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ABSTRACT

We consider a discrete optimization via simulation problem with stochastic constraints on secondary
performance measures where both objective and secondary performance measures need to be estimated
by simulation. To solve the problem, we present a method called penalty function with memory (PFM),
which determines a penalty value for a solution based on history of feasibility check on the solution. PFM
converts a DOvS problem with stochastic constraints into a series of new optimization problems without
stochastic constraints so that an existing DOvS algorithm can be applied to solve the new problem.

1. INTRODUCTION

Simulation techniques are useful to analyze performance of a complex or large-scale system with various
random factors and often used in an optimization problem where performance measures in the problem
cannot be analytically or numerically calculated. Optimization via Simulation (OvS) algorithms are to
find an optimal or a good solution when the objective function needs to be evaluated through simulation.
An OvS algorithm generates solutions from the search space, estimates the performance measures of each
sampled solution, moves to a promising solution or region and repeats these steps until some stopping
criteria are satisfied. Andradóttir (1998) and Fu (2006) provide a thorough review of OvS research and
practice for both discrete and continuous decision variables. In this paper, we focus on discrete OvS (DOvS).

For a DOvS problem, a number of algorithms have been presented. The nested partitions (NP) method
due to Shi and Ólafsson (2000) is one of globally convergent DOvS algorithms and works for both contin-
uous and discrete decision variables. Pichitlamken and Nelson (2003) developed a DOvS algorithm using
the NP framework. Their algorithm uses sample averages as estimates of performance measures and is
proven to be globally convergent. The convergent optimization via most-promising-area stochastic search
(COMPASS) (Hong and Nelson 2006) is a framework for discrete optimization to find the set of local
optima. Although these algorithms are shown to perform well for many stochastic optimization problems,
they are not directly applicable to a DOvS problem with stochastic constraints.

In deterministic optimization, the penalty function is one of popular methods to handle deterministic
constraints. The penalty function consists of a penalty parameter and a measure of violation of the con-
straints. The penalty function is added to the objective function, which converts the original optimization
problem with deterministic constraints into a series of unconstrained problems whose solutions converge
to the solution of the original problem (Nocedal and Wright 1999). One may want to adopt the idea of the
penalty function to a DOvS problem with stochastic constraints. Li et al. (2009) proposed an idea similar
to the penalty function, in which the penalty parameter converges to infinity and the measure of violation of
a constraint is estimated by sample means of secondary performance measures. Unfortunately, the method
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works for only one stochastic constraint with a strict inequality.

In this paper, we propose a new method, namely the penalty function with memory (PFM) to handle
multiple stochastic constraints with general inequalities in DOvS. A measure of violation of the constraints
is determined by sample means as in Li et al. (2009). However, PFM differs from the method due to
Li et al. (2009) in the sense that the penalty parameter in Li et al. (2009) diverges to infinity for all solutions
while PFM determines the value of the penalty parameter based on history of feasibility check of a visited
solution and either converges to 0 for a feasible solution or diverges to∞ (if minimization) for an infeasible
solution as the number of observations obtained for the solution goes to infinity.

This paper is organized as follows: Section 2 defines our problem, details notations, and provides a
common structure of existing DOvS algorithms. Section 3 presents a general form of PFM and discusses
convergence properties of the method. Section 4 gives an example algorithm that combines a version of
NP with PFM. Experimental results are discussed in Section 5, followed by concluding remarks in Section
6.

2. BACKGROUND

In this section, we define problem and detail notation and assumptions used throughout the paper. We also
review a common structure of existing DOvS algorithms.

2.1 Problem

Let x = (x1, . . . , xd) represent a solution and Θ represent the whole decision variable space which is a
bounded and finite set in Rd. Let Gi(x) represent the ith observation corresponding to the primary per-
formance measure. Similarly, for all ` = 1,2, ...,m, H`i(x) represents the ith observation corresponding
to the secondary performance measures on the `th constraint. We assume that for a given x, Gi(x) are
independent and identically distributed (iid) random variables for i = 1,2, ... and observed only through
simulation. For ` = 1,2, ...,m, H`i(x) are also iid and must be generated via simulation. It is possible that
Gi(x) and H`i(x) are correlated. The expectation and variance of the primary performance measure are
E[Gi(x)] and Var[Gi(x)], respectively. Also, for all ` = 1,2, ...,m, the expectation and variance of the `th
secondary performance measure are E[H`i] and Var[H`i(x)], respectively. We assume that the following
assumption holds for a DOvS problem in consideration.

Assumption 1 For all x ∈ Θ and ` = 1,2, . . . ,m,

E[|Gi(x)|] <∞, Var[Gi(x)] <∞, E[|H`i(x)|] <∞ and Var[H`i(x)] <∞.

Then our DOvS problem with stochastic constraints is defined as follows:

argminx∈ΘE[Gi(x)],
subject to E[H`i(x)] ≥ q`, ` = 1,2, ...,m.

(1)

2.2 Existing DOvS Algorithms

Existing DOvS algorithms share a general structure of the random search framework (Andradóttir 2006)
as follows:

Step 1: Set search iteration counter k = 1. Choose an initial sampling strategy.
Step 2: Sample solutions and take ∆n number of additional observations for each sampled solution.
Step 3: Update estimates of performance measures.
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Step 4: Update the sampling strategy for next iteration, set k← k+1, and repeat Steps 2 and 3 until
stopping criteria are satisfied.

In general, it is required that the sampling strategy guarantees that each solution has non-zero probability
of being sampled at any iteration k to ensure that a solution receives an infinite number of observations as
k goes to infinity. PFM is designed for an algorithm that follows this structure.

Additional notation is defined below:

D := an existing DOvS algorithm designed for a DOvS problem without any stochastic constraint;
xb

o := the solution to Problem 1;
vk(x) := the number of visits up to iteration k for x;
nr(x) := the total number of observations obtained up to the rth visit for x;
nvk (x) := nvk(x)(x) := the total number of observations obtained up to iteration k for x;
λr
`
(x) := penalty parameter of the `th constraint at the rth visit for x;

λ
vk
`

(x) := λvk(x)
`

(x) := penalty parameter of the `th constraint up to iteration k for x:
F := an index set of all stochastic constraints such as F := {1,2, ...,m};
FS (x) := {` | E[H`(x)] > q`, ` ∈ F }, an index set of stochastic constraints for which x is strictly feasible;
FA(x) := {` | E[H`(x)] = q`, ` ∈ F }, an index set of active stochastic constraints for x;
FI(x) := {` | E[H`(x)] < q`, ` ∈ F }, an index set of stochastic constraints for which x is infeasible;

Gk(x) := 1
nvk (x)

∑nvk (x)
i=1 Gi(x), cumulative sample mean of the objective up to iteration k;

H`k(x) := 1
nvk (x)

∑nvk (x)
i=1 H`i(x), ` = 1,2, ...,m, cumulative sample mean of the `th secondary performance

measure up to iteration k.

AlgorithmD will be combined with PFM to solve Problem 1. In this paper, we assume thatD satisfies
the following assumption:

Assumption 2 The sampling strategy of D guarantees that for any x ∈ Θ,

P
[

lim
k→∞

vk(x) =∞] = 1 and P
[

lim
k→∞

nvk (x) =∞] = 1.

NP-based algorithms due to Pichitlamken and Nelson (2003) and random search methods due to
(Andradóttir 1999) are example algorithms that satisfy Assumption 2.

3. PENALTY FUNCTION WITH MEMORY

In this section, we present a new method to handle stochastic constraints, namely PFM. The method consists
of the penalty parameter of the `th constraint, λvk

`
(x), and a measure of violation of the `th constraint,

max(0,q` −H`k(x)). The penalty parameter throughout iteration k becomes a sequence of real-valued
numbers which we call a penalty sequence. The sequences λvk

`
(x) should satisfy the following assumption.

Assumption 3 If ` ∈ FS (x), P
[

limk→∞λ
vk
`

(x) = 0
]

= 1.
Else if ` ∈ FA(x), limk→∞P

[

λ
vk
`

(x) = 0
]

= 1.
Else, P

[

limk→∞λ
vk
`

(x) =∞] = 1.

Assumption 3 implies that the penalty sequence for the `th constraint converges to 0 with probability
1 (w.p. 1) if x is strictly feasible with respect to the constraint but diverges to ∞ w.p. 1 if x is infeasible
for the constraint. If x is active for the constraint, the sequence converges to 0 in probability. For an
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active constraint, there is always non zero probability that H̄`k(x) < q`. Thus the convergence occurs only
in probability rather than w.p. 1.

With the penalty sequences that satisfy Assumption 3, a new objective function with PFM at search
iteration k, Zk(x), is defined as

Zk(x) =Gk(x)+
∑

`∈F

[

λ
vk
`

(x)×max{0,q` −H`k(x)}
]

. (2)

We applyD to solve minx∈ΘE[Zk(x)]. As k→∞, we want to guarantee that limk→∞E[Zk(xb
k)]=E[Gi(xb

o)]
where xb

k is the solution to minx∈ΘE[Zk(x)] and xb
o is the solution to Problem 1. IfD satisfies Assumption 2,

nvk (x) goes to infinity as k goes to infinity and Gk(x) and H`k(x) converge to E[Gi(x)] and E[H`i(x)],
respectively, by the strong law of large numbers (SLLN). Then it is clear that Zk(x) converges to E[Gi(x)]
for a feasible solution but diverges to infinity for an infeasible solution if Assumption 3 holds. The following
theorem is proved in Park and Kim (2011).

Theorem 1 Suppose that Assumptions 1, 2, and 3 hold. Then if x is strictly feasible (i.e., FS (x) = F ),
P
[

limk→∞Zk(x) = E[Gi(x)]
]

= 1.
Else if x is feasible with any active constraint (i.e., FA(x) , ∅ and FI(x) = ∅), limk→∞P

[

Zk(x) =E[Gi(x)]
]

= 1.
Else, P

[

limk→∞Zk(x) =∞] = 1.

For Theorem 1, it is important that the penalty sequences λvk
`

(x) satisfy Assumption 3. We give an
example of such penalty sequences, namely multiple penalty sequence with constants (PSm):

λ
vk
`

(x) =

{

λ
vk−1
`

(x)× θa, if H`k(x) < q`;
λ

vk−1
`

(x)× θd, if H`k(x) ≥ q`,

where λ0
`
(x) = λ0

`
is an initial penalty constant for constraint ` and θa is an appreciation factor and θd is a

depreciation factor such that θa > 1, 0 < θd < 1 and θaθd < 1.

Theorem 2 Under Assumptions 1 and 2, PSm satisfies Assumption 3.

We explain intuitively why Theorem 2 should hold. See Park and Kim (2011) for its formal proof. If
there is any evidence that x is infeasible with respect to constraint ` at iteration k (i.e., H`k(x) < q` for any
`), then PSm multiplies θa, a constant greater than 1, to the previous penalty parameter of the constraint.
Otherwise, θd, a constant between 0 and 1, is multiplied. As iteration k grows, SLLN applies and PSm

keeps multiplying θa to the penalty parameter of any infeasible constraint. As results, the penalty sequence
of the infeasible constraint diverges to infinity as k→∞. Similarly, for any strictly feasible constraint of
x, the penalty sequence of the constraint keeps receiving the depreciation factor θd as k→∞ and thus
converges to 0. For any active constraint, PSm multiplies θa or θd with equal probability and the penalty
sequence converges to 0 in probability as k→∞ because θaθd < 1.

4. EXAMPLE ALGORITHM

In this section, we take a version of NP due to Pichitlamken and Nelson (2003) as a DOvS algorithm
and combine it with PFM that uses PSm. NP focuses on Rk called the most promising region and spends
more computational efforts in Rk. A complement set of Rk, Θ \Rk is called the surrounding region. NP
systematically partitions Rk into several subregions. Let ω represent the number of subregions. Then
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Rk( j), j = 1,2, . . . ,ω, are mutually disjoint subsets of Rk such that the union of Rk( j), for j = 1,2, ...,ω, is
equal to Rk.

NP samples and assesses solutions from Rk( j) for j = 1,2, . . . ,ω and Θ\Rk and compares all solutions
visited so far. Let τk( j), j = 1,2, ...,ω, be the number of sampled solutions from subregion j at iteration k
and τk be the total number of sampled solutions at iteration k (i.e.,

∑ω
j=1 τk( j) = τk, if Rk = Θ). If a sampled

solution is visited for the first time, n0 observations are taken and otherwise, we take ∆n observations for
the solution. Let Sk define the set of solutions sampled at iteration k and Vk define the set of all solutions
visited up to iteration k. The sample best among solutions in Vk is denoted as x̂∗k. If x̂∗k is in one of
Rk( j),  = 1,2, . . . ,ω, the subregion will be the next promising region, Rk+1. Otherwise, Θ will be set to
Rk+1. The steps of NP+PFM are provided below.

Algorithm : NP + PFM

Step 0. Initialization:
- Choose a sampling strategy and a partitioning scheme.
- Set k = 1, Rk = Θ, and V0 = ∅.
- Sample an initial solution, x̂∗0 randomly from Θ.
- Select constants ω, τk, ∆n, λ0

`
(x), θa and θd.

Step 1. Partitioning:
- Partition Rk into ω disjoint subregions, Rk(1),Rk(2), ...,Rk(ω). If Rk is a singleton, set Rk(1) = Rk

and Rk(2) = . . . = Rk(ω) = ∅.
- Set Rk(ω+1) = Θ \Rk which denotes the surrounding region.

Step 2. Sampling Solutions:
- From each regionRk( j), j= 1,2, ...,ω+1, sample τk( j) solutions using the chosen sampling strategy.
Always sample x̂∗k−1 so that x̂∗k−1 ∈ Sk.
- Include all sampled solutions x into Sk.
- If x <Vk for any x ∈ Sk, then Vk =Vk ∪{x}.

Step 3. Estimating the Promising Index: For each x ∈ Sk,
- If x has never been visited before, take n0 observations and set n1(x) = n0. Otherwise, take ∆n
observations and set nvk (x) = nvk−1(x)+∆n.
- Update Zk(x) as defined in (2).
- Select x̂∗k such that x̂∗k ≡ argminx∈Vk

Zk(x).

Step 4. Selecting the Most Promising Region and Backtracking:
- Determine j∗ such that x̂∗k ∈ Rk( j∗).
- If Rk( j∗) ⊂ Rk, then Rk+1 = Rk( j∗). Otherwise, Rk+1 = Θ.
- Set k = k+1.

Step 5. Stopping Rule If the stopping rule is satisfied, then stop and return x̂∗k as the best solution.
Otherwise repeat Steps 1 through 5.

For various sampling strategies and partitioning schemes, see Pichitlamken and Nelson (2003) or
Shi and Ólafsson (2008). The global convergence is achieved when k goes to infinity but, in prac-
tice, the algorithm should terminate with finite search iterations. Popular stopping criteria discussed
in Hong and Nelson (2006) include (i) when all computational budget is consumed or a certain number of
search iterations is made, (ii) all solutions are visited so that the algorithm had enough search iterations or
(iii) the identity of the sample best x̂∗k does not change for many iterations. Another example of stopping
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criteria is to stop when event E1 occurs for nE times consecutively, where

E1 := {x̂∗k = x̂∗k−1 , |Zk(x̂∗k)−Zk−1(x̂∗k−1)| < ε , R(k) is a singleton}

for a small positive constant ε. A decision maker needs to choose ε and nE .

5. EXPERIMENTS

In this section, we test our method NP+PFM on a DOvS problem based on the Goldstein-Price function
(Goldstein and Price 1971) and compare the performance of NP+PFM with a method due to Li et al. (2009).

The Goldstein-Price function is one of the famous deterministic and continuous optimization problems
with a 2-dimensional quadratic function defined by,

g(x) =
{

1+ (x1+ x2+1)2 · (19−14x1+3x2
1−14x2+6x1x2+3x2

2)
}

×
{

30+ (2x1−3x2)2 · (18−32x1+12x2
1+48x2−36x1x2+27x2

2)
}

.

Let φi(x) and ψ`i(x), ` = 1,2, ...,m be iid normal random variables with mean zero and standard deviations
γ(x) andσ`(x). We define Gi(x)= g(x)+φi and H`i(x)= a`x1+b`x2+ψ`i and want to minimize E[Gi(x)] with
constraints E[H`i(x)] ≥ q`. We set Θ= {−2.50,−2.49, ...,1.99,2.00}2 which is a two-dimensional discretized
set in [−2.50, 2.00]2. The function g(x) has four local minima and the global minimum at (0,−1). In
Θ, the largest and smallest values of g(x) are 1,015,685 and 3, respectively. We take γ(x) = 0.15g(x) and
σ`(x) = 0.15(a`x1+b`x2).

For the implementation of NP, we use the bisection scheme for partitioning, which bisects the possible
range of each variable xq, q = 1,2, ...,d of x in Rk. For example, if Rk = [0,2]2, the bisection method would
create four subregions: [0,1)× [0,1), [1,2]× [0,1), [0,1)× [1,2] and [1,2]× [1,2]. We set n0 = 10, ∆n = 10,
τk = 16, and ω = 4. For sampling solutions, we use the following sampling strategy: If Rk = Θ, τk( j) = 4
for all j = 1,2,3,4. Else if |Rk| > 1, τk( j) =min(|Rk|,3) for all j = 1,2,3,4 and τk(5) = τk−

∑4
j=1 τk( j). Else,

τk(1) = 1, τk( j) = 0, for j = 2,3,4 and τk(5) = τk −1. If |Rk| , 1, we employ the uniform sampling, which
generates τk( j) solutions randomly from Rk( j) for each j. Otherwise (i.e., Rk is a singleton), we randomly
generate seven solutions among eight perturbed solutions from the solution in Rk, which is called the
local search sampling (Shi and Ólafsson 2008), and use the uniform sampling to generate eight solutions
randomly in the surrounding region.

Li et al. (2009) provide a penalty function for a DOvS problem with one stochastic constraint, which
we call augmented cost function (ACF). Their penalty function is defined as

∑

`∈F
αk
` ×max{0,q` − H̄`k(x)},

which is a straightforward extension to multiple constraints. We take αk
`

similar to the one used in their
online companion:

αk
` =















ek

minx∈Υk (q`−H̄`k(x))
, if Υk , ∅;

106, otherwise,

where Υk ≡ {x|q` > H̄`k(x) and x ∈Vk}. For NP+ACF, we use Z
′

k(x) = Ḡk(x)+
∑

`∈F α
k
`
×max{0,q`− H̄`k(x)}

as a new objective function.
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Figure 1: Percentage (%) of time that x̂∗k = xb
o under a single constraint.

For PFM, we employ PSm and set θa =
√

2, θd =
1

2θa
, and λ0

`
(x) = 106. See Park and Kim (2011) for a

discussion on parameter choices in PSm.

We first consider a single stochastic constraint and then add one more constraint. We make 100 macro
replications and each macro replication stops when the total number of observations reaches a million. We
report (i) percentage of time that the sample best at search iteration k, x̂∗k was equal to the true best optimal
xb

o and (ii) average estimated objective value Gk(x̂∗k) over 100 macro replications.

5.1 Single Stochastic Constraint

We set the stochastic constraint as

E[−x1− x2+ψ1i] ≥ 1.5.
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Figure 2: Average estimated objective value of x̂∗k under a single constraint.
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Figure 3: Percentage (%) of time that x̂∗k = xb
o under two constraints.

With this constraint, the true optimal solution (xb
o) is (−0.3,−1.2) and the stochastic constraint becomes

active at xb
o. The true objective value at xb

o is exactly g(xb
o) = 38.0625. Figure 1 shows the percentage of

time that x̂∗k = xb
o over 100 macro replications. The percentage in NP+PFM goes up to 80% while NP+ACF

achieves only up to 55%. As shown in Figure 2, NP+PFM obtains better average estimated objective values
than NP+ACF.

5.2 Two Stochastic Constraints

Now we consider two stochastic constraints:

E[−x1− x2+ψ1i] ≥ 1.5, and E[x1− x2+ψ2i] ≥ 0.9.
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Figure 4: Average objective value of x̂∗k under two stochastic constraints.
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The true optimal feasible solution xb
o is (−0.3,−1.2) which has both constraints as active constraints. Its

objective function g(xb
o) is 38.0625. Figure 3 shows that NP+PFM returns the true best up to 70% of

time as the number of observations increases while NP+ACF shows only 20% ∼ 30% convergence. The
convergence percentage is slightly lower than the single constraint case but it is expected because this
problem with two stochastic constraints is more difficult. NP+PFM still gives a better estimated objective
value than NP+ACF as shown in Figure 4.

6. CONCLUSION

In this paper, we present PFM that replaces a DOvS problem with stochastic constraints into a new DOvS
problem without stochastic constraints. PFM determines penalty based on history of feasibility check
for each solution. We discuss convergence properties of PFM and an example of penalty sequences for
PFM. Our experimental results show that the method works well. There exist more sophisticated statistical
methods for feasibility check and selection of the most promising region as presented in, for example,
Batur and Kim (2010) and Andradóttir and Kim (2010). PFM can be combined with them to improve
better performance, which is a topic of current ongoing work.
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