiable.

This technique has been employed in a number of papers such as [13,22,41] to transform f into a smooth
function. In [22], authors consider a Gaussian distribution for the smoothing distribution and show that
when function f has bounded subgradients, the smooth function f ε has Lipschitz gradients with a prescribed
Lipschitz constant. A challenge in that approach is that in some situations, function f may have a restricted
domain and not be defined for some realizations of the Gaussian random variable.

Motivated by this challenge, in [41], we consider the randomized smoothing technique using uniform
random variables defined on an n-dimensional ball centered on origin with radius ε > 0. This approach is
called “locally randomized smoothing technique” and is used to establish a local smoothing SA algorithm for
solving stochastic convex optimization problems in [41]. We intend to extend this smoothing technique to the
regime of solving stochastic Cartesian variational inequality problems and exploit the Lipschitzian property
of the approximated mapping. In the following example, we demonstrate how the smoothing technique works
for a piecewise linear function.

Example 3 (Smoothing of a convex function). Consider the following piecewise linear function

f(x) =

 −2x− 3 for x < −2,
−0.3x+ 0.4 for − 2 ≤ x < 3
x− 3.5 for x ≥ 3.
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(b) The smoothed function fε(x)
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Figure 1: The smoothing technique

Suppose that z is a uniform random variable defined on [−ε, ε] where ε > 0 is a given parameter. Consider
the approximation function f ε = E[f(x+ z)]. Proposition 5 implies that f ε is a smooth function. When ε is
a fixed constant satisfying 0 < ε ≤ 2.5, the smoothed function f ε has the following form:

f ε(x) =


−2x− 3 for x < −2− ε,

1
40ε

(
17x2 + 68x− 46xε+ 68− 52ε+ 17ε2

)
for − 2− ε ≤ x < −2 + ε,

−0.3x+ 0.4 for − 2 + ε ≤ x < 3− ε,
1

40ε

(
13x2 − 78x+ 14xε+ 117− 62ε+ 13ε2

)
for 3− ε ≤ x < 3 + ε,

x− 3.5 for x ≥ 3 + ε.

Figure 1 shows such a smoothing scheme. In Figure 1a, we observe that function f is nonsmooth at x = −2
and x = 3. Figure 1b shows the approximation f ε when ε = 0.5. An immediate observation is that function f ε

is smooth everywhere. Furthermore, the smoothing technique perturbs x locally at all points, including points
of nonsmoothness. Finally, Figure 1c shows the smoothing scheme for different values of ε and illustrates
the exactness of the approximation as ε→ 0.

4.2 Locally randomized techniques

Motivated by the smoothing technique described in previous part, we introduce two distributed smoothing
schemes where we simultaneously perturb the value of vectors xi with a random vector zi for i = 1, . . . , N .
The first scheme is called a multi-spherical randomized (MSR) scheme, where each random vector zi ∈ Rni
is uniformly distributed on the ni-dimensional ball centered at the origin with radius εi. In the second
scheme, called a multi-cubic randomized (MCR) scheme, we let zi ∈ Rni be uniformly distributed on the
ni-dimensional cube centered at the origin with an edge length of 2εi.

Now, consider a mapping F that is not necessarily Lipschitz. We begin by defining an approximation
F ε : X → Rn as the expectation of F (x) when x is perturbed by a random vector z = (z1; . . . ; zN ).
Specifically, F ε is given by

F ε(x) ,

E[F1(x+ z)]
...

E[FN (x+ z)]

 for all x ∈ X, (27)

where F1, . . . , FN are coordinate-maps of F , z = (z1; . . . ; zN ) and the random vectors zi are given by MSR
or MCR scheme.

4.2.1 Multi-spherical randomized smoothing

Let us define Bn(x, ρ) ⊂ Rn as a ball centered at a point x with a radius ρ > 0. More precisely,

Bn(x, ρ) , {y ∈ Rn | ‖y − x‖ ≤ ρ}.
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In this scheme, assume that for all i = 1, . . . , N random vector zi ∈ Bni(0, εi) is uniformly distributed
and independent with respect to random vectors zj for j 6= i. For the approximation mapping F ε to be
well-defined, F needs to be defined over the set Xε

S given by

Xε
s , X +

N∏
i=1

Bni(0, εi).

This means that Xε
s = {(x1 + z1, . . . , xN + zN )|x ∈ X, zi ∈ Rni , ‖zi‖ ≤ εi for all i = 1, . . . , N}, where the

constants εi > 0 are given values and ε , (ε1, . . . , εN ). Note that the subscript s stands for the MSR scheme.
This scheme is developed based on the following assumption.

Assumption 4. The mapping F : Xε
s → Rn is bounded over the set Xε

s. In particular, for every i = 1, . . . , N ,
there exists a constant Ci > 0 such that ‖Fi(x)‖ ≤ Ci for all x ∈ Xε

s.

Under this assumption, we will show that the smoothed mapping F ε produced by the MSR scheme is
Lipschitz continuous over X and we will compute its Lipschitz constant. To do so, we make use of the
following lemma.

Lemma 6. Let z ∈ Rn be a random vector generated from a uniform density with zero mean over an
n-dimensional ball centered at the origin with a radius ε. Then, the following relation holds:∫

Rn
|pu(z − x)− pu(z − y)|dz ≤ κ n!!

(n− 1)!!

‖x− y‖
ε

for all x, y ∈ Rn,

where κ = 1 if n is odd and κ = 2
π if n is even, n!! denotes double factorial of n, and pu is the probability

density function of random vector z given by

pu(z) =


1

cnεn
for z ∈ Bn(0, ε),

0 otherwise,
(28)

where cn =
π
n
2

Γ(n2 + 1)
, and Γ is the gamma function given by

Γ
(n

2
+ 1
)

=


(
n
2

)
! if n is even,

√
π n!!

2(n+1)/2 if n is odd.

Proof. The result is shown within the proof of Lemma 8 in the extended version of [41].

We next provide the main result of this subsection, which establishes the Lipschitz continuity and bound-
edness properties of the approximation mapping F ε. It also provides the Lipschitz constant of F ε for the
MSR scheme in terms of problem parameters.

Proposition 6 (Lipschitz continuity and boundedness of F ε under the MSR scheme). Let Assumption 4
hold and define vector C , (C1, . . . , CN ). Then, for any ε = (ε1, . . . , εN ) > 0 we have the following:

(a) F ε is bounded over the set X, i.e, ‖F ε(x)‖ ≤ ‖C‖ for all x ∈ X.

(b) F ε is Lipschitz continuous over the set X. More precisely, we have

‖F ε(x)− F ε(y)‖ ≤
√
N‖C‖ max

j∈{1,...,N}

{
κj

nj !!

(nj − 1)!!

1

εj

}
‖x− y‖ for all x, y ∈ X, (29)

where κj = 1 when nj is odd and κj = 2
π when nj is even.
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Proof. (a) We can bound the norm of F ε as follows:

‖F ε(x)‖ =

√√√√ N∑
i=1

‖E[Fi(x+ z)] ‖2 ≤

√√√√ N∑
i=1

E[‖Fi(x+ z)‖2] ≤ ‖C‖,

where the first inequality follows from Jensen’s inequality and the second inequality is due to the boundedness
property imposed on F by Assumption 4.
(b) From the definition of F ε in relation (27) we have

‖F ε(x)− F ε(y)‖2 =

N∑
j=1

‖E[Fj(x+ z)− Fj(y + z)] ‖2 =

N∑
j=1

‖E[Fj(x+ z)− Fj(y + z)] ‖2.

We will add and subtract, sequentially, the values F (u) at the vectors u of the form (y1 + z1, . . . , yi−1 +
zi−1, xi + zi, . . . , xN + zN ) for i = 2, . . . , N . To keep the resulting expressions in a compact form, we use the
following notation. For an index set J ⊆ {1, . . . , N}, we let xJ , (xi)i∈J and x−J , (xi)i∈{1,...,N}−J . By
adding and subtracting the terms Fj((y + z){1,...,i}, (x+ z)−{1,...,i}) for all i, from the preceding relation we
obtain

‖F ε(x)− F ε(y)‖2 =

N∑
j=1

∥∥∥∥∥∥∥E
[
Fj(x+ z)− Fj((y + z){1}, (x+ z)−{1})

]︸ ︷︷ ︸
v1

+ E
[
Fj((y + z){1}, (x+ z)−{1})− Fj((y + z){1,2}, (x+ z)−{1,2})

]︸ ︷︷ ︸
v2

...

+ E
[
Fj((y + z){1,...,i−1}, (x+ z)−{1,...,i−1})− Fj((y + z){1,...,i}, (x+ z)−{1,...,i})

]︸ ︷︷ ︸
vi

...

+ E
[
Fj((y + z){1,...,N−2}, (x+ z)−{1,...,N−2})− Fj((y + z){1,...,N−1}, (y + z)−{1,...,N−1})

]︸ ︷︷ ︸
vN−1

+ E
[
Fj((y + z){1,...,N−1}, (x+ z)−{1,...,N−1})− Fj(y + z)

]︸ ︷︷ ︸
vN

∥∥∥∥∥∥∥
2

.

Considering the definition of the vectors v1, . . . , vN in the preceding relation, we have

‖F ε(x)− F ε(y)‖2 =

N∑
j=1

∥∥∥∥∥
N∑
i=1

vi

∥∥∥∥∥
2

≤ N
N∑
j=1

N∑
i=1

‖vi‖2,

where the inequality follows by the convexity of the squared-norm. By using the definitions of vi and
exchanging the order of summations in the preceding relation, we obtain

‖F ε(x)− F ε(y)‖2 ≤ N
N∑
j=1

∥∥E[Fj((x+ z){1}, (x+ z)−{1})− Fj((y + z){1}, (x+ z)−{1})
]∥∥2

︸ ︷︷ ︸
Term 1

+N

N∑
i=2

N∑
j=1

∥∥E[Fj((y + z){1,...,i−1}, (x+ z)−{1,...,i−1})− Fj((y + z){1,...,i}, (x+ z)−{1,...,i})
]∥∥2

︸ ︷︷ ︸
Term i

. (30)
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Next, we derive an estimate for Term 1. From our notation, it follows that for a vector x, x{1} = x1.

In the interest of brevity, in the following, for a vector x, we use x−1 , x−{1}. Recalling the definition of
pu in (28), we write

Term 1 =

N∑
j=1

∥∥∥∥∫
Rn1

Fj(x1 + z1, x−1 + z−1)pu(z1)dz1 −
∫
Rn1

Fj(y1 + z1, x−1 + z−1)pu(z1)dz1

∥∥∥∥2

=

N∑
j=1

∥∥∥∥∫
Rn1

Fj(s1, x−1 + z−1)pu(s1 − x1)ds1 −
∫
Rn1

Fj(t1, x−1 + z−1)pu(t1 − y1)dt1

∥∥∥∥2

=

N∑
j=1

∥∥∥∥∫
Rn1

E[Fj(t1, x−1 + z−1)] (pu(t1 − x1)− pu(t1 − y1))dt1

∥∥∥∥2

,

where in the second equality s1 and t1 are given by s1 = x1 + z1 and t1 = y1 + z1. Using the triangle
inequality and Jensen’s inequality, we obtain

Term 1 ≤
N∑
j=1

(∫
Rn1

E[‖Fj(t1, x−1 + z−1)‖] |pu(t1 − x1)− pu(t1 − y1)|dt1
)2

.

By the definition of Fj and Assumption 4, the preceding relation yields

Term 1 ≤
N∑
j=1

(∫
Rn1

Cj |pu(t1 − x1)− pu(t1 − y1)|dt1
)2

≤

 N∑
j=1

C2
j

(κ1
n1!!

(n1 − 1)!!

1

ε1
‖x1 − y1‖

)2

,

where the last inequality is obtained using Lemma 6. Similarly, we may find estimates for the other terms
in relation (30). Therefore, from relation (30) we may conclude that

‖F ε(x)− F ε(y)‖2 ≤ N

 N∑
j=1

C2
j

 N∑
i=1

(
κi

ni!!

(ni − 1)!!

1

εi
‖xi − yi‖

)2

≤ N

 N∑
j=1

C2
j

( max
t=1,...,N

κt
nt!!

(nt − 1)!!

1

εt

)2 N∑
i=1

‖xi − yi‖2

= N‖C‖2
(

max
t=1,...,N

κt
nt!!

(nt − 1)!!

1

εt

)2

‖x− y‖2.

Therefore, we have

‖F ε(x)− F ε(y)‖ ≤
√
N‖C‖ max

t∈{1,...,N}

{
κt

nt!!

(nt − 1)!!

1

εt

}
‖x− y‖.

Remark: The MSR scheme is a generalization of the local randomization smoothing scheme presented
in [41]. Note that when N = 1, the Lipschitz constant given in Proposition 6b is precisely the constant given
by Lemma 8 in [41]. �

4.2.2 Multi-cubic randomized smoothing scheme

We begin by defining Cn(x, ρ) ⊂ Rn as a cube centered at a point x with the edge length 2ρ > 0 where the
edges are along the coordinate axes. More precisely,

Cn(x, ρ) , {y ∈ Rn | ‖y − x‖∞ ≤ ρ}.
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In the MCR scheme, we assume that for any i = 1, . . . , N , the random vector zi is uniformly distributed on
the set Cni(0, εi) and is independent of the other random vectors zj for j 6= i. For the mapping F we will
assume that it is well-defined over the set Xε

c given by

Xε
c , X +

N∏
i=1

Cni(0, εi),

where εi > 0 are given values and ε , (ε1, . . . , εN ), while the subscript c stands for the MCR scheme. We
investigate the properties of F ε for this smoothing scheme under the following basic assumption.

Assumption 5. The mapping F : Xε
c → Rn is bounded over the set Xε

c . Specifically, for every i = 1, . . . , N ,
there exists a constant C ′i > 0 such that ‖Fi(x)‖ ≤ C ′i for all x ∈ Xε

c .

The following lemma provides a simple relation that will be important in establishing the main property
of the density function used in the MCR scheme.

Lemma 7. Let the vector p ∈ Rm be such that 0 ≤ pi ≤ 1 for all i = 1, . . . ,m. Then, we have

1−
m∏
i=1

(1− pi) ≤ ‖p‖1.

Proof. We use induction on m to prove this result. For m = 1, we have 1 −
∏m
i=1(1 − pi) = p1 = ‖p‖1,

implying that the result holds for m = 1. Let us assume that 1−
∏m
i=1(1−pi) ≤ ‖p‖1 holds for m. Therefore,

we have
m∏
i=1

(1− pi) ≥ 1−
m∑
i=1

pi.

Multiplying both sides of the preceding relation by (1− pm+1), we obtain

m+1∏
i=1

(1− pi) ≥ (1−
m∑
i=1

pi)(1− pm+1) = 1−
m+1∑
i=1

pi + pm+1

m∑
i=1

pi ≥ 1−
m+1∑
i=1

pi.

Hence,
∏m+1
i=1 (1− pi) ≥ 1−

∑m+1
i=1 pi which implies that the result holds for m+ 1. Therefore, we conclude

that the result holds for any integer m ≥ 1.

The following result is crucial for establishing the properties of the approximation F ε obtained by the
MCR smoothing scheme.

Lemma 8. Let z ∈ Rn be a random vector with a zero-mean uniform density over an n-dimensional cube∏N
i=1 Cni(0, εi) for εi > 0 for all i. Let the function pc : Rn → R be the probability density function of the

random vector z:

pc(z) =


1

2n
∏N
i=1 ε

ni
i

for z ∈
∏N
i=1 Cni(0, εi),

0 otherwise.

Then, the following relation holds:∫
Rn
|pc(u− x)− pc(u− y)|du ≤

√
n

min
1≤i≤N}

{εi}
‖x− y‖ for all x, y ∈ Rn.

Proof. Let x, y ∈ Rn be arbitrary. To simplify the notation, we define sets Sx =
∏N
i=1 Cni(xi, εi) and

Sy =
∏N
i=1 Cni(yi, εi). We consider, separately, the case when the cubes Sx and Sy do not intersect, and the

case when they do intersect. Before we proceed, we prove the following relation

Sx ∩ Sy 6= ∅ if and only if ‖xi − yi‖∞ ≤ 2εi for all i = 1, . . . , N. (31)
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To prove relation (31), suppose that the two cubes have nonempty intersection and let u be in the intersection,
i.e., u ∈ Sx ∩ Sy. Then, by the triangle inequality, we have for all i = 1, . . . , N ,

‖xi − yi‖∞ ≤ ‖xi − ui‖∞ + ‖ui − yi‖∞ ≤ 2εi,

where the last inequality follows from the fact that u belongs to each of the two cubes. Thus, when Sx∩Sy 6= ∅,
we have ‖xi− yi‖∞ ≤ 2εi for all i. Conversely, suppose now that ‖xi− yi‖∞ ≤ 2εi holds for all i = 1, . . . , N.
Let ū = (x+ y)/2, and note that by the convexity of the norm ‖ · ‖∞, we have

‖ūi − xi‖∞ =

∥∥∥∥y − x2

∥∥∥∥
∞
≤ 1

2
‖yi − xi‖∞ ≤ εi for all i.

Thus, it follows that ū ∈ Sx. Similarly, we find that ‖ūi − yi‖∞ ≤ εi for all i, which implies that ū ∈ Sy.
Hence, ū ∈ Sx ∩ Sy, thus showing that the two cubes have a nonempty intersection.

Y 

X 

Z 

y 

x 

2ε 

(a) MCR scheme

Z 

Y 

X 

x 

y 

2ε 

(b) MSR scheme

Figure 2: Calculating the Lipschitz constant in the locally randomized schemes.

We now consider the integral
∫
Rn |pc(u− x)− pc(u− y)|du for the cases when the cubes do not intersect

and when they do intersect.
Case 1: Sx ∩ Sy = ∅. In this case, we have∫

Sx

|pc(u− x)− pc(u− y)|du =

∫
Sx

pc(u− x)du,∫
Sy

|pc(u− x)− pc(u− y)|du =

∫
Sy

pc(u− y)du.

Consequently ∫
Rn
|pc(u− x)− pc(u− y)|du =

∫
Sx

pc(u− x)du+

∫
Sy

pc(u− y)du = 2. (32)

By relation (31), there must exist some index i∗ ∈ {1, . . . , N} such that ‖xi∗ − yi∗‖∞ > 2εi∗ . Since

‖x− y‖∞ ≥ ‖xi∗ − yi∗‖∞, it follows that ‖x−y‖∞
min1≤i≤N{εi} > 2. Using the relationship ‖u‖∞ ≤ ‖u‖ between the

infinity-norm and the Euclidean norm, we obtain ‖x−y‖
min1≤i≤N{εi} > 2. Therefore, using (32), we have∫

Rn
|pc(u− x)− pc(u− y)|du < 1

min
1≤i≤N

{εi}
‖x− y‖. (33)
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Case 2: Sx ∩ Sy 6= ∅. Then, we may decompose the integral as follows:∫
Rn
|pc(u− x)− pc(u− y)|du =

∫
Sx∩Sy

|pc(u− x)− pc(u− y)|du+

∫
Scx∩Scy

|pc(u− x)− pc(u− y)|du

+

∫
Sx\Sy

|pc(u− x)− pc(u− y)|du+

∫
Sy\Sx

|pc(u− x)− pc(u− y)|du.

Note that the first two integrals on the right hand side of the preceding equality are zero since pc(u− x) =
pc(u− y) in the corresponding regions. Figure 2a illustrates this observation2. Therefore, we have∫

Rn
|pc(u− x)− pc(u− y)|du =

∫
Sx\Sy

pc(u− x)du+

∫
Sy\Sx

pc(u− y)du = 2
1

2n
∏N
i=1 ε

ni
i

∫
Sx\Sy

du.

Note that the value 2n
∏N
i=1 ε

ni
i is the volume of the cube Sx, denoted by vol(Sx). Similarly, the integral∫

Sx\Sy du is equal to the volume of the set Sx \ Sy. Thus, we can write∫
Rn
|pc(u− x)− pc(u− y)|du = 2

vol(Sx \ Sy)

vol(Sx)
= 2

vol(Sx)− vol(Sx ∩ Sy)

vol(Sx)
= 2

(
1− vol(Sx ∩ Sy)

vol(Sx)

)
.

It can be seen that

vol(Sx ∩ Sy) =

N∏
i=1

ni∏
j=1

(2εi − |xi(j)− yi(j)|),

where w(j) denotes the j-th coordinate value of a vector w. Therefore, from the preceding two relations and

vol(Sx) = 2n
∏N
i=1 ε

ni
i we find that

∫
Rn
|pc(u− x)− pc(u− y)|du = 2

1− 1

2n
∏N
i=1 ε

ni
i

 N∏
i=1

ni∏
j=1

(2εi − |xi(j)− y(j)|)


= 2

1−
N∏
i=1

ni∏
j=1

(
1− |xi(j)− yi(j)|

2εi

) . (34)

Since the cubes Sx and Sy do intersect, by relation (31) there must hold ‖xi − yi‖∞ ≤ 2εi for all i. Hence.

0 ≤ |xi(j)−yi(j)|2εi
≤ 1 for all i. Now, invoking Lemma 7, from (34) we obtain

∫
Rn
|pc(u− x)− pc(u− y)|du ≤ 2

N∑
i=1

ni∑
j=1

|xi(j)− yi(j)|
2εi

=

N∑
i=1

‖xi − yi‖1
εi

≤
N∑
i=1

√
ni
εi
‖xi − yi‖,

where in the last inequality we used the relation between ‖ · ‖1 and the Euclidean norm. Using Hölder’s
inequality, we have

N∑
i=1

√
ni
εi
‖xi − yi‖ ≤

√√√√ N∑
i=1

ni
ε2i
‖x− y‖ ≤

√
n

min
1≤i≤N

{εi}
‖x− y‖,

implying that ∫
Rn
|pc(u− x)− pc(u− y)|du ≤

√
n

min
1≤i≤N}

{εi}
‖x− y‖. (35)

By combining (37), (33), and (35), and using the fact n ≥ 1, we obtain the desired result.

Analogous to Proposition 6, the next proposition derives the Lipschitz constant and boundedness prop-
erties of the approximation F ε under the MCR scheme.

2Figure 2b provides a similar graphic for the MSR scheme.
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Proposition 7 (Lipschitz continuity and boundedness of F ε under the MCR scheme). Let Assumption 5
hold and define vector C ′ , (C ′1, . . . , C

′
N ). Then, for any ε = (ε1, . . . , εN ) > 0 we have the following:

(a) F ε is bounded over the set X, i.e., ‖F ε(x)‖ ≤ ‖C ′‖ for all x ∈ X.

(b) F ε is Lipschitz over the set X. More precisely, we have

‖F ε(x)− F ε(y)‖ ≤
√
n‖C ′‖

minj=1,...,N{εj}
‖x− y‖ for all x, y ∈ X. (36)

Proof. (a) This result can be shown in a similar fashion to the proof of Proposition 6a.
(b) Since the random vector zi is uniformly distributed on the set Cni(0, εi) for each i = 1, . . . , N , the

random vector z = (z1; . . . ; zN ) is uniformly distributed on the set
∏N
i=1 Cni(0, εi). By the definition of the

approximation F ε in (27), it follows that for any x, y ∈ X,

‖F ε(x)− F ε(y)‖ =

∥∥∥∥∫
Rn
F (x+ z)pc(z)dz −

∫
Rn
F (y + z)pc(z)dz

∥∥∥∥
=

∥∥∥∥∫
Rn
F (u)pc(u− x)du−

∫
Rn
F (v)pc(v − y)dv

∥∥∥∥
=

∥∥∥∥∫
Rn
F (u)(pc(u− x)− pc(u− y))du

∥∥∥∥
≤
∫
Rn
‖F (u)‖|pc(u− x)− pc(u− y)|du,

where in the second equality we let u = x+ z and v = y + z, while the inequality follows from the triangle
inequality. Invoking Assumption 5 we obtain

‖F ε(x)− F ε(y)‖ ≤ ‖C ′‖
∫
Rn
|pc(u− x)− pc(u− y)|du. (37)

The desired relation follows from relation (37) and Lemma 8.

4.3 A distributed locally randomized SA scheme

The locally randomized schemes presented in Section 4.2 facilitate the construction of a distributed locally
randomized SA scheme. Consider the Cartesian stochastic variational inequality problem VI(X,F ε) given
in (27) where the mapping F is not necessarily Lipschitz. In this section, we assume that the conditions of
the MSR scheme are satisfied, i.e., for all i = 1, . . . , N , the random vector zi is uniformly distributed over
the set ∈ Bni(0, εi) independently from the other random vectors zj for j 6= i, and the mapping F in (2) is
defined over the set Xε

s . Let the sequence {xk} be given by

xk+1,i = ΠXi (xk,i − γk,iΦi(xk + zk, ξk)) , (38)

for all k ≥ 0 and i = 1, . . . , N , where γk,i > 0 denotes the stepsize of the i-th agent at iteration k,
xk = (xk,1;xk,2; . . . ;xk,N ), and zk = (zk,1; zk,2; . . . ; zk,N ). The following proposition proves the almost-sure
convergence of the iterates generated by algorithm (38) to the solution of the approximation VI(X,F ε). In
this result, we proceed to show that the approximation does indeed satisfy the assumptions of Proposition 3
and convergence can then be immediately claimed. We define F ′k, the history of the method up to time k,
as

F ′k , {x0, z0, ξ0, z1, ξ1, . . . , zk−1, ξk−1},
for k ≥ 1 and F ′0 = {x0}. We assume that, at any iteration k, the vectors zk and ξk in (38) are independent
given the history F ′k.

Proposition 8 (Almost-sure convergence of locally randomized DASA scheme). Let Assumptions 1a, 3,
and 4 hold, and suppose that mapping F is strongly monotone on the set Xε

s with a constant η > 0. Also,
assume that, for each i = 1, . . . , N , there exists a constant νi > 0 such that

E
[
‖Φi(xk + zk, ξk)− Fi(xk + zk)‖2 | F ′k

]
≤ ν2

i a.s. for all k. (39)
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Then, the sequence {xk} generated by algorithm (38) converges almost surely to the unique solution of
VI(X,F ε).

Proof. Define random vector ξ′ , (z1; z2; . . . ; zN ; ξ), allowing us to rewrite algorithm (38) as follows:

xk+1,i = ΠXi

(
xk,i − γk,i(F εi (xk) + w′k,i)

)
,

w′k,i , Φi(xk + zk, ξk)− F εi (xk).
(40)

To prove convergence of the iterates produced by (40), it suffices to show that the conditions of Proposition 3
are satisfied for the set X, the mapping F ε, and the stochastic errors w′k,i.
(i) Since Assumption 4 holds, Proposition 6b implies that the mapping F ε is Lipschitz over the set X with

the constant
√
N‖C‖max1≤j≤N{κj nj !!

(nj−1)!!
1
εj
}. Thus, Assumption 1b holds for the mapping F ε.

(ii) Next, we show that the mapping F ε is strongly monotone over X. Since the mapping F is strongly
monotone over the set Xε

s with a constant η > 0, for any u, v ∈ Xε
s , we have

(u− v)T (F (u)− F (v)) ≥ η‖u− v‖2.

Therefore, for any x, y ∈ X and any realization of the random vector z, the vectors x+ z and y+ z belong to
the set Xε

s . Consequently, by defining u , x+ z and v , y+ z, respectively, and nothing that u− v = x− y,
from the previous relation we obtain

(x− y)T (F (x+ z)− F (y + z)) ≥ η‖x− y‖2.

Taking expectations on both sides, it follows that

(x− y)T (E[F (x+ z)]− E[F (y + z)]) ≥ η‖x− y‖2,

which implies that F ε is strongly monotone over the set X with the constant η.

(iii) The last step of the proof entails showing that the stochastic errors w′k , (wk,1;wk,2; . . . ;wk,N ) are well-
defined, i.e., E[w′k | F ′k] = 0 and that Assumption 2 holds with respect to the stochastic error w′k. Consider
the definition of w′k,i in (40). Taking conditional expectations on both sides, we have for all i = 1, . . . , N

E
[
w′k,i | F ′k

]
= Ez,ξ[Φi(xk + zk, ξk)]− F εi (xk) = E[Fi(xk + zk)]− F εi (xk) = F εi (xk)− F εi (xk) = 0,

where the last equality is obtained using the definition of F ε in (27). Consequently, it suffices to show that
the condition of Assumption 2 holds. This may be expressed as follows:

E
[
‖w′k‖2 | F ′k

]
= E

[
N∑
i=1

‖w′k,i‖2 | F ′k

]
= Ez,ξ

[
N∑
i=1

‖Φi(xk + zk, ξk)− F εi (xk)‖2 | F ′k

]
.

By adding and subtracting Fi(xk + zk) we obtain

E
[
‖w′k‖2 | F ′k

]
≤2Ez,ξ

[
N∑
i=1

(
‖Φi(xk + zk, ξk)− Fi(xk + zk)‖2 + ‖Fi(xk + zk)− F εi (xk)‖2

)
| F ′k

]

=2

N∑
i=1

E
[
E
[
‖Φi(xk + zk, ξk)− Fi(xk + zk)‖2 | F ′k, zk

]
| F ′k

]
+ 2

N∑
i=1

E
[
(‖Fi(xk + zk)‖2 − ‖F εi (xk)‖2) | F ′k

]
,

where the last term is obtained from the following relation:

E
[
Fi(xk + zk)TF ε(xk) | F ′k

]
= E

[
Fi(xk + zk)TF ε(xk) | xk

]
= ‖F ε(xk)‖2.
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Using the assumption on the errors given in (39), we further obtain

E
[
‖w′k‖2 | F ′k

]
≤ 2

N∑
i=1

ν2
i + 2

N∑
i=1

E
[
(‖Fi(xk + zk)‖2 − ‖F εi (xk)‖2) | F ′k

]
. (41)

Furthermore, we have

N∑
i=1

E
[
(‖Fi(xk + zk)‖2 − ‖F εi (xk)‖2) | F ′k

]
≤

N∑
i=1

E
[
‖Fi(xk + zk)‖2 | F ′k

]
≤ C2, (42)

where we use the fact xk + zk ∈ Xε
s and the assumption that Fi is uniformly bounded over the set Xε

s

(cf. Assumption 4). Relations (41)–(42) imply that the stochastic errors {w′k} satisfy Assumption 2. Thus,
the conditions of Proposition 3 are satisfied for the set X, the mapping F ε, and the stochastic errors w′k,i
and the convergence result follows.

The distributed locally randomized SA scheme produces a solution that is an approximation to the true
solution. A natural question is whether the sequence of approximations tends to the solution of VI(X,F )
as ε, the size of the support of the randomization, tends to zero. The following proposition resolves this
question in the affirmative.

Proposition 9. Let Assumption 1a hold, and suppose that mapping F is a continuous and strongly monotone
over the set Xε

s. Let xε and x∗ denote the solution of VI(X,F ε) and VI(X,F ), respectively. Then xε → x∗

when ε→ 0.

Proof. As showed in the proof of Proposition 8, F ε is also strongly monotone over the set X with constant
η. Since set X is assumed to be closed and convex, the definition of Xε

s implies that Xε
s is also closed and

convex. Thus, the existence and uniqueness of the solution to VI(X,F ), as well as VI(X,F ε), is guaranteed
by Theorem 2.3.3 of [11].

Let ε = (ε1, ε2, . . . , εN ) with εi > 0 for all i be arbitrary, and let xε denote the solution to VI(X,F ε). Let
x∗ be the solution to VI(X,F ). Thus, since xε is the solution to VI(X,F ε), we have (x∗ − xε)TF ε(xε) ≥ 0.
Similarly, since x∗ is the solution to VI(X,F ), we have (xε − x∗)TF (x∗) ≥ 0. Adding the preceding two
inequalities, we obtain for any k ≥ 0,

(x∗ − xε)T (F ε(xε)− F (x∗)) ≥ 0.

Adding and subtracting the term F ε(x∗), we have

(x∗ − xε)T (F ε(xε)− F ε(x∗)) + (x∗ − xε)T (F ε(x∗)− F (x∗)) ≥ 0,

implying that

(x∗ − xε)T (F ε(x∗)− F (x∗)) ≥ (x∗ − xε)T (F ε(x∗)− F ε(xε)) ≥ η‖x∗ − xε‖2,

where the last inequality follows by the strong monotonicity of the mapping F ε. By invoking the Cauchy-
Schwartz inequality, we obtain

‖F ε(x∗)− F (x∗)‖ ≥ η‖x∗ − xε‖. (43)

Next, we show that limε→0 F
ε(x∗) = F (x∗). By the definition of F ε and Jensen’s inequality, we have

‖F ε(x∗)− F (x∗)‖ = ‖E[F (x∗ + z)− F (x∗)] ‖ ≤ E[‖F (x∗ + z)− F (x∗)‖] . (44)

Then, the expectation on the right-hand side can be expressed as follows:

E[‖F (x∗ + z)− F (x∗)‖] =

∫
Rn1

. . .

∫
RnN
‖F (x∗ + z)− F (x∗)‖

(
N∏
i=1

pu(zi)

)
dz1 · · · dzN

=

∫
Bn1

(0,ε1)

. . .

∫
BnN (0,εN )

‖F (x∗ + z)− F (x∗)‖

(
N∏
i=1

pu(zi)

)
dz1 · · · dzN , (45)
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where the second equality is a consequence of the definition of the random vector z. Let δ > 0 be an arbitrary
fixed number. By the continuity of F over Xε

s , there exists a δ′ > 0, such that if ‖(x∗ + z)− x∗‖ ≤ δ′, then
‖F (x∗ + z) − F (x∗)‖ ≤ δ. Therefore, for all ε = (ε1, ε2, . . . , εN ) with ‖ε‖ ≤ δ′ we have ‖z‖ ≤ ‖ε‖ ≤ δ′ for

z ∈
∏N
i=1Bni(0, εi), which is equivalent to ‖(x∗ + z) − x∗‖ ≤ δ′. Hence, ‖F (x∗ + z) − F (x∗)‖ ≤ δ for all

z ∈
∏N
i=1Bni(0, εi) with εi such that ‖ε‖ ≤ δ′. Thus, using (44) and (45), for any ε = (ε1, . . . , εN ) with

‖ε‖ ≤ δ′, we have

‖F ε(x∗)− F (x∗)‖ ≤ δ
∫
Bn1

(0,εk,1)

. . .

∫
BnN (0,εk,N )

(
N∏
i=1

pu(zi)

)
dzk,1 . . . dzk,N = δ.

Since δ > 0 was arbitrary, we conclude that limε→0 ‖Fk(x∗)− F (x∗)‖ = 0. Therefore, taking limits on both
sides of inequality (43), we obtain limε→0 ‖x∗ − xεk‖ = 0.

Remark: Note that the results of Propostion 8 and Proposition 9 hold when the random vector z fits
the conditions of the MCR scheme.

5 Numerical results

In this section, we report the results of our numerical experiments on two sets of test problems. Of these, the
first is a stochastic bandwidth-sharing problem in communication networks (Sec. 5.1), while the second is a
stochastic Nash-Cournot game (Sec. 5.2). In each instance, we compare the performance of the distributed
adaptive stepsize SA scheme (DASA) given by (25)–(26) with that of SA schemes with harmonic stepsize
sequences (HSA), where agents use the stepsize θ

k at iteration k. More precisely, we consider three different
values of the parameter θ, i.e., θ = 0.1, 1, and 10. This diversity of choices allows us to observe the sensitivity
of the HSA scheme to different settings of the parameters. In the context of Nash-Cournot games, we use the
distributed locally randomized SA scheme described in Sec. 4.3 with the MSR and MCR techniques. In each
instance, we conduct a sensitivity analysis where we consider 12 different parameter settings, categorized into
4 sets. In each set, one parameter is changed while other parameters are maintained as fixed. We provide
90% confidence intervals of the mean squared error for each of the 12 settings. Our experiments have been
done using Matlab 7.12.

5.1 A bandwidth-sharing problem in computer networks

We consider a communication network where users compete for the bandwidth. Such a problem can be
captured by an optimization framework (cf. [6]). Motivated by this model, we consider a network with 16
nodes, 20 links and 5 users. Figure 3 shows the configuration of this network. Users have access to different
routes as shown in Figure 3. For example, user 1 can access routes 1, 2, and 3. Each user is characterized by
a cost function. Additionally, there is a congestion cost function that depends on the aggregate flow. More
specifically, the cost function user i with flow rate (bandwidth) xi is defined by

fi(xi, ξi) , −
∑

r∈R(i)

ξi(r) log(1 + xi(r)),

for i = 1, . . . , 5, where x , (x1; . . . ;x5) is the flow decision vector of the users, ξ , (ξ1; . . . ; ξ5) is a random
parameter corresponding to the different users, R(i) = {1, 2, . . . , ni} is the set of routes assigned to the i-th
user, xi(r) and ξi(r) are the r-th element of the decision vector xi and the random vector ξi, respectively.
We assume that ξi(r) is drawn from a uniform distribution for each i and r. More precisely, ξ1(1), ξ1(2), and
ξ1(3) are i.i.d. and uniformly distributed in [1−0.1, 1+0.1], ξ2(1) and ξ2(2) are i.i.d. and uniformly distributed
in [1.4 − 0.2, 1.4 + 0.2], ξ3(1) and ξ4(1) are i.i.d. and uniformly distributed in [0.8 − 0.05, 0.8 + 0.05] and
[1.6−0.2, 1.6+0.2], respectively, and ξ5(1) and ξ5(2) are i.i.d and uniformly distributed in [1.2−0.1, 1.2+0.1].

The links have limited capacities, which are given by

b = (10; 15; 15; 20; 10; 10; 20; 30; 25; 15; 20; 15; 10; 10; 15; 15; 20; 20; 25; 40).
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Figure 3: The bandwidth-sharing problem – the network

We may define the routing matrix A that describes the relation between set of routes R = {1, 2, . . . , 9} and
set of links L = {1, 2, . . . , 20}. Assume that Alr = 1 if route r ∈ R goes through link l ∈ L and Alr = 0
otherwise. Using this matrix, the capacity constraints of the links can be described by Ax ≤ b.

We formulate this model as a stochastic optimization problem given by

minimize

N∑
i=1

E[fi(xi, ξi)] + c(x) (46)

subject to Ax ≤ b
x ≥ 0,

where c(x) is the network congestion cost. We consider this cost of the form c(x) = ‖Ax‖2. Problem (46) is
a convex optimization problem and the optimality conditions can be stated as a variational inequality given
by ∇f(x∗)T (x− x∗) ≥ 0, where f(x) ,

∑N
i=1 E[fi(xi, ξi)] + c(x). Using our notation in Sec. 2.2, we have

F (x) , ∇f(x) = −
(

ξ̄1(1)

1 + x1(1)
; . . . ;

ξ̄i(ri)

1 + xi(ri)
; . . . ;

ξ̄5(2)

1 + x5(2)

)
+ 2ATAx,

where ξ̄i(ri) , E[ξi(ri)] for any i = 1, . . . , 5 and ri = 1, . . . , ni. We now show that the mapping F is Lipschitz
and strongly monotone. Using the preceding relation, triangle inequality, and Cauchy-Schwartz inequality,
for any x, y ∈ X , {x ∈ RN |Ax ≤ b, x ≥ 0}, we have

‖F (x)− F (y)‖

=

∥∥∥∥−(ξ̄1(1)

(
1

1 + x1(1)
− 1

1 + y1(1)

)
; . . . ; ξ̄5(2)

(
1

1 + x5(2)
− 1

1 + y5(2)

))
+ 2ATA(x− y)

∥∥∥∥
≤
∥∥∥∥(ξ̄1(1)

x1(1)− y1(1)

(1 + x1(1))(1 + y1(1))
; . . . ; ξ̄5(2)

x5(2)− y5(2)

(1 + x5(2))(1 + y5(2))

)∥∥∥∥+ 2‖ATA‖‖x− y‖.

Using nonnegativity constraints, from the preceding relation we obtain

‖F (x)− F (y)‖ ≤ max
i,ri

ξ̄i(ri)‖x− y‖+ 2‖ATA‖‖x− y‖ =

(
max
i,ri

ξ̄i(ri) + 2‖ATA‖
)
‖x− y‖,
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implying that F is Lipschitz with constant maxi,ri ξ̄i(ri) + 2‖ATA‖. To show the monotonicity of F , we
write

(F (x)− F (y))T (x− y)

=

((
ξ̄1(1)

x1(1)− y1(1)

(1 + x1(1))(1 + y1(1))
; . . . ; ξ̄5(2)

x5(2)− y5(2)

(1 + x5(2))(1 + y5(2))

)
+ 2ATA(x− y)

)T
(x− y)

=
∑
i,r

ξ̄i(r)
(xi(r)− yi(r))2

(1 + xi(r))(1 + yi(r))
+ 2(x− y)T (ATA)(x− y)

≥ mini,ri ξ̄i(ri)

(1 + maxl b(l))2
‖x− y‖2 + 2(x− y)T (ATA)(x− y)

= (x− y)T
(

mini,ri ξ̄i(ri)

(1 + maxl b(l))2
IN + 2ATA

)
(x− y).

Our choice of matrix A is such that ATA is positive definite. Thus, the preceding relation implies that F is
strongly monotone with parameter

η =
mini,r ξ̄i(ri)

(1 + maxl b(l))2
+ 2λmin(ATA),

where λmin(ATA) is the minimum eigenvalue of the matrix ATA.

5.1.1 Specification of parameters

In this experiment, the optimal solution x∗ of the problem (46) is calculated by sample average approx-
imation (SAA) method using the nonlinear programming solver knitro [5]. Our goal lies in comparing
the performance of the DASA scheme given by (25)–(26) with that of SA schemes using harmonic stepsize
sequences of the form γk = θ

k , referred to as HSA schemes. We consider three values for θ and observe the
performance of HSA scheme in each case. To calculate the stepsize sequence in DASA scheme, other than η
and L obtained in the previous part, parameters c, ri, D, and ν need to be evaluated. We assume that c = η

4

and ri is uniformly drawn from the interval [1, 1 + η−2c
L ] for each user. We let the starting point of all SA

schemes be zero, i.e., x0 = 0. Thus, D = maxx∈X ‖x‖. Since the routing matrix A has binary entries, from

Ax ≤ b, one may conclude that
√
N maxl b(l) can be chosen as D. To calculate ν, for any k ≥ 0 we have

E
[
‖wk‖2 | Fk

]
= E

[
‖Φ(xk, ξk)− F (xk)‖2 | Fk

]
= E

[∥∥∥∥(ξk,1(1)− ξ̄k,1(1)

1 + xk,1(1)
; . . . ;

ξk,5(2)− ξ̄k,5(2)

1 + xk,5(2)

)∥∥∥∥2

| Fk

]

= E

[
N∑
i=1

ni∑
r=1

(
ξk,i(r)− ξ̄k,i(r)

1 + xk,i(r)

)2

| Fk

]

=

N∑
i=1

ni∑
r=1

var(ξk,i(r))

(1 + xk,i(r))2

≤
N∑
i=1

ni∑
r=1

var(ξk,i(r)),

where the last inequality is obtained using xk,i(r) ≥ 0. Thus,
√∑N

i=1

∑ni
r=1 var(ξk,i(r)) is a candidate for

parameter ν. On the other hand, ν needs to satisfy ν ≥ LD√
2

from Theorem 1. Therefore, we set ν as follows:

ν = max


√√√√ N∑

i=1

ni∑
r=1

var(ξk,i(r)),
LD√

2

 .
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5.1.2 Sensitivity analysis

We solve the bandwidth-sharing problem for 12 different settings of parameters shown in Table 1. We
consider 4 parameters in our model that scale the problem. Here, mb denotes the multiplier of the capacity
vector b, mc denotes the multiplier of the congestion cost function c(x), and mξ and dξ are two multipliers
that parametrize the random variable ξ. More precisely, if i-th user in route r is uniformly distributed in
[a− b, a+ b], here we assume that it is uniformly distributed in [mξa− dξb,mξa+ dξb]. S(i) denotes the i-th
setting of parameters. For each of these 4 parameters, we consider 3 settings where one parameter changes
and other parameters are fixed. This allows us to observe the sensitivity of the algorithms with respect
to each of these parameters. The SA algorithms are terminated after 4000 iterates. To measure the error

- S(i) mb mc mξ dξ

mb 1 1 1 5 2
2 0.1 1 5 2
3 0.01 1 5 2

mc 4 0.1 2 2 1
5 0.1 1 2 1
6 0.1 0.5 2 1

mξ 7 1 1 1 5

8 1 1 2 5
9 1 1 5 5

dξ 10 1 0.01 1 1

11 1 0.01 1 2
12 1 0.01 1 5

Table 1: The bandwidth-sharing problem: Parameter settings

of the schemes, we run each scheme 25 times and then compute the mean squared error (MSE) using the

metric 1
25

∑25
i=1 ‖xik − x∗‖2 for any k = 1, . . . , 4000, where i denotes the i-th sample. Table 2 shows the 90%

confidence intervals (CIs) of the error for the DASA and HSA schemes.

- S(i) DASA - 90% CI HSA with θ = 0.1- 90% CI HSA with θ = 1 - 90% CI HSA with θ = 10 - 90% CI

mb 1 [2.97e−6,4.66e−6] [1.52e−6,2.37e−6] [1.70e−6,2.97e−6] [1.33e−5,1.81e−5]
2 [2.97e−6,4.66e−6] [1.52e−6,2.37e−6] [1.70e−6,2.97e−6] [1.33e−5,1.81e−5]
3 [1.15e−7,3.04e−7] [2.12e−8,4.92e−8] [4.66e−8,1.17e−7] [8.07e−7,2.43e−6]

mc 4 [4.39e−7,6.55e−7] [1.33e−6,1.80e−6] [4.71e−7,8.75e−7] [3.84e−6,5.38e−6]
5 [1.29e−6,1.97e−6] [9.00e−6,1.20e−5] [7.88e−7,1.36e−6] [5.61e−6,7.98e−6]
6 [3.44e−6,5.36e−6] [2.26e−4,2.53e−4] [1.25e−6,1.99e−6] [7.34e−6,1.12e−5]

mξ 7 [4.29e−5,6.40e−5] [7.92e−5,1.49e−4] [2.83e−5,4.75e−5] [1.84e−4,2.75e−4]

8 [3.18e−5,4.83e−5] [3.46e−5,6.07e−5] [1.97e−5,3.39e−5] [1.40e−4,1.99e−4]
9 [1.83e−5,2.88e−5] [6.12e−6,9.99e−6] [1.06e−5,1.85e−5] [8.33e−5,1.13e−4]

dξ 10 [3.82e−4,5.91e−4] [2.86e+1,2.86e+1] [5.50e−1,5.70e−1] [7.23e−5,9.64e−5]

11 [9.81e−4,1.44e−3] [2.86e+1,2.86e+1] [5.45e−1,5.85e−1] [2.85e−4,3.80e−4]
12 [6.26e−3,8.44e−3] [2.85e+1,2.86e+1] [5.47e−1,6.44e−1] [1.77e−3,2.36e−3]

Table 2: The bandwidth-sharing problem – 90% CIs for DASA and HSA schemes

5.1.3 Results and insights

We observe that DASA scheme performs favorably and is far more robust in comparison with the HSA
schemes with different choice of θ. Importantly, in most of the settings, DASA stands close to the HSA
scheme with the minimum MSE. Note that when θ = 1 or θ = 10, the stepsize θ

k is not within the interval

(0, η−βL
(1+β)2L2 ] for small k and is not feasible in the sense of Prop. 4. Comparing the performance of each HSA

scheme in different settings, we observe that HSA schemes are fairly sensitive to the choice of parameters.
For example, HSA with θ = 0.1 performs very well in settings S(1), S(2), and S(3), while its performance
deteriorates in settings S(10), S(11), and S(12). A similar discussion holds for other two HSA schemes. A
good instance of this argument is shown in Figure 4. For example, HSA scheme with θ = 10 performs poorly
in settings S(1) and S(4), while it outperforms other schemes in setting S(11). We also observe that changing
mb from 1 to 0.1 does not affect the error. This is because the optimal solution x∗ remains feasible for a
smaller vector B. On the other hand, the error decreases when we use mb = 0.01. Figure 5 presents the
flow rates of the users in different routes for the setting S(4). One immediate observation is that the flow
rates of HSA scheme with θ = 10 fluctuates noticeably in the beginning due to a very large stepsize. Figure
6 provides an image of the 90% CIs for the setting S(4). We used two formats to present the intervals.
The left-hand side half of each plot shows the intervals with line segments, while the other half shows the
lower and upper bound of the intervals continuously. The colorful points represent the 25 sample errors at
corresponding iterations. We see that the DASA scheme and HSA scheme with θ = 1 have CIs with similar
size and a smooth mean while the mean in HSA scheme with θ = 10 is nonsmooth and oscillates more as
the algorithm proceeds.
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(b) Setting S(4)
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(c) Setting S(11)

Figure 4: The bandwidth-sharing problem – MSE – DASA vs. HSA schemes
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(c) HSA with θ = 10

Figure 5: The bandwidth-sharing problem – flow rates for the setting S(4)

5.2 A networked stochastic Nash-Cournot game

Consider a networked Nash-Cournot game akin to that described in Example 1. Specifically, let firm i’s
generation and sales decisions at node j be given by gij and sij , respectively. Suppose the price function
pj is given by pj(s̄j , aj , bj) = aj − bj s̄σj , where s̄j =

∑
i sij , σ ≥ 1 and aj and bj are uniformly distributed

random variables defined over the intervals [lbaj , ub
a
j ] and [lbbj , ub

b
j ], respectively. For purposes of simplicity,

we assume that the generation cost is linear and is given by cijgij . We also impose a bound on sales decisions,
as specified sij ≤ cap′ij for all i and j. Note that sales decisions are always bounded by aggregate generation
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(b) HSA with θ = 1
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(c) HSA with θ = 10

Figure 6: The bandwidth-sharing problem – 90% CIs for the setting S(4)
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capacity. The optimization model for the i-th firm is given by:

minimize E

 M∑
j=1

(
cijgij − sij(aj − bj s̄σj )

) (47)

subject to xi = (si·; gi·) ∈ Xi ,



M∑
j=1

gij =

M∑
j=1

sij ,

gij ≤ capij , sij ≤ cap′ij , j = 1, . . . ,M,

gij , sij ≥ 0, j = 1, . . . ,M.

 .

As discussed in [15], when 1 < σ ≤ 3 and M ≤ 3σ−1
σ−1 , the mapping F is strictly monotone and strong

monotonicity can be induced using a regularized mapping, given that our interest lies in strongly monotone
problems. On the other hand, when σ > 1, it is difficult to check that mapping F has Lipschitzian property.
This motivates us to employ the distributed locally randomized SA schemes introduced in Sec. 4.3. Now,
using regularization and randomized schemes, we would like to solve the VI(X,F ε + ηI), where η > 0 is the
regularization parameter and F ε is defined by (27). As a consequence, this problem admits a unique solution
denoted by x∗η,ε.

5.2.1 SA algorithms

In this experiment, we use four different SA schemes for solving VI(X,F ε + ηI) described in Sec. 3.2 and
Sec. 4:

MSR-DASA scheme. In this scheme, we employ the algorithm (38) and assume that the random vector
z is generated via the MSR scheme, i.e., zi is uniformly distributed on the set Bni(0, εi) while the mapping
Fε is defined by (27). One immediate benefit of applying this scheme is that the Lipschitzian parameter
can be estimated from Prop. 6b. Moreover, we assume that the stepsizes γk,i are given by (25)-(26). The
multiplier ri is randomly chosen for each firm within the prescribed range. The constant c is maintained at
η
4 . Parameters D and ν need to be estimated, while the Lipschitzian parameter L is obtained by Prop. 6b,
i.e.,

L =
√
N‖C‖ max

j=1,...,N

{
κj

nj !!

(nj − 1)!!

1

εj

}
.

MSR-HSA schemes. Analogous to the MSR-DASA scheme, this scheme uses the distributed locally
randomized SA algorithm (38) where for any i = 1, . . . , N , the random vector zi is uniformly drawn from the
ball Bni(0, εi) and mapping Fε is defined by (27). The difference is that here we use the harmonic stepsize
of the form θ

k at k-th iteration for any firm, where θ > 0.

MCR-DASA scheme. This scheme is similar to the MSR-DASA scheme with one key difference. We
assume that random vector z is generated by the MCR scheme, i.e., for any i = 1, . . . , N , random vector zi
is uniformly drawn from the cube Cni(0, εi) independent from any zj with j 6= i. The Lipschitz constant L
required for calculating the stepsizes is given by Prop. 7b:

L =

√
n‖C ′‖

minj=1,...,N{εj}
.

MCR-HSA schemes. This scheme uses the algorithm (38) with multi-cubic uniform random variable z.
The stepsizes in this scheme are harmonic of the form θ

k .

To obtain the solution x∗η,ε, we use the HSA scheme with the stepsizes 1
k using 20000 iterations. Note that

in this experiment, when we use the DASA scheme, we allow that the condition ν ≥ DL√
2

is violated and we

replace it with ν ≥ D. The condition ν ≥ D keeps the adaptive stepsizes positive for any k. As a consequence
of ignoring ν ≥ DL√

2
, the adaptive stepsizes become larger and in the order of the harmonic stepsizes in our

analysis. Note that by this change, the convergence of the DASA algorithm is still guaranteed, while the
result of Theorem 1d does not hold necessarily.
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5.2.2 Sensitivity analysis

We consider a Nash-Cournot game with 5 firms over a network with 3 nodes. We set σ = 1.1, lbbj = 0.04,

ubbj = 0.05, and lbaj = 1 for any j and uba = (1.5; 2; 2.5). Having these parameters fixed, our test problems
are generated by changing other model’s parameters. These parameters are as follows: the parameter of
locally randomized schemes ε, the regularization parameter η, the starting point of the SA algorithm x0,
and the multiplier Ma for the random variable aj for any j. We also consider two different settings for
capij and cap′ij . Note that when capij = 1, the constraints sij ≤ 3 are redundant and can be removed. In

our analysis we assume that εi , ε is identical for all firms. Similar to the first experiment in Sec. 5.1.2,

- S(i) ε η x0 Ma capij cap′ij
ε 1 0.1 0.1 P1 1 1 3

2 0.001 0.1 P1 1 1 3
3 0.0001 0.1 P1 1 1 3

η 4 0.1 0.1 P2 1 10 1
5 0.1 0.05 P2 1 10 1
6 0.1 0.01 P2 1 10 1

x0 7 0.1 1 P1 6 10 1
8 0.1 1 P2 6 10 1
9 0.1 1 P3 6 10 1

Ma 10 0.01 0.5 P2 2 1 3
11 0.01 0.5 P2 4 1 3
12 0.01 0.5 P2 6 1 3

Table 3: The stochastic Nash-Cournot game – settings of parameters

we consider a set of test problems corresponding to each of these parameters. In each set, one parameter
changes and takes 3 different values, while other parameters are fixed. Table 3 represents 12 test problems
as described. Note that P1, P2, and P3 are three different feasible starting points. More precisely, P1 = 0,
P2 = 0.5(cap′; cap), and P3 = (cap′; cap). Similar to the first experiment, the termination criteria is running
the SA algorithms for 4000 iterates. We run each algorithm 25 times and then we obtain the MSE of the
form 1

25

∑25
i=1 ‖xik − x∗η,ε‖2 for any k = 1, . . . , 4000. Table 4 and Table 5 show the 90% CIs of the error for

the described schemes.

5.2.3 Results and insights

Table 4 presents the simulation results for the test problems using the MSR-DASA and MSR-HSA schemes.
One observation is the effect of changing the parameter ε on the error of the schemes is negligible. We only
see a slight change in the error of MSR-HSA scheme with θ = 10. Comparing the order of the error, we notice
that the MSR-DASA scheme is placed second among all schemes of the first set of the test problems. In the
second set, by decreasing η the error of all the schemes, except for the MSR-HSA scheme with θ = 0.1, first
decreases and then increases. This is not an odd observation since we used x∗η,ε instead of x∗ to measure the
errors and x∗η,ε changes itself when η or ε changes. In this set, the MSR-DASA scheme still has the second
best errors among all schemes. The schemes are not much sensitive to the choice of x0 and we observe that
the second place is still reserved by the MSR-DASA scheme. Finally, in the last set, we see that increasing
the factor Ma, as we expect, increases the error in most of the schemes. The reason is that increasing the
order of Ma increases both mean and variance of the random variable a. Importantly, we observe that our
MSR-DASA scheme remains very robust among the MSR-HSA scheme. Table 5 shows the error estimations

- S(i) DASA - 90% CI HSA with θ = 0.1- 90% CI HSA with θ = 1 - 90% CI HSA with θ = 10 - 90% CI

ε 1 [1.38e−2,2.37e−2] [1.83e+1,1.87e+1] [1.60e−1,2.15e−1] [3.07e−3,5.33e−3]
2 [1.38e−2,2.37e−2] [1.83e+1,1.87e+1] [1.60e−1,2.15e−1] [3.04e−3,5.30e−3]
3 [1.38e−2,2.37e−2] [1.83e+1,1.87e+1] [1.60e−1,2.15e−1] [3.04e−3,5.30e−3]

η 4 [1.92e−3,3.98e−3] [1.63e−0,1.71e−0] [8.43e−3,1.62e−2] [5.28e−4,1.08e−3]
5 [1.42e−3,3.12e−3] [1.84e−0,1.93e−0] [7.43e−3,1.44e−2] [2.59e−4,5.76e−4]
6 [5.61e−3,1.62e−2] [2.33e−0,2.44e−0] [1.61e−2,2.39e−2] [5.06e−4,8.65e−4]

x0 7 [2.68e−6,3.48e−6] [4.37e−1,5.13e−1] [1.37e−6,1.92e−6] [6.71e−6,9.21e−6]
8 [2.68e−6,3.48e−6] [2.22e−5,2.91e−5] [1.37e−6,1.92e−6] [6.71e−6,9.21e−6]
9 [2.68e−6,3.48e−6] [2.22e−5,2.91e−5] [1.37e−6,1.92e−6] [6.71e−6,9.21e−6]

Ma 10 [4.45e−3,9.25e−3] [5.79e−1,9.25e−1] [1.67e−3,5.72e−3] [2.72e−5,2.07e−2]
11 [8.85e−3,1.73e−2] [1.25e−0,2.12e−0] [9.38e−4,1.82e−2] [4.52e−3,3.22e−2]
12 [1.92e−2,3.91e−2] [8.51e−1,2.31e−0] [1.87e−3,4.15e−2] [1.04e−2,7.23e−2]

Table 4: The stochastic Nash-Cournot game – 90% CIs for MSR-DASA and MSR-HSA schemes

using the MCR-DASA and MCR-HSA schemes. Comparing these results with the MSR schemes in Table 4,
we see that the sensitivity of the MCR schemes to the parameters is very similar to that of MSR schemes
and the MCR-DASA scheme performs as the second best among all MCR schemes. We also see that in most
of the settings, the error of the MSR-DASA scheme is slightly smaller than the error of the MCR-DASA
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scheme. One reason can be that the MSR scheme has a smaller Lipschitz constant than the MCR scheme
for our problem settings.

- S(i) DASA - 90% CI HSA with θ = 0.1- 90% CI HSA with θ = 1 - 90% CI HSA with θ = 10 - 90% CI

ε 1 [1.22e−2,2.55e−2] [1.84e+1,1.88e+1] [1.78e−1,2.29e−1] [2.42e−3,4.21e−3]
2 [1.21e−2,2.53e−2] [1.84e+1,1.88e+1] [1.78e−1,2.28e−1] [2.37e−3,4.13e−3]
3 [1.21e−2,2.53e−2] [1.84e+1,1.88e+1] [1.78e−1,2.28e−1] [2.37e−3,4.13e−3]

η 4 [4.17e−3,9.50e−3] [1.65e−0,1.74e−0] [9.37e−3,1.84e−2] [7.38e−4,1.73e−3]
5 [1.41e−3,4.06e−3] [1.85e−0,1.93e−0] [6.88e−3,1.32e−2] [2.85e−4,5.06e−4]
6 [8.19e−3,1.88e−2] [2.37e−0,2.46e−0] [1.85e−2,3.10e−2] [4.18e−4,7.05e−4]

x0 7 [2.25e−5,2.88e−5] [4.31e−1,5.12e−1] [9.41e−6,1.18e−5] [3.99e−5,5.27e−5]
8 [2.25e−5,2.88e−5] [1.13e−4,1.58e−4] [9.40e−6,1.18e−6] [3.99e−5,5.27e−5]
9 [2.25e−5,2.88e−5] [1.13e−4,1.58e−4] [9.40e−6,1.18e−5] [3.99e−5,5.27e−5]

Ma 10 [1.66e−3,4.29e−3] [6.17e−1,8.88e−1] [4.21e−4,1.79e−3] [3.82e−4,8.30e−3]
11 [3.03e−3,1.22e−2] [1.29e−0,2.23e−0] [9.63e−4,5.77e−3] [2.48e−3,2.52e−2]
12 [6.05e−3,2.60e−2] [8.50e−1,2.49e−0] [2.27e−3,1.29e−2] [5.54e−3,5.67e−2]

Table 5: The stochastic Nash-Cournot game – 90% CIs for MCR-DASA and MCR-HSA schemes

0 500 1000 1500 2000 2500 3000 3500 4000

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r

 

 

MCR−HSA with θ =10
MCR−HSA with θ =1
MCR−HSA with θ =0.1
MCR−DASA
MSR−HSA with θ =10
MSR−HSA with θ =1
MSR−HSA with θ =0.1
MSR−DASA

(a) Setting S(5)
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(b) Setting S(8)

Figure 7: The stochastic Nash-Cournot game – comparison among all the schemes

Figure 7 illustrates a comparison among the different schemes described in Sec. 5.2.1 for the case of setting
S(5) and S(8). All the MSR schemes are shown with solid lines, while the MCR schemes are presented with
dashed lines. There are some immediate observations here. Regarding the order of the error, in both if
the settings S(5) and S(8), the schemes with the distributed adaptive stepsizes given by (25)-(26) are the
second best scheme among each of MSR and MCR schemes. This indicates the robustness of the DASA
scheme compared with the HSA schemes. We also observe that in the setting S(5), the HSA schemes with
θ = 10 (both MSR and MCR) have the minimum error, while in setting S(8), the HSA schemes with θ = 1
has the minimum error. This is an illustration of sensitivity of HSA schemes to the setting of problem
parameters. Let us now compare the MSR schemes with the MCR schemes. In the setting S(5), the MSR
and MCR schemes perform very closely and in fact, it is hard to distinguish the difference between their
errors. On the other hand, in the setting S(8), we see that the MSR schemes have a better performance than
their MCR counterparts. Figure 8 illustrates the 90% confindence intervals for the MSR schemes with the
setting S(5). Teese intervals are shown with line segments in the left-hand side half of each plot and shown
with continious bouns in the right-hand side half. The colourful points present the samples at each level of
iterates. Impostantly, we observe that the CIs of MSR-DASA scheme are as tight as the MSR-HSA scheme
with θ = 1 and they are tighter than the ones in the MSR-HSA scheme with θ = 10. Figure 9 shows the
similar comparison for the MCR schemes.

6 Concluding remarks

We consider the solution of strongly monotone Cartesian stochastic variational inequality problems through
stochastic approximation (SA) schemes. Motivated by the naive stepsize rules employed in most SA im-
plementations, we develop a recursive rule that adapts to problem parameters such as the Lipschitz and
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(a) MSR-DASA scheme
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(b) MSR-HSA scheme with θ = 1
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(c) MSR-HSA scheme with θ = 10

Figure 8: The stochastic Nash-Cournot game – setting S(5) – MSR-DASA vs. MSR-HSA schemes
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(a) MCR-DASA scheme
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(b) MCR-HSA scheme with θ = 1
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(c) MCR-HSA scheme with θ = 10

Figure 9: The stochastic Nash-Cournot game – setting S(5) – MCR-DASA vs. MCR-HSA schemes

monotonicity constants of the map and ensures almost-sure convergence of the iterates to the unique so-
lution. An extension to the distributed multi-agent regime is provided. A shortcoming of this approach
is the reliance on the availability of a Lipschitz constant. This motivates the construction of two locally
randomized techniques to cope with instances where the mapping is either not Lipschitz or estimating the
parameter is challenging. In each of these techniques, we show that an approximation of the original mapping
is Lipschitz continuous with a prescribed constant. We utilize these techniques in developing a distributed
locally randomized adaptive steplength SA scheme where we perturb the mapping at each iteration by a
uniform random variable over a prescribed distribution. It is shown that this scheme produces iterates that
converge to a solution of an approximate problem, and the sequence of approximate solutions converge to the
unique solution of the original stochastic variational problem. In Sec. 5, we apply our schemes on two sets
of problems, a bandwidth-sharing problem in communication networks and a networked stochastic Nash-
Cournot game. Through these examples, we observed that the adaptive distributed stepsize scheme displays
far more robustness than the standard implementations that leverage harmonic stepsizes of the form θ

k in
both problems. Furthermore, the randomized smoothing techniques assume utility in the Cournot regime
where Lipschitz constants cannot be easily derived.
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