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ABSTRACT

We present a probabilistic branch-and-bound (PBnB) method for locating a subset of the feasible region
that contains solutions in a level set achieving a user-specified quantile. PBnB is designed for optimizing
noisy (and deterministic) functions over continuous or finite domains, and provides more information than
a single incumbent solution. It uses an order statistics based analysis to guide the branching and pruning
procedures for a balanced allocation of computational effort. The statistical analysis also prescribes both
the number of points to be sampled within a sub-region and the number of replications needed to estimate
the true function value at each sample point. When the algorithm terminates, it returns a concentrated
sub-region of solutions with a probability bound on their optimality gap and an estimate of the global
optimal solution as a by-product. Numerical experiments on benchmark problems are presented.

1 INTRODUCTION

In many optimization problems arising in complex science and engineering systems, the performance
functions are not explicitly available, rather, they have to be estimated via black-box simulations or
observed from experimental outputs subject to random system noise. Thus stochastic global optimization
problems are more difficult than their deterministic counterparts, which themselves are known to be NP-hard.

Many algorithms have been proposed to solve global optimization problems with noisy function
evaluations (Alrefaei and Andradóttir 1999, Ghate and Smith 2008, Hong and Nelson 2006, Hu, Fu, and
Marcus 2008, Ólafsson 2004, Rubinstein and Kroese 2004, Shi and Ólafsson 2000a, Shi and Ólafsson
2000b, Spall 2003, Zabinsky 2003, Zabinsky 2011). These algorithms typically apply search strategies
to discover a solution that is a good estimate of the global optimum. However, mathematical models are
only abstract approximations to the real world problems, hence practitioners are interested, not only in the
global optimum, but also in how sensitive the optimal solutions are to noisy perturbations present in the
underlying systems (Bertsimas, Nohadani, and Teo 2010, Ho, Sreenivas, and Vakili 1992, Ho, Cassandras,
Chen, and Dai 2000, Kristinsdottir, Zabinsky, Tuttle, and Csendes 1996, Pintèr 2006). There is a need to
derive a quantitative understanding of the quality and sensitivity of prospective solutions. It is desirable
to understand the tradeoff between the computational effort spent exploring the solution space for better
solutions with the computational effort spent in estimating the true objective function from noisy evaluations.

We present an algorithm developed in two of the co-author’s dissertations (Prasetio 2005, Wang
2011) called probabilistic branch-and-bound (PBnB) for solving both continuous and discrete optimization
problems with black-box, noisy function evaluations. The motivation for PBnB is to provide, not only a
single near-optimal solution, but also a subset of solutions that are statistically close to the optimal solution.
The subset solution can be interpreted as an approximation of the level set at a target threshold. Instead
of using a specific value for the threshold, that may be difficult to know apriori, we define a closeness
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parameter 0 < δ < 1 for the target solution threshold in terms of percentile of the objective function’s range
distribution. For example, the user may be interested in solutions in the top 10% with respect to objective
function value (e.g. δ = 0.1) without knowing the actual target value. This is also used in (Ho, Sreenivas,
and Vakili 1992, Ho, Cassandras, Chen, and Dai 2000). The quality of approximation is characterized by
a second parameter called the error rate 0 < α < 1, which is used in the probability bounds.

As the algorithm proceeds, the feasible region is partitioned and subregions are pruned when it is
statistically valid to do so. When the collected sampling information is insufficient for the statistical
analysis to make a confident pruning decision, PBnB branches the remaining subregions. At each iteration,
PBnB determines both the number of sample points to sample over each of the current contending subregions
and the number of replications needed to reliably estimate each true function value. Upon termination,
PBnB returns both an incumbent solution and a subset of solutions, along with probability bounds specifying
the quality of the solution set (see Theorems 3, 4, and 5).

PBnB resembles other partitioning based stochastic optimization algorithms such as nested partition
(NP) (Shi and Ólafsson 2000a, Shi and Ólafsson 2000b) and its variation, two-stage nested partition (TSNP)
(Ólafsson 2004). NP and TSNP systematically partition the feasible region into multiple subregions, assess
the potential of each subregion, and then focus the sampling effort on the most promising one. However, a
major difference between PBnB and NP/TSNP is that PBnB constantly prunes subregions while NP/TSNP
keeps all and occasionally backtracks from a nested subregion to the larger one containing it. For NP/TSNP,
retention of all subregions with occasional backtracking is essential for its global convergence result. PBnB
also converges with an estimate of the global optimum, but in addition, provides a subset of points whose
objective function values are statistically indistinguishable according to derived probability bounds. PBnB
also shares similarity with TSNP in that both provide a sample allocation rule for determining the number
of sample points on each subregion. However, TSNP’s prescription is based on the ranking and selection
procedure and the concept of indifference zone, whereas PBnB determines the number of sample points
based on a percentile estimate of the range of the objective function over the subregion.

Also of relevance to PBnB is a branch-and-bound deterministic algorithm by Norkin et al. (Norkin,
Pflug, and Ruszczyński 1998). Norkin et al. use stochastic upper and lower estimates of the optimal
objective function value in each subregion, whereas PBnB employs order statistics on the information
collected from random samples. This leads to different assumptions and results in the theoretical analysis.

The statistical analyses on PBnB provide probability bounds on the performance of the algorithm.
Theorem 3 provides an upper bound on the probability that PBnB prunes all desired solutions. Theorem 4
states that each pruning improves the “concentration” of desired solutions in the list of contending subregions.
This implies that the volume of the set of undesirable solutions within the remaining subregions, called
the “margin,” is decreasing over iterations. In this sense, the remaining subregions approximate a portion
of the target level set of desirable solutions. This provides valuable sensitivity information as discussed in
Section 4.2.1, and to the best of our knowledge, no existing stochastic search algorithm for noisy function
optimization possesses this capability. Theorem 5 gives a probabilistic bound on the optimality gap between
the best solution encountered and the true optimal objective function value.

In Section 2 we describe the PBnB algorithm in detail, and analyze its performance in Section 3.
Several numerical results are presented in Section 4, and the paper is concluded in Section 5.

2 PROBABILISTIC BRANCH-AND-BOUND

We are concerned with solving optimization problems of the form:

(P) min
x∈S

f (x), (1)

where f (x) = EΞ[g(x,ξx)] is a real valued objective function over the feasible set S, which could be a
bounded subset of Rn or Zm. Note g(x,ξx) is a real valued function representing the system performance
at setting x perturbed by random noise ξx. We assume that f (x) is not available in closed form, but must
be estimated by computer simulations or through experiments.
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An important feature of PBnB is its capability of returning a subregion that contains a relatively high
“concentration” of high quality solutions. PBnB also returns an estimation of the global optima, which can
be considered a by-product of the algorithm. We believe that a quantitative statement on the remaining
subregion is of even more value than an estimate of a single solution, especially in the presence of noise.

Given the closeness parameter 0 < δ < 1, define the target threshold y(δ ,S) as

y(δ ,S) = argminy∈{ f (x):x∈S}{P( f (X)≤ y|X ∈ S)≥ δ}, (2)

where X is a random point uniformly sampled from S. Thus for a point uniformly sampled from S, the
probability that its function value falls below this threshold is δ . It is in this probability/percentile sense
that δ provides a measure of how close a function value is to the global minimum.

Associated with the target threshold y(δ ,S), define the target set L(δ ,S) ⊆ S as the set of desired
solutions, equivalently, the level set of feasible points in S whose function values are no larger than y(δ ,σ),

L(δ ,S) = {x ∈ S : f (x)≤ y(δ ,S)}, 0 < δ < 1. (3)

For any subset σ of S, one can similarly define y(δ ,σ) and L(δ ,σ).
One should further notice that if f (·) is continuous, by applying (2) to an arbitrary region σ , then

P( f (X)≤ y(δ ,σ) |X ∈ σ ) = δ . (4)

If discontinuities in f (·) are allowed, we have

P( f (X)≤ y(δ ,σ)|X ∈ σ)≥ δ , (5)

and
P( f (X)< y(δ ,σ)|X ∈ σ)≤ δ . (6)

Next we present the PBnB algorithm.
Probabilistic Branch-and-Bound (PBnB)

Step 0: Initialize. Set user-defined parameters 0 < α, δ < 1, and M≥ 2. Partition S into M disjoint sub-
regions σ1, . . . ,σM according to a partitioning scheme. Set k = 1,α1 = α/2,Σ1 = {σ1,σ2, . . . ,σM}.

Step 1: Sample and rank. Let

Nk =

⌈
ln(αk)

ln(1−δ )

⌉
and Rk =


ln
(

αk
2(|Σk|−1)

)
ln(0.5)

 ,
where dxe denotes the smallest integer ≥ x. Generate additional points so there are Nk uniformly
distributed sample points xm, j ∈ σm for j = 1, . . . ,Nk in each σm ∈ Σk for m = 1, . . . , |Σk|. Evaluate
g(xm, j,ξ

r
xm, j

) with noise ξ r
xm, j

for r = 1, . . . ,Rk and calculate

ĝ(xm, j) =
Rk

∑
r=1

g(xm, j,ξ
r
xm, j

)

Rk
and ĥ(σm) = min

j=1,...,Nk
ĝ(xm, j) .

Rank all contending subregions σm ∈ Σk according to ĥ(σm) with σ(i) denoting the ith best subregion,
so that

ĥ(σ(1))≤ ĥ(σ(2))≤ ·· · ≤ ĥ(σ(|Σk|)).

Rank all the sample points x(i), j ∈ σ(i) according to ĝ(x(i), j) with x(i),( j) denoting the jth best point
in the ith best subregion, so that

ĝ(x(i),(1))≤ ĝ(x(i),(2))≤ ·· · ≤ ĝ(x(i),(Nk)).

With the above ranking carried out between and within subregions, x(1),(1) is the incumbent solution
with the corresponding objective function value estimate ĝ(x(1),(1)).
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Step 2: Prune. Let
g∗(x(1),(1)) = max

r=1,...,Rk
g
(

x(1),(1),ξ
r
x(1),(1)

)
and

g∗(x(d),(1)) = min
r=1,...,Rk

g
(

x(d),(1),ξ
r
x(d),(1)

)
for d = 2, . . . , |Σk|.

Define indicator functions Id for d = 2, . . . , |Σk| such that

Id =

{
1, if g∗(x(1),(1))< g∗(x(d),(1));
0, otherwise.

where Id = 1 indicates deleting σ(d).
Step 3: Branch. Define indicator functions Jb for each b ∈ {1, . . . , |Σk|} \{d : Id = 1} such that

Jb =

{
1, if σ(b) is branchable;
0, otherwise.

If Jb = 1, branch σ(b) into M disjoint subregions σ̄1
(b), . . . , σ̄

M
(b) according to a partitioning scheme.

Step 4: Update. Update the list of contending subregions Σk by removing all subregions to be deleted
and replacing all remaining branchable subregions with new subregions, i.e.,

Σk+1 = Σk \

 ⋃
{d:Id=1}

σ(d)

\
 ⋃
{b:Jb=1}

σ(b)

⋃ ⋃
{b:Jb=1}

M⋃
j=1

σ̄
j
(b)

 .

Step 5: Stop. Terminate PBnB if all σm ∈ Σk+1 are unbranchable. Output the best-found solution(
x(1),(1), ĝ(x(1),(1))

)
and the remaining subregions in Σk+1. Otherwise, let αk+1 = αk/2, increment

k and return to Step 1.

The pruning criterion in Step 2 asserts that the subregion σ(d) is to be pruned if the best realization of
its best point x(d),(1) is worse than the worst realization of the best region’s best point x(1),(1). This criterion
gives us quantifiable confidence in pruning a subregion in the presence of noise. If the objective function
is non-noisy, PBnB always prunes, leaving a single subregion at each iteration for further consideration.
This pruning criterion also helps provide the general lower bound 1−2α in our main results in Section 3.

Step 5 halves αk at each iteration, which leads both Nk and Rk to increase at a linear rate. Alternatively,
we consider a variation in Section 4.2 where αk = α/K0 and K0 is a pre-specified upper bound on the
maximum number of iterations during one implementation. Since αk is fixed for this scheme, both Nk and
Rk increase sublinearly.

PBnB iterates until the resulting subregions become unbranchable. A subregion is said to be unbranchable
in the discrete case when it contains a singleton, and to be unbranchable in the continuous case when
the longest Euclidian distance within the subregion is less than a pre-determined positive value. PBnB
terminates when there is no branchable subregion left, thus it will terminate in a finite number of iterations.

3 PERFORMANCE ANALYSIS FOR PBNB

In this section, we provide detailed analyses on the performance of PBnB by deriving probability bounds on
the quality of both the remaining subregions and the incumbent solution during the course of the algorithm.
The development of results starts by assuming the true objective function is available in Proposition 2, and
then accounts for noisy evaluations in the three main results in Theorems 3, 4 and 5.

We first state a lemma that prescribes the minimum number of sample points needed on a region so
that the best function value can achieve a certain level with a pre-specified probability.
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Lemma 1 Let y(δ ,σm) be the 100δ th percentile point as defined in (2) for some subregion σm ∈ Σ and
0 < δ < 1. Suppose N∗ = dlnα/ ln(1−δ )e and Xm,1, . . . ,Xm,N∗ are sampled i.i.d. uniformly from σm. Let
f (Xm,(1)) be the minimum of f (Xm,1), . . . , f (Xm,N∗), then

P( f (Xm,(1))≤ y(δ ,σm))≥ 1−α. (7)

Proof. By (5), we have
P( f (X)> y(δ ,σ)|X ∈ σ)≤ 1−δ ,

thus,

P( f (Xm,(1))> y(δ ,σm))≤ (1−δ )N∗ ,

which yields

P( f (Xm,(1))≤ y(δ ,σm)) = 1−P( f (Xm,(1))> y(δ ,σm))≥ 1− (1−δ )N∗ . (8)

To prove (7), we set the right hand side of (8) greater than or equal to 1−α , that is

1− (1−δ )N∗ ≥ 1−α

or
N∗ ≥ lnα

ln(1−δ )
.

Therefore, if N∗ = dlnα/ ln(1−δ )e, then (7) is satisfied.

Proposition 2, which assumes all objective function values are precise, provides a probability bound
that after K iterations, the remaining region contains at least one of the desired solutions (in L(δ ,S)).
Proposition 2 Suppose PBnB has progressed to the current Kth iteration, with α1 ≤ α . At iteration k of
PBnB, let the number of sample points be given as in Step 1, and let σ k

p denote the pruned region according
to the true function value f (·) at iteration k, then

P

((
S\

K⋃
k=1

σ
k
p

)⋂
L(δ ,S) 6= /0

)
> 1−α. (9)

Proof. Initially, PBnB branches S into M subregions σ1,σ2, . . . ,σM and samples N1 =
⌈

lnα1
ln(1−δ )

⌉
on each.

Thus the combined number of sample points from all the subregions is M
⌈

lnα1
ln(1−δ )

⌉
. Denote the smallest

order statistics of function values by f (XS,(1)). Note

M
⌈

lnα1

ln(1−δ )

⌉
≥M

⌈
lnα

ln(1−δ )

⌉
>

⌈
lnα

ln(1−δ )

⌉
,

thus by applying Lemma 1 to S, we get P( f (XS,(1))≤ y(δ ,S))≥ 1−α, indicating a desirable solution is
found with probability at least 1−α during the first iteration. Moreover, as the iterative process of PBnB
continues, new incumbents may be found, and at the end of each iteration, the subregion containing the
incumbent is always kept, thus the intersection of L(δ ,S) and the remaining subregion is non-empty with
probability at least 1−α , and the proof is completed.

The proof of Proposition 2 reveals that a desired solution can be highly possibly located within the first
iteration. Theorem 3 focuses on analyzing the situation when this is not true and states that by termination
the intersection of the remaining region with L(δ ,S) has positive measure with probability at least 1−2α .
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Theorem 3 For PBnB on Problem P , assume the distribution of g(x,ξx) is symmetric about f (x).
Suppose PBnB has progressed to the current Kth iteration but the incumbent has not reached the δ th

percentile in function values over S, i.e., f (Xk
(1),(1))> y(δ ,S) for k = 1,2, . . . ,K. At iteration k of PBnB,

let {σ k
(1),σ

k
(2), . . . ,σ

k
(|Σk|)} be the set of contending subregions. Let σ k

p =
⋃
{d:Id=1}σ k

(d) denote the pruned
region at iteration k with Id defined in Step 2, then

P

(
ν

((
S\

K⋃
k=1

σ
k
p

)⋂
L(δ ,S)

)
> 0

)
> 1−2α, (10)

for 0 < α,δ < 1, where L(δ ,S) is the set of desired solutions as defined in (3).

Proof. See (Wang 2011, Chapter 4, Theorem 11).

As noted in (Prasetio 2005, pg. 12), the symmetric assumption on g(x,ξx) in Theorem 3 can be relaxed
by minimizing arbitrary γ percentile of g(x,ξx) instead of the expected value f (x) = EΞ[g(x,ξx)].

Despite the constant deletion of subregions during the algorithm’s execution, Theorem 3 shows that
PBnB manages to maintain a fixed probability bound that the remaining region contains desired solutions
and thus keeps the pruning error under control.

Next, we introduce two additional metrics exclusively for PBnB on the quality of the remaining
region: concentration and margin. The concentration for a given list of contending subregions measures
the proportion of desired solutions, and the margin measures the volume of undesirable solutions in the
remaining region, see (11). Thus, they provide more detailed information regarding the quality of the
remaining region. Theorem 4 shows that before the incumbent reaches the target threshold y(δ ,S), one
more pruning could increase the concentration and decrease the margin, with a probability of at least 1−2α .
Theorem 4 Suppose that up to the Kth iteration the incumbent has not reached the δ th percentile in
function values over S, i.e., f (Xk

(1),(1))> y(δ ,S) for k = 1,2, . . . ,K. At iteration k, let σ k
p be the subregion

pruned according to Step 2 of the algorithm, Ck and Mk be the concentration and margin of the remaining
region respectively, i.e.,

Ck =
ν

((
S\
⋃k

i=1 σ i
p

)⋂
L(δ ,S)

)
ν

(
S\
⋃k

i=1 σ i
p

) , Mk = ν

(
S\

k⋃
i=1

σ
i
p

)
−ν

((
S\

k⋃
i=1

σ
i
p

)⋂
L(δ ,S)

)
, (11)

then we have the following for k = 1,2, . . . ,K−1:

P(Ck+1 ≥ Ck)> 1−2α (12)
P(Mk+1 < Mk)> 1−2α. (13)

Proof. See (Wang 2011, Chapter 4, Theorem 12).

In Theorem 4, the concentration relationship assumes f (Xk
(1),(1))> y(δ ,S). If this condition does not

hold, then the algorithm has already detected a point in the target set. For example, suppose the target
threshold is 5%, but the current value for f (Xk

(1),(1)) is even better, at 2%. Then a pruning of point in the
4-5% range may actually decrease the concentration of targeted points, however, the quality of the points
in the remaining subregions exceed the target threshold. In the numerical results, we can see how the list
of contending subregions approximates portions of the level sets of decreasing function value, even beyond
the target threshold.

Theorem 5 makes a qualitative statement about each new record value encountered during the algorithm
execution. It needs a technical assumption that the δ used in Step 1 (called δ1 in the theorem) is strictly
less than the target δ .
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Theorem 5 Suppose the PBnB algorithm has progressed to the current Kth iteration and the closeness
parameter during the first iteration δ1 is strictly less than δ . If a new record point XK+1

(1),(1) is found at the
(K +1)th iteration, i.e.,

f
(

XK+1
(1),(1)

)
< f

(
XK
(1),(1)

)
,

then

P
(

f
(

XK+1
(1),(1)

)
≤ y(δ ,S)

)
> 1−

(
2+

1
2K+1

)
α, (14)

where y(δ ,S) is the δ th percentile in function values over S as defined in (2).

Proof. See (Wang 2011, Chapter 4, Theorem 13).

The lower bound on the right hand side of (14) is increasing with K, and it agrees with the intuition
that the new records are more and more likely to hit the target region.

4 NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of PBnB on various test problems. Section 4.1 describes the
experimental setup, and we present computational results and discussion in Section 4.2.

4.1 Experimental Setup

We solve Problem (P) as defined in (1) with

f (x) = EΞ[g(x)+ξx],

where g(x) is a test function and ξx is the additive simulated noise dependent on x.
For continuous problems, the feasible region S is a hyper-rectangle defined by a set of box constraints

li ≤ xi ≤ ui, where xi is the ith component of a feasible solution x ∈ S. In the finite case, the test problems
are discretized versions of their continuous counterparts and S is a set of equally spaced grid points.

We choose the following four test functions, among which the Rosenbrock function, the Hartmann
function and the sinusoidal function are well-known benchmark problems frequently used in the global
optimization literature (Ali, Khompatraporn, and Zabinsky 2005).

1. Rosenbrock function (n = 2,−2≤ xi ≤ 2, i = 1, . . . ,n)

g1(x) =
n−1

∑
i=1

[
(1− xi)

2 +100(xi+1− x2
i )

2] .
The global minimum is located at x∗ = (1,1) with g1(x∗) = 0.

2. Norm function (n = 20,−1000≤ xi ≤ 1000, i = 1, . . . ,n)

g2(x) = ‖x‖2.

Clearly the global minimum is located at x∗ = (0, . . . ,0)T with g2(x∗) = 0.
3. Hartmann function (n = 6,0≤ xi ≤ 1, i = 1, . . . ,n)

g3(x) =−
4

∑
i=1

ci exp

[
−

6

∑
j=1

ai j(x j− pi j)
2

]
,

where values for c, a, and p are given in (Wang 2011). The global minimum is located at
x∗ ≈ (0.201690,0.150011,0.476874,0.275332,0.311652,0.657301) with g3(x∗)≈−3.322368.
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4. Sinusoidal function (n = 10)

g4(x) =−2.5
n

∏
i=1

sin
(

πxi

180

)
−

n

∏
i=1

sin
(

πxi

36

)
.

For the continuous version, 0≤ xi≤ 180, i= 1, . . . ,10, and for the discrete version, xi ∈{30,60, . . . ,180}, i=
1, . . . ,10. The global minimum is at x∗ = (90, . . . ,90) with g4(x∗) =−3.5.

We set the error rate α = 0.25, the closeness parameter δ = 0.10 and the number of subregions M = 3.
We consider a subregion to be unbranchable when the longest Euclidian distance in the subregion is less
than one percent of the longest Euclidean distance of S.

4.2 Results and Discussion

In Section 4.2.1, we illustrate how PBnB approximates portions of the set of desired solutions, thus
providing important sensitivity information regarding the behavior of the noisy objective function. We use
the two-dimensional Rosenbrock function so that key ideas can be demonstrated using pictures. We report
the numerical performance of PBnB and a variation on three high-dimensional problems in Section 4.2.2.
Finally, we solve a parameter estimation problem from (Pasupathy and Henderson 2006) in Section 4.2.3.

4.2.1 Illustration of the Sensitivity Information Provided by MPBnB

For the 2-dimensional Rosenbrock function g1(x), we record the pruning and partitioning processes over
the contours, allowing us to visualize how the remaining region iteratively approximates a portion of the
target level set.

In Figure 1, we print in the title of each plot the number of contending subregions (# rgn) and the
number of total points sampled (# pts) after PBnB terminates in the stated number of iterations (iter.). The
number in the center of each rectangle indicates at which iteration this subregion gets pruned. In addition,
the global minimum is marked with an asterisk “∗” and the incumbent solution at each iteration is marked
with a circle “◦”. We also shade the remaining region for ease of recognition.
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(a) ξ ∼ 0.1 ·N(0,1) (b) ξ ∼ N(0,1)

Figure 1: Numerical results for 2D Rosenbrock function.

Figure 1 (a) and (b) illustrate the progress of PBnB on the Rosenbrock function, where the innermost
“banana” shaped level set corresponds to the function value of 2. The shaded region gives a clear view
of how the remaining region maps out a portion of the level set at the desired threshold. The “shape”
of the remaining subregion provides insight into the flexibility the practitioner has in choosing values of
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various design variables for the complex system at hand, as well as the sensitivity to noise in the objective
function. Comparing Figure 1(a) with a low level of noise, ξ ∼ 0.1 ·N(0,1), to Figure 1(b) with a high
level of noise, ξ ∼ 1.0 ·N(0,1), the remaining region increases in size and possesses a larger margin when
the noise scale increases.

PBnB converges rapidly to the level set at the desired threshold in the first few iterations, after that
it spends most of the computational effort in smaller subregions. In addition, the global minimum is
cautiously kept within the remaining region with a sequence of incumbent solutions closely around it.

4.2.2 Volume Reduction and Incumbent Function Value on High Dimensional Problems

One key feature of PBnB is its ability to return a final list of subregions containing a desired solution
with a predetermined probability controllable to the user, and naturally, one would hope that the remaining
region is significantly smaller than the initial feasible region S. In this section, we provide such information
through the volume ratio of the remaining region to S.

Moreover, we propose and test a variation where instead of halving α at each iteration, we fix αk =α/K0
where K0 is a pre-specified upper bound on the maximum number of iterations during one run. This new
choice of αk will leave Theorems 3 and 4 completely intact. Under the fixed α scheme, the expression
∏

K
k=1(1−α/2k) within this inequality would then be replaced with ∏

K
k=1(1−α/K0), which is greater than

or equal to ∏
K
k=1(1−α/K) = (1−α/K)K (since K ≤ K0) and hence greater than 1−α . For Theorem 5,

the probability bound 1− (2+1/2K+1)α in (14) will be modified to 1− (2+1/K0)α , however, this change
is insignificant because both α/2K+1 and α/K0 are very small numbers.

We test PBnB on the 6-dimensional Hartmann function g3(x) the 10-dimensional sinusoidal function
for both continuous gc

4(x) and discrete gd
4(x), and the 20 dimensional norm function g2(x). To compare the

performance of PBnB under the halved α and the fixed α scheme, we choose K0 = 20 for the Hartmann
function and K0 = 100 for all others. We use ξx ∼ µi ·N(0,gi(x)2) to simulate the additive noise for test
function gi(x) with associated noise scale 0 < µi < 1. For the Hartmann function and the discrete sinusoidal
function µi is 0.1, while for the continuous sinusoidal function and the norm function, µi is set to 0.05.

We make 100 independent replications on all test functions. In all the plots of Figure 2, the optimal
value is represented by the dashed line. We use two vertical axes, with the left one for the estimated
function value and the right one for the volume ratio of the remaining region to the initial feasible region S.
The horizontal axis records the number of points sampled, which is smaller than the typically used number
of function evaluations since the objective function is evaluated multiple times (Rk) at each sample point.
In addition to Figure 2, we also report detailed performance data in Table 1.

Table 1: Numerical results.

Test Dim # points Mean # fun. eval. Opt. Mean best value Mean vol. ratio
fun. n sampled halved α fixed α value halved α fixed α halved α fixed α

g3 6 1e4 1.4e5 1.3e5 -3.32 -3.21 -3.26 0.0033 0.0037
gd

4 10 2e4 4.8e5 2.5e5 -3.5 -2.86 -3.14 1.04e-5 9.83e-6
gc

4 10 3e5 9.4e6 5.4e6 -3.5 -2.94 -3.18 1.08e-11 3.13e-13
g2 20 3e5 1.1e7 5.5e6 0 560.41 329.51 9.46e-15 4.85e-22

For the Hartmann function, the difference between the two α schemes is insignificant in both the
volume ratio and the function value. For the discrete sinusoidal function, although the fixed α scheme does
not lead to further reduction in volume of the remaining region, it does improve the estimated function
value. For the continuous sinusoidal function and the norm function, as illustrated in Figure 2 (c) and (d),
the fixed α scheme prevails against the halved α scheme in both volume reduction and function value
during almost the entire course.
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(a) Hartmann: ξx ∼ 0.1 ·N(0,g2
3(x)) (b) Discrete Sinusoidal: ξx ∼ 0.1 ·N(0,g2

4(x))
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(c) Continuous sinusoidal: ξx ∼ 0.05 ·N(0,g2
4(x)) (d)Norm: ξx ∼ 0.05 ·N(0,g2

2(x))

Figure 2: Volume reduction and incumbent function value for four test problems.

Aiming at more accurately reflecting the stochastic performance of algorithms, Pasupathy and Henderson
(Pasupathy and Henderson 2006) proposed a way of reporting that depicts the distribution of objective
function value as a function of time. See Figure 4.5 in (Wang 2011) where we use iteration (k) as a measure
of time, and report P(Yk ≤ r) for various problem dependent threshold r on the four test problems with the
halving α scheme.

4.2.3 Parameter Estimation

Estimating parameters is a common problem and often formulated as a maximum likelihood optimization
problem. We consider a problem from Pasupathy and Henderson (Pasupathy and Henderson 2006), where
a set of m i.i.d data points Yj,( j = 1, . . . ,m) are generated from the two-dimensional pdf

f (y1,y2;x∗) =
e−y1yx∗1y2−1

1
Γ(x∗1y2)

e−y2yx∗2−1
2

Γ(x∗2)
, y1,y2 > 0

with some undisclosed parameter x∗ = (x∗1,x
∗
2). The task is to recover x∗ given data points Yj, j = 1, . . . ,m.

Note x∗ can be recovered as the maximum likelihood estimator (MLE), we thus have the following
optimization problem,

maxGm(x) =
∑

m
j=1 log( f (Yj;x))

m
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Following Pasupathy and Henderson (Pasupathy and Henderson 2006), we choose x∗ = (2,5),m = 10,000,
and S = (0,10)× (0,10) to set up the experiment. For this problem, once the data Yj, j = 1, . . . ,m is given,
the objective function (the log likelihood) is non-noisy, thus at each iteration only the most promising
subregion is retained while the others all get pruned. PBnB finds the global optimum with a total amount
of 285 sample points in 7 iterations. A graph of the numerical results, in the style of Section 4.2.1, can
be found in (Wang 2011, Figure 4.11).

5 CONCLUSIONS

We developed a PBnB framework to solve stochastic global optimization problems with continuous and/or
discrete variables. PBnB uses a statistical analysis to dynamically allocate computational effort during the
course of its implementation. In particular, at each iteration, it prescribes both the number of points sampled
from each subregion and the number of independent replications needed to reliably estimating function
values. While PBnB constantly eliminates subregions, it manages to maintain some quality assurance on the
remaining region. Upon termination, PBnB returns a small but concentrated region of solutions along with
a probability bound on the optimality gap. This feature is not typically available in traditional optimization
algorithms.

Nevertheless, there remain several further issues that warrant additional research. First, PBnB takes
uniformly distributed samples on each subregion. It would be interesting to investigate other distributions
and incorporate local search heuristics into the analysis. Also, in our numerical implementation, PBnB
chooses the dimension corresponding to the longest length of a subregion for partitioning, but we believe
more intelligent partitioning schemes would improve the algorithm performance and hence is of much
interest.
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