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ABSTRACT

We propose a random search algorithm for black-box optimization with discrete decision variables. The
algorithm is based on the recently introduced Model-based Annealing Random Search (MARS) for global
optimization, which samples candidate solutions from a sequence of iteratively focusing distribution functions
over the solution space. In contrast with MARS, which requires a sample size (number of candidate solutions)
that grows at least polynomially with the number of iterations for convergence, our approach employs a
stochastic averaging idea and uses only a small constant number of candidate solutions per iteration. We
establish global convergence of the proposed algorithm and provide numerical examples to illustrate its
performance.

1 INTRODUCTION

Many systems arising in engineering design, biostatistics, and manufacturing are characterized by complex
nonlinearities in their dynamics, and frequently require black-box evaluations to assess their performances,
which are unlikely to exhibit any nice structural properties. The need for optimization of such systems
has led to the research over the past few decades focusing on developing random search techniques that
rely only on the system performance measures in finding improved candidate solutions. Examples of these
techniques are simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983), genetic algorithms (Goldberg
1989), tabu search (Glover 1990), nested partitions (Shi and Ólafsson 2000), adaptive random search
(Zabinksy 2003), and a class of algorithms collectively known as the model-based methods, which include
ant colony optimization (Dorigo and Gambardella 1997), estimation of distribution algorithms (Larranaga
and Lozano 2002), the cross-entropy method (Rubinstein and Kroese 2004), and model reference adaptive
search (MRAS) (Hu, Fu, and Marcus 2007).

Among the class of model-based algorithms, the Annealing Adaptive Search (AAS) (Romeijn and
Smith 1994, Zabinksy 2003) has been well studied in literature and found to have the prominent property
that its computational complexity increases at most linearly with the problem dimension for a large class
of optimization problems (e.g., Zabinksy 2003). However, to successfully implement AAS in practice,
one is required to generate samples/candidate solutions exactly from a sequence of iteratively focusing
Boltzmann distributions parameterized by time-dependent temperatures, which is known to be extremely
difficult. This implementation difficulty was previously addressed primarily through sampling techniques
based on Markov-chain Monte Carlo. Recently, Hu and Hu (2010) proposed an alternative approach called
Model-based Annealing Random Search (MARS) to overcome this difficulty, where the underlying idea
is to construct a sequence of surrogate distributions to successively approximate the target Boltzmann
distributions and then use the surrogate distributions to generate candidate solutions. By connecting MARS
to recursions of stochastic approximation (SA) type (Evans and Weber 1986, Kushner and Yin 1997,
Robbins and Monro 1951, Spall 2003), it has been shown in Hu and Hu (2010) that the algorithm converges
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to the global optimal solution at the expense of using a per-iteration computational effort that increases
polynomially with the number of iterations.

However, it is well-known that SA algorithms may exhibit slow convergence behavior. Thus, using
a sample size that increases polynomially in MARS could lead to a computational burden that becomes
prohibitive as the search proceeds. Furthermore, as in a typical model-based algorithm, a whole new set
of solutions needs to be generated and evaluated at each iteration, and all the solutions sampled during
the previous iterations are discarded. In this paper, we aim to improve the computational efficiency of
MARS on optimization problems over discrete-valued domains. In particular, we propose an algorithm that
combines MARS with an additional stochastic averaging procedure, so that at each iteration of the new
algorithm, all candidate solutions generated in the previous iterations contribute to the construction of the
current surrogate distribution. As a result, the number of samples per iteration can be significantly reduced
or be held at a small constant value. Our preliminary empirical results indicate that the new algorithm can
be more efficient (in term of the number of performance evaluations) than the original MARS algorithm.

The rest of the paper is organized as follows. In Section 2, we introduce the problem setting and
describe the proposed algorithm. In Section 3, we prove the global convergence of the algorithm, followed
by preliminary computational experiments in Section 4 to illustrate its performance. Finally, we conclude
the paper in Section 5.

2 MARS WITH STOCHASTIC AVERAGING

We consider the following general discrete optimization problem:

x∗ ∈ arg max
x∈X

H(x), (1)

where x := (x1, . . . ,xn)
T is the vector of n decision variables, the solution space X⊂ℜn is a (finite) discrete

set, and H : X →ℜ is a deterministic bounded objective function. Throughout this paper, we assume there
exists a unique optimal solution x∗ to (1). Without loss of generality, we also assume that H(x)≥ 0 ∀x ∈X
and each component of x, xi, takes values from a set of m distinct values {a1

i , . . . ,a
m
i }. Thus, the size of

the solution space |X|= mn.
In an attempt at solving (1), the idealized AAS assumes that candidate solutions can be generated

exactly, at each iteration k, from the Boltzmann distribution

gk(x) =
eH(x)/Tk

∑x∈X eH(x)/Tk
∀x ∈ X,

where Tk is an iteration-dependent temperature parameter. It can be shown that as Tk decreases to zero, the
Boltzmann distribution gk will converge to a limiting distribution g∗ assigning unit mass to the optimal x∗.
Thus, in the long run, the AAS algorithm ensures that the optimal solution will be sampled with probability
one. However, in practice, the sequence {gk} is unknown a priori unless the entire solution space can
be explicitly enumerated. In the recently proposed MARS algorithm, this implementation difficulty is
circumvented by sampling solutions from a parameterized surrogate distribution that approximates gk.
Specifically, within the context of problem (1), the parameterized distribution can be specified in terms of
an n-by-m stochastic matrix q with its (i, j)th entry q(i, j) ∈ [0,1] representing the probability that the ith
decision variable xi takes the jth value a j

i . Such a stochastic matrix q induces a probability mass function
(p.m.f.) over X where q itself can be viewed as the parameter of the distribution:

φ(x,q) :=
n

∏
i=1

m

∏
j=1

[
q(i, j)

]I{x∈Λi, j} ∀x ∈ X, (2)

where I{·} is the indicator function and Λi, j := {x ∈ X : xi = a j
i } is the collection of feasible solutions

whose ith components assume the value a j
i . The idea now is to find the parameter qk of the p.m.f. φ so that
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gk can be closely approximated by φ(·,qk). A common implementation minimizes the Kullback-Leibler
(KL) divergence between gk and φ(·,q) (e.g., Rubinstein and Kroese 2004, Wolpert 2004), i.e.,

qk = arg min
∑ j q(i, j)=1 ∀ i

D(gk|φ(·,q)) := arg min
∑ j q(i, j)=1 ∀ i

Egk

[
ln

gk(X)

φ(X ,q)

]
, (3)

where Egk [·] is the expectation with respect to gk and X ∼ gk is a random vector taking values from X. By
dropping terms that are constant with respect to q, Equation (3) can be written as

qk = arg max
∑ j q(i, j)=1 ∀ i

{
Qk(q) := ∑

x∈X
eH(x)/Tk lnφ(x,q)

}
. (4)

In practical implementation of MARS, the above Q-function is estimated by first generating N i.i.d. candidate
solutions X1

k−1, . . . ,X
N
k−1 from φ(x,qk−1) (i.e., the p.m.f. parameterized by the q matrix obtained at iteration

k−1), and then replacing Qk(q) by its sample average approximation

Q̄k(q) :=
1
N

N

∑
`=1

eH(X `
k−1)/Tk φ

−1(X `
k−1,qk−1) lnφ(X `

k−1,q).

Although Q̄k(q) provides an unbiased estimate of Qk(q), the corresponding optimization step will lead to
an estimate of qk that is biased for any finite sample size N, because the optimal solution to (4) involves a
ratio of sums/expectations (due to the logarithm function). Consequently, the conditions for convergence
of MARS (Hu and Hu 2010) (as well as other algorithms like CE and MRAS; cf. e.g., Hu, Fu, and Marcus
2007, Hu and Hu 2009), require the use of a sample size N that increases at least polynomially with k in
order to reduce the ratio bias effect.

In this paper, we examine an alternative approach to address this bias issue, where the basic idea is to
replace the sample average Q̄k(q) with a stochastic averaging procedure in estimating the Q-function, i.e.,

Q̂k(q) = (1−αk−1)Q̂k−1(q)+αk−1
1
N

N

∑
`=1

eH(X `
k−1)/Tk φ

−1(X `
k−1,qk−1) lnφ(X `

k−1,q), (5)

where Q̂1(q) = 1
N ∑

N
`=1 eH(X `

0 )/T1φ−1(X `
0 ,q0) lnφ(X `

0 ,q) with X1
0 . . . ,X

N
0 i.i.d. ∼ φ(x,q0), and {αk} is a step

size/gain sequence with αk ∈ (0,1] ∀k. Note that the above procedure makes a more efficient use of the past
sampling information. In particular, due to the recursive nature of (5), all candidate solutions generated in
the previous iterations contribute to the estimation of the Q-function Qk(q). As a result, it is intuitively
clear that the number of samples per iteration N can be significantly reduced or even be held at a small
constant value.

Since the above recursion updates an entire function of q, direct implementation of (5) can be difficult.
However, by the definition of the parameterized p.m.f. φ (cf. (2)), it is easy to observe that when k = 2,

Q̂2(q) =
n

∑
i=1

m

∑
j=1

lnq(i, j)
[

1−α1

N

N

∑
`=1

e
H(X`

0 )
T1 φ

−1(X `
0 ,q0)I{X `

0 ∈ Λi, j}+
α1

N

N

∑
`=1

e
H(X`

1 )
T2 φ

−1(X `
1 ,q1)I{X `

1 ∈ Λi, j}
]
.

Furthermore, an inductive argument shows that Q̂k(q) can be expressed recursively as

Q̂k(q) =
n

∑
i=1

m

∑
j=1

lnq(i, j)Sk(i, j),
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where

Sk(i, j) = Sk−1(i, j)+αk−1

[
1
N

N

∑
`=1

eH(X `
k−1)/Tk φ

−1(X `
k−1,qk−1)I{X `

k−1 ∈ Λi, j}−Sk−1(i, j)
]

and

S1(i, j) =
1
N

N

∑
`=1

eH(X `
0 )/T1φ

−1(X `
0 ,q0)I{X `

0 ∈ Λi, j}.

Thus, by substituting Q̂k(q) for Qk(q) in (4), we have the following optimization problem:

q̂k = arg max
n

∑
i=1

m

∑
j=1

lnq(i, j)Sk(i, j)

s.t.
m

∑
j=1

q(i, j) = 1 and q(i, j)≥ 0 ∀ i = 1, . . . ,n, j = 1, . . . ,m.

The problem can be conveniently solved by a simple application of the Lagrange multiplier theorem,
yielding a closed-form expression for each entry of the q̂k matrix

q̂k(i, j) =
Sk(i, j)

∑
m
j=1 Sk(i, j)

∀ i, j. (6)

This leads to the proposed algorithm we call MARS with stochastic averaging (MARS-SA):

MARS with Stochastic Averaging (MARS-SA)

Step 0: Set q̂0(i, j) = 1
m ∀ i, j. Specify an annealing schedule {Tk}, a step-size sequence {αk}, a sample

size N, and a parameter β ∈ (0,1). Set iteration counter k = 0.
Step 1: Independently generate N candidate solutions X1

k , . . . ,X
N
k from the p.m.f.

φ̂(x, q̂k) = (1−β )φ(x, q̂k)+βφ(x, q̂0).
Step 2: If k = 0 set

S1(i, j) =
1
N

N

∑
`=1

eH(X `
0 )/T1φ

−1(X `
0 , q̂0)I{X `

0 ∈ Λi, j};

otherwise update Sk+1 as

Sk+1(i, j) = Sk(i, j)+αk

[
1
N

N

∑
`=1

eH(X `
k )/Tk+1 φ̂

−1(X `
k , q̂k)I{X `

k ∈ Λi, j}−Sk(i, j)
]
. (7)

Step 3: Compute q̂k+1 according to (6).
Step 4: If a stopping rule is satisfied, then terminate; otherwise set k = k+1 and go to Step 1.

Note that at Step 1 of MARS-SA, instead of directly sampling solutions from the current parameterized
distribution φ(x, q̂k), we have used a p.m.f. φ̂(x, q̂k), which is the mixture of φ(x, q̂k) with the initial
(discrete uniform) p.m.f. φ(x, q̂0). This allows the algorithm to explore the entire solution space, so that
every candidate solution in X will be sampled at least with probability β (1/m)n at each single iteration.

3 GLOBAL CONVERGENCE OF MARS-SA

We start by defining some notations. Let P(·) and E[·] be the probability and expectation taken with
respect to the random selection of candidate solutions at Step 1 of the algorithm. Throughout this paper,
probability one (almost sure) convergence and boundedness shall be understood with respect to P. Define
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Fk = σ{X `
0 , . . . ,X

`
k−1, ` = 1, . . . ,N} as the increasing σ -fields generated by the collection of random

solutions obtained up to iteration k−1. Note that given Fk, the parameter q̂k is completely determined,
and the conditional probability and expectation P(·|Fk) and E[·|Fk] are to be understood with respect to
φ̂(x, q̂k).

To analyze the MARS-SA algorithm, we rewrite recursion (7) in the following equivalent form

Sk+1(i, j) = Sk(i, j)+αk

[
∑
x∈X

eH(x)/Tk+1I{x ∈ Λi, j}−Sk(i, j)
]
+αkζk(i, j), (8)

where ζk(i, j) = 1
N ∑

N
`=1 eH(X `

k )/Tk+1 φ̂−1(X `
k , q̂k)I{X `

k ∈ Λi, j}−∑x∈X eH(x)/Tk+1I{x ∈ Λi, j}. We further define
the scaled versions of Sk and ζk as

Uk(i, j) =
Sk(i, j)

∑X eH(x)/Tk
and ηk(i, j) =

ζk(i, j)
∑X eH(x)/Tk+1

.

The following is a well-known result, which states that the sequence of Boltzmann distributions {gk}
converges to a degenerate distribution that concentrates only on the optimal solution x∗. We present its
proof for completeness.
Lemma 1 If Tk→ 0 as k→ ∞, then Egk [I{X ∈ Λi, j}]→ I{x∗ ∈ Λi, j} as k→ ∞.

Proof. ∣∣Egk [I{X ∈ Λi, j}]− I{x∗ ∈ Λi, j}
∣∣≤ Egk

[
|I{X ∈ Λi, j}− I{x∗ ∈ Λi, j}|

]
= ∑

x 6=x∗
|I{X ∈ Λi, j}− I{x∗ ∈ Λi, j}|

eH(x)/Tk

∑X eH(x)/Tk

≤ ∑x 6=x∗ e
(

H(x)−H(x∗)
)
/Tk

1+∑x 6=x∗ e
(

H(x)−H(x∗)
)
/Tk

≤ ∑
x 6=x∗

e
(

H(x)−H(x∗)
)
/Tk ,

which vanishes to zero as Tk→ 0, since H(x)< H(x∗) ∀x 6= x∗.

The next lemma shows that Uk is bounded w.p.1.
Lemma 2 Assume Tk ≥ Tk+1 > 0 for all k. Then Uk(i, j) is bounded w.p.1. ∀ i, j.

Proof. Dividing both sides of (8) by ∑X eH(x)/Tk+1 , we obtain

Uk+1(i, j) = (1−αk)
Sk(i, j)

∑X eH(x)/Tk+1
+αk

∑x∈X eH(x)/Tk+1I{x ∈ Λi, j}
∑X eH(x)/Tk+1

+αkηk(i, j)

≤ (1−αk)Uk(i, j)+αk +αkηk(i, j) since Tk ≥ Tk+1 > 0.

This implies inductively that

Uk+1(i, j)≤
k

∏
r=1

(1−αr)U1(i, j)+
k

∑
r=1

[ k

∏
s=r+1

(1−αs)

]
αr +

k

∑
r=1

[ k

∏
s=r+1

(1−αs)

]
αrηr(i, j)

≤U1(i, j)+1+Yk(i, j), (9)
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where Yk(i, j) = ∑
k
r=1
[

∏
k
s=r+1(1−αs)

]
αrηr(i, j). Here we have used the following fact:

k

∑
r=1

[ k

∏
s=r+1

(1−αs)
]
αr =

k

∑
r=3

[ k

∏
s=r+1

(1−αs)
]
αr +(1−αk) · · ·(1−α2)α1 +(1−αk) · · ·(1−α3)α2

≤
k

∑
r=3

[ k

∏
s=r+1

(1−αs)
]
αr +(1−αk) · · ·(1−α3) since α1 ≤ 1

≤
k

∑
r=`

[ k

∏
s=r+1

(1−αs)
]
αr +(1−αk) · · ·(1−α`) for all `≤ k

≤ 1.

Since

E
[ k

∏
s=r+1

(1−αs)αrηr(i, j)
∣∣∣Fr

]
=

k

∏
s=r+1

(1−αs)αrE
[
ηr(i, j)

∣∣Fr
]
= 0,

∏
k
s=r+1(1−αs)αrηr(i, j) is a martingale difference. Furthermore, note that

E[|Yk(i, j)|]≤ E
[ k

∑
r=1

[ k

∏
s=r+1

(1−αs)
]
αr
∣∣ηr(i, j)

∣∣]
=

k

∑
r=1

[ k

∏
s=r+1

(1−αs)
]
αrE[|ηr(i, j)|]

=
k

∑
r=1

[ k

∏
s=r+1

(1−αs)
]
αrE

[
E
[
|ηr(i, j)|

∣∣Fr
]]

≤ 2
k

∑
r=1

[ k

∏
s=r+1

(1−αs)
]
αr

≤ 2.

This shows that {Yk(i, j)}∞
k=1 is a L1 bounded martingale sequence and remains bounded almost surely by

Doob’s martingale inequality. Thus, we have from (9) that {Uk(i, j)}∞
k=1 is bounded w.p.1.

We have the following convergence theorem for MARS-SA.
Theorem 3 Assume the following conditions hold:

(1) αk ∈ (0,1) ∀k, ∑
∞
k=1 αk = ∞, and ∑

∞
k=1 α2

k < ∞;
(2) Tk ≥ Tk+1 > 0 and Tk→ 0 as k→ ∞;
(3) 1

αk

( 1
Tk+1
− 1

Tk

)
→ 0 as k→ ∞.

Then q̂k(i, j)→ I{x∗ ∈ Λi, j} w.p.1. as k→ ∞ for all i, j.
Theorem 3 implies that the sequence of stochastic matrices q̂k generated at successive iterations of

MARS-SA will converge to a limiting matrix that assigns unit mass to the optimal solution x∗. Condition
(1) is a typical stochastic approximation condition; it requires that the gain sequence {αk} should decay to
zero at a rate that is neither too fast nor too slow. Condition (2) requires that the annealing schedule {Tk}
should also decay to zero monotonically. Condition (3) reflects a tradeoff in the choices of αk and Tk. It
stipulates that the annealing of the temperature Tk should be sufficiently slow, so that the difference in the
inverse temperatures will vanish to zero at rate that is faster than the decay rate of αk. Intuitively, since
E[ζk(i, j)|Fk] = 0, (8) is essentially a stochastic approximation procedure for approximating the perpetually
iteration-varying summation ∑X eH(x)/Tk+1I{x ∈ Λi, j}, whose varying speed is controlled by the annealing
rate of Tk. Thus, the decay rate in gain αk should be relatively slow in order to allow some proper tracking
of the desired quantity as Tk decreases to zero.
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Proof of Theorem 3: Dividing both sides of (8) by ∑X eH(x)/Tk+1 yields

Uk+1(i, j) =Uk(i, j)+(1−αk)Uk(i, j)
[

∑X e
H(x)
Tk

∑X e
H(x)
Tk+1

−1
]
+αk

[
∑X e

H(x)
Tk+1 I{x ∈ Λi, j}

∑X e
H(x)
Tk+1

−Uk(i, j)
]
+αkηk(i, j)

=Uk(i, j)+(1−αk)Uk(i, j)
(

Egk+1 [e
H(X)( 1

Tk
− 1

Tk+1
)
]−1

)
+αk

(
Egk+1 [I{X ∈ Λi, j}]−Uk(i, j)

)
+αkηk(i, j).

Define Vk(i, j) =Uk(i, j)− I{x∗ ∈ Λi, j}. The above equation can be written in terms of Vk(i, j) as

Vk+1(i, j) =Vk(i, j)−ξk(i, j),

where

ξk(i, j) = αkVk(i, j)+αk

(
I{x∗ ∈ Λi, j}−Egk+1 [I{X ∈ Λi, j}]

)
+(1−αk)

(
Vk(i, j)+ I{x∗ ∈ Λi, j}

)(
1−Egk+1 [e

H(X)( 1
Tk
− 1

Tk+1
)
]
)
−αkηk(i, j).

The rest of the proof amounts to showing that Vk(i, j)→ 0 w.p.1. as k→ ∞. To this end, we establish that
all relevant conditions on the convergence of a time-varying SA recursion in Evans and Weber (1986) are
satisfied in our setting.

Let Mk(i, j) = E[ξk(i, j)|Fk] and Zk(i, j) = ξk(i, j)−Mk(i, j).

(i) First, we show that for any ε > 0, P(|Vk(i, j)|> ε, Vk(i, j)Mk(i, j)< 0 i.o.) = 0. We have

Vk(i, j)Mk(i, j) = αk

[
V 2

k (i, j)+Vk(i, j)
(
I{x∗ ∈ Λi, j}−Egk+1 [I{X ∈ Λi, j}]

)
+

1−αk

αk
Vk(i, j)

(
Vk(i, j)+ I{x∗ ∈ Λi, j}

)(
1−Egk+1

[
eH(X)( 1

Tk
− 1

Tk+1
)])]

.

By Lemma 2, Vk(i, j) is bounded w.p.1. This, together with Lemma 1, shows that the second term in the
square brackets above vanishes to zero w.p.1. as k→ ∞. Furthermore, note that

0≤ 1−Egk+1

[
eH(X)( 1

Tk
− 1

Tk+1
)]

≤ 1− eEgk+1 [H(X)]
(

1
Tk
− 1

Tk+1

)
by Jensen’s inequality

≤ 1− e−H(x∗)
(

1
Tk+1
− 1

Tk

)
≤ eH(x∗)

( 1
Tk+1

− 1
Tk

)
for k sufficiently large,

where the last inequality follows from the fact that e−a ≥ 1− e · a for a ∈ [0,1], since we can make
H(x∗)( 1

Tk+1
− 1

Tk
) ≤ 1 by choosing a value of k that is sufficiently large. Consequently, condition (3) in

Theorem 3 implies that the third term in the square brackets also vanishes to zero as k→∞. Therefore, w.p.1.
we must have Vk(i, j)Mk(i, j)> 0 whenever |Vk(i, j)|> ε , i.e., P(|Vk(i, j)|> ε, Vk(i, j)Mk(i, j)< 0 i.o.) = 0.

(ii) Since Vk(i, j) is bounded w.p.1. by Lemma 2 and αk→ 0 by condition (1), we must have |Mk(i, j)|(1+
|Vk(i, j)|−1→ 0 as k→ ∞ w.p.1. This shows condition (ii) in Evans and Weber (1986).

(iii) Zk(i, j) = ξk(i, j)−Mk(i, j) =−αkηk(i, j). Thus,

∞

∑
k=1

E
[
|Zk(i, j)|2

]
=

∞

∑
k=1

α
2
k E
[
E
[
η

2
k (i, j)

∣∣Fk
]]
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=
∞

∑
k=1

α
2
k

1
N

1(
∑X e

H(x)
Tk+1
)2

{
E
[
E
[
e

2H(X)
Tk+1 φ̂

−2(X , q̂k)I{X ∈ Λi, j}
∣∣Fk

]]
−
(
∑
X

e
H(x)
Tk+1 I{X ∈ Λi, j}

)2
}

=
∞

∑
k=1

α
2
k

1
N

{
E
[

Egk+1

[ gk+1(X)

φ̂(X , q̂k)
I{X ∈ Λi, j}

∣∣∣Fk

]]
−E2

gk+1

[
I{X ∈ Λi, j}

]}
.

Since gk+1(x)≤ 1 and φ̂(x, q̂k)≥ β (1/m)n for all x ∈ X, there exists a positive constant C such that
∞

∑
k=1

E
[
|Zk(i, j)|2

]
≤ C

N

∞

∑
k=1

α
2
k < ∞

by condition (1) in Theorem 3.

(iv) Finally, we show that P(liminfk→∞ |Vk(i, j)|> 0, ∑
∞
k=1 |Mk(i, j)|< ∞) = 0. Note that

|Mk(i, j)| ≥ αk

[
|Vk(i, j)|−

∣∣∣I{x∗ ∈ Λi, j}−Egk+1 [I{X ∈ Λi, j}]
∣∣∣

− 1−αk

αk

(
|Vk(i, j)|+ I{x∗ ∈ Λi, j}

)(
1−Egk+1 [e

H(X)( 1
Tk
− 1

Tk+1
)
]
)]

.

Let Ω1 = {liminfk→∞ |Vk(i, j)|> 0}, Ω2 = {∑∞
k=1 |Mk(i, j)|< ∞}, and Ω3 = {Vk(i, j) is bounded}. For each

ω ∈Ω1, there exists a δ (ω) such that liminfk→∞ |Vk(i, j)|> δ (ω)> 0. Therefore, we can find a Kδ (ω)> 0
such that |Vk(i, j)| ≥ δ (ω) for all k≥Kδ (ω). On the other hand, for each ω ∈Ω3, we can find a K′

δ
(ω)> 0

such that for all k ≥ K′
δ
(ω),∣∣∣I{x∗ ∈Λi, j}−Egk+1 [I{X ∈Λi, j}]

∣∣∣+ 1−αk

αk

(
|Vk(i, j)|+I{x∗ ∈Λi, j}

)(
1−Egk+1 [e

H(X)( 1
Tk
− 1

Tk+1
)
]
)
≤ δ (ω)/2.

Thus, for each ω ∈Ω1∩Ω3, we have |Mk(i, j)|> αkδ (ω)/2 whenever k≥K∗
δ
(ω) := max{Kδ (ω),K′

δ
(ω)}.

It follows that
∞

∑
k=1
|Mk|>

δ (ω)

2

∞

∑
k=K∗

δ
(ω)

αk = ∞ by condition (1).

This implies P(Ω1∩Ω2∩Ω3) = 0. Finally, P(Ω1∩Ω2) = P(Ω1∩Ω2∩Ω3)+P(Ω1∩Ω2∩Ωc
3)≤ P(Ωc

3) = 0
by Lemma 2.

Thus, by directly Theorem 2.2 in Evans and Weber (1986) gives Vk(i, j)→ 0 w.p.1. as k→ ∞, i.e.,
limk→∞Uk(i, j) = I{x∗ ∈ Λi, j} w.p.1. This further shows that

lim
k→∞

q̂k(i, j) = lim
k→∞

Sk(i, j)/∑X eH(x)/Tk

∑
m
j=1 Sk(i, j)/∑X eH(x)/Tk

= lim
k→∞

Uk(i, j)
∑

m
j=1Uk(i, j)

=
I{x∗ ∈ Λi, j}

∑
m
j=1 I{x∗ ∈ Λi, j}

= I{x∗ ∈ Λi, j} w.p.1.

4 NUMERICAL RESULTS

In this section, we illustrate effectiveness of the proposed MARS-SA algorithm on several benchmark
problems and compare its performance with that of the MARS algorithm of Hu and Hu (2010).

We consider the following four discrete optimization problems.

(1) Discrete Weighted-Sphere function (n = 15, xi ∈ {−5+0.5`,`= 0, . . . ,20}, i = 1, . . . ,n)

H1(x) =−
n

∑
i=1

ix2
i ,

where x∗ = (0, . . . ,0)T and H1(x∗) = 0.
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(2) Discrete Rastrigin function (n = 15, xi ∈ {−5+0.5`,`= 0, . . . ,20}, i = 1, . . . ,n)

H2(x) =−
n

∑
i=1

(
x2

i −10cos(2πxi)
)
−10n,

where x∗ = (0, . . . ,0)T and H2(x∗) = 0.
(3) Discrete Griewank function (n = 15, xi ∈ {−5+0.5`,`= 0, . . . ,20}, i = 1, . . . ,n)

H3(x) =−
1
40

n

∑
i=1

x2
i +100

n

∏
i=1

cos
( xi√

i

)
−100,

where x∗ = (0, . . . ,0)T , H3(x∗) = 0.
(4) Trigonometric function (n = 15, xi ∈ {−5+0.5`,`= 0, . . . ,20}, i = 1, . . . ,n)

H4(x) =−1−
n

∑
i=1

[
8sin2 (7(xi−0.9)2)+6sin2 (14(xi−0.9)2)+(xi−0.9)2

]
,

where x∗ = (1, . . . ,1)T , H4(x∗) =−3.4895.

Since all objective functions above are negative valued, whereas H(x) is assumed to be non-negative
in our analysis, we have used an additional increasing performance function S(x) = 80+ x

1+0.0125|x| , and
for each of the four test cases, we maximize S(H(x)) instead of directly maximizing H(x). The following
set of parameters are used in MARS-SA: a relatively conservative step-size/gain αk = 2/(k+100)0.501 (cf.
e.g., Spall 2003), a Cauchy annealing type temperature schedule Tk = 1/∑

k
t=1

1
t (Dukkipati, Narasimha,

and Bhatnagar 2004), a constant sample size N = 2, and a mixing parameter β = 0.1. Note that the above
parameter setting satisfies the conditions in Theorem 3 for convergence. The same set of parameter values
are used in implementing the original MARS algorithm, except that we have considered two different
sample sizes: a constant sample size N = 2 and a polynomially increasing (iteration-dependent) sample
size Nk = max{2,bk0.502c}, where bac is the largest integer no greater than a.

For each test case, we performed 50 independent replication runs of both algorithms. The comparison
results are summarized in Figure 1, which plots the averaged current best objective function values as a
function of the number of performance evaluations consumed thus far. The figure clearly indicates the
convergence of MARS-SA and the MARS algorithm with a polynomial sample size per iteration, with
MARS-SA providing superior performance over the original MARS. Moreover, for test functions H1, H2,
and H4, we see that MARS-SA consistently finds global optimal solutions in all runs even when the
per-iteration sample size is set to N = 2, whereas the original MARS algorithm with N = 2 does not seem
to converge to the correct global optima.

5 CONCLUSIONS

In this paper, we have presented a new algorithm for solving discrete black-box optimization problems.
The algorithm can essentially be viewed as a variant of the recently proposed MARS algorithm for global
optimization, but improves MARS with an additional stochastic averaging scheme. Such a stochastic
averaging procedure makes a more efficient use of the past sampling information, and eliminates the
polynomially increasing (per-iteration) computational requirement of MARS in constructing surrogate
distributions. Under mild regularity conditions, we have shown that the algorithm converges to the global
optimal solution even when the number of samples per iteration is fixed at a small constant value. Our
preliminary numerical results suggest that the proposed algorithm could lead to improved performance over
the original MARS method.
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Figure 1: Average Performance of MARS-SA vs. MARS on test functions H1-H4.
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