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ABSTRACT 

Long run times of a simulation can be a hindrance when an analyst is attempting to use the model for 
timely system analysis and optimization.  In this situation, techniques such as simulation metamodeling 
should be considered to expedite the end user’s intended analysis procedure. A difficult problem arises in 
the application of metamodeling when the simulation inputs and outputs are not of a single value, but 
constitute a time series, a phenomenon that is seen repeatedly in the area of financial simulations and 
many naturally occurring events.  This paper provides a method to develop a mapping between multiple 
time series inputs of a simulation and a single Figure of Merit (FoM) of the system across a given time 
period of interest.  In addition, this paper discusses a means for an end user to define a tailored FoM with 
respect to their own specific system beliefs and objectives in the case of multiple simulation outputs.  

1 INTRODUCTION 

Simulation is a valuable tool towards the evaluation of different alternatives, designs, or technological ad-
ditions to a system.  It supports the systems engineering analysis process of mapping component level 
Measures of Performance (MoP) to system-level Measures of Effectiveness (MoE) to a single Figure of 
Merit (FoM) of the overall system performance.  However, the modeling approaches practitioners  use are 
becoming more and more complex resulting in the set-up and run times of these simulations becoming 
too long to be used in many analysis situations.  The MoP-MoE-FoM mapping procedure in Rosen et al. 
(2012) integrated a metamodeling procedure to advance MoP-MoE-FoM mappings for real-time analysis 
and amend them for easier distribution to multiple users, remedying file size and licensing issues inherent 
in simulation.  
 During the development of this metamodeling approach, the problem of mapping time series system 
inputs or MoPs to system level MoEs was encountered.   This led to the problem of applying simulation 
metamodeling on simulations with time series inputs and/or outputs.  Time series inputs and outputs oc-
cur naturally in geophysical events, simulations involving financial markets as well as simulations per-
taining to economic stability or risk.  More notably, there has been an increasing trend  in agent-based 
simulations of financial markets that attempt to model the effect of  trader behaviors on the overall market 
dynamics.  The agent-based models of equity stock first began with the Santa Fe Institute market model 
(Arthur et al. 1996) and have evolved in agent behavior rules to the widely referenced Ghoulmie Hetero-
geneous Trading Model (Ghoulmie 2005). The simulation of these agent-based models lends complexities 
due to several factors. First, the end user of these models must use the entire time series in order to ana-
lyze system behavior.  Moreover, the financial system simulations can have multiple MoEs or system per-
formance measures, making it quite difficult for the user to analyze the outputs stemming from the model. 
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 A wealth of metamodeling families is available to initially consider for this time series metamodeling 
problem.  Notable metamodeling families include Response Surface Models (Myers 1976, Box and 
Draper 1987), Splines (deBoor 1978, Myers et al. 1996), Radial Basis Functions (Dyn et al. 1986, Me-
ghabghab 2001), Spatial Correlation Metamodels / Kriging (Sacks 1989, Kleijnen 2009), and Neural 
Networks (Lippman 1987, Al-Hindi 2004).    However, it is not immediately apparent how these ap-
proaches can be applicable to situations where the simulation consists of time series inputs and/or outputs 
as in the case of financial markets as discussed above.  
 This paper provides an approach for simulation metamodeling with simulations consisting of time se-
ries inputs and outputs.  As many financial simulations contain multiple time series outputs, the approach 
also considers the situation of aggregating multiple simulation outputs to provide the user with a single 
FoM value for any time period of interest.  Section 2 outlines the technical problem and the framework 
for our approach.  Section 3 outlines a Multiattribute Value Function (MAV) approach to be used to de-
fine the overall FoM relevant to the analyst’s preferences in the case of multiple simulation model out-
puts.  Section 4 then presents a Neural Network metamodeling procedure to capture the behavior of the 
financial simulations, which coupled with the MAV function, creates a means to rapidly and efficiently 
quantify the FoM on any time period of interest.  Section 5 illustrates these ideas in a case study involving 
the metamodeling of a variant of the Ghoulmie (2005) model.  Conclusions are provided in Section 6.  

2 PROBLEM AND APPROACH 

A two-step procedure is proposed to map multiple simulation input time series to a FoM that is a single 
numerical value from an omnibus time series for a point of interest t.   The schematic below (Figure 1)  
illustrates this two-step approach.  There are two points not explicitly depicted by this schematic.  First, 
since the MAV model provides an output for a particular point on the time series t, the MAV model must 
be sampled repeatedly across the time series to generate the omnibus time series for the FoM.   In addi-
tion, the Neural Network becomes the surrogate model of both the simulations and MAV function in un-
ion.   

 
Figure 1: FoM Estimation via Preference Modeling and Metamodeling of Time Series Simulation Data  
 
 The first step involves the assessment of a closed-form Multiattribute Value (MAV) function (Dyer 
and Sarin 1979) through interaction with the model end user to quantify relative importance between the 
simulation model outputs with regard to the FoM or overall system effectiveness.  The MAV function tV

enables the aggregation of multiple simulation outputs 1 2, ,..., ky y y into a single aggregated time series.  

The second step consists of a Neural Network metamodel to model the relationship between the time se-
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ries inputs from the last n points in time, , 1,...,t t t n    to the simulations and the MAV single-valued 

response (FoM) from the corresponding simulation outputs at time t  .  The Neural Network is then sam-
pled at the time period of interest to project the FoM for that time period.  A whole time series involving 
the FoM can then be computed by resampling the Neural Network at each point along the time series. 

3 MULTI-ATTRIBUTE VALUE MODEL FOR OUTPUT AGGREGATION 

In our approach for metamodeling, the Figure of Merit (FoM) can be interpreted as the overall level of 
preference a decision maker has towards a set of MoE values, which in our paradigm are analogous to 
outputs from a simulation.  A Multiattribute Value (MAV) function (Dyer and Sarin 1979) approach is se-
lected for use over Multiattribute Utility (MAU) theory (Von Neumann and Morgenstern 1947) due to its 
more simplified assessment procedure. This  was earlier applied by Rosen et al. (2006), and it was  shown 
to provide more accurate decision models than those generated through a traditional MAU function. 
 A MAV function in multi-linear form, as shown in Equation (1),  is used to map levels of n MoE ex-
pected values and corresponding standard deviations to a single-valued FoM on [0,1].   
 
                                                                                                                               
                         (1) 
 
 
 

The variables iy  can represent levels of either expected value or standard deviation for a particular 

performance measure or output from the simulation or MoEs.  The basis functions )( ii yv  represent value 

functions for an expected value or standard deviation corresponding to a specific simulation output.  The 
coefficients iw  can be interpreted as weights representing the expected change in the decision maker’s 

FoM value to a change in iy  .  The error term   represents the error in assessing the decision maker’s 

preferences. 
 The basis value functions pertaining to standard deviation do not always need to be calibrated and can 
be omitted when the level of uncertainty in the simulation’s output MoE values are not fully understood 
or when uncertainty in an MoE value has insignificant effect on the overall FoM.  There is an assessment 
procedure for the proposed MAV Function that is applicable to this domain.  For further details on this 
assessment procedure and how it supports a generic MoP-MoE-FoM process, see Rosen et al. (2012).  
The MAV model sets up a generalized framework for this approach, however, the focus of this paper is 
on the metamodeling of time series simulations via Neural Networks, which is further discussed in the 
upcoming section. 

4 NEURAL NETWORK TIME SERIES METAMODEL 

Previous research proposed the use of Neural Networks for time series forecasting; a couple of examples 
include Faraway and Chatfield (1996) and Gheyas and Smith (2009).   Neural Networks’ ability to incor-
porate large input sets makes them malleable for time series based modeling.  Coupling this with their 
known capability of capturing the behavior inside complex simulations (Barton and Meckesheimer 2006) 
makes them an intriguing selection for metamodeling of simulation outputs that consist of  a system of 
time series.   Hill et al. (1996) also argue that Neural Networks are potentially less subjective to the limi-
tations of traditional statistical time series methods, such as, having to expertly specify the functional 
form relating to input and output variables, making data transformations, and other evaluations requiring 
expert user interaction. 
 The basic premise for time series metamodeling with Neural Networks is to consider each index of 
past observations of the FoM time series to be an individual input to the Neural Network along with the 



  
    

)()...()(..........

.....)()()()()()()(

2222112...123

2

1

2

1

2

1

2 22

1

nnn

lljj

n

i

n

j

n

i

n

ij

n

jl
iiijljjiiij

n

i
iii

yvyvyvw

yvyvyvwyvyvwyvwyV

2368



Rosen, Saunders, and Guharay 
 

time series simulation inputs  1, ,..,t t t nx x x   as well as single-valued simulation inputs s .  In the Hetero-

geneous Trading Model, the time series inputs 1, ,..,t t t nx x x  can represent the news signal level over 

time and the single-valued inputs s can represent the number of traders participating in the market, for 

example. We also utilize the past FoM observations 1 2, ,..,t t t ny y y   as inputs to the Neural Network.  

The basic function mapping for a given time t , with error term t , becomes: 

 
                        (2) 

 
 By following this structure, one can also integrate multiple time series into the input layer of the Neu-
ral Network.   The Neural Network output is the value of the time series at point t, which can be the next 
period in time or a period further in the future.  To model a complete time series for multiple points in 
time, the Neural Networks is resampled for each of the indices of the time series. 
 The remainder of this section provides additional detail on the proposed single hidden layer structure 
of Neural Networks for time series metamodeling.  Section 4.2 provides a discussion on an appropriate 
space-covering experimental design alternative.  

4.1 Structure and Training of the Neural Network Mapping  

A single hidden layer, feed-forward structure  has been the most widely attempted Neural Network struc-
ture for time series forecasting (Zhang et. al 1998).  Therefore, we have implemented this structure for the 
time series metamodeling problem.  Under a single layer, the mathematical relationship between the in-
puts of the network 1 2, ,..,t t t ny y y   and 1 2, ,..,t t t nx x x   and output ty can be simplified as follows: 

 
                        (3) 

 
 
In this expression, h is the number of hidden nodes and  and  represent the connection weights of the 

network.   The transfer  function of the hidden layer neurons of the network pertains to ( )  , which can 
be comprised of more complicated forms.   Figure 2 presents a graph of the single hidden layer, feed-
forward Neural Network structure. 
 

 
Figure 2: Single Layer Neural Network for Time Series Metamodeling  
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 The input layer is the column of nodes on the left-hand side of the network.  Each node pertains to a 
single value on an individual time series i for n periods before the current time t, which is noted by ntix , . 

Note that the nodes in the input layer can represent a simulation input ,i t nx  or a past observation of the 

FoM time series t ny  .  The hidden layer is contained in the middle column of nodes, which constitute a 

transformation from some subset of the input nodes in the network through weight terms 
, ,i t n k  with sub-

script i referring to the time series of simulation input i, t-n referring to the time index within the time se-
ries and k referring to the hidden layer node the input node is mapping to.   

 Within each node in the hidden layer is a threshold function ( , , )k kp x   . We apply a sigmoid 

form here controlled by a threshold  .  The network then maps each of the function outputs kp  to a sin-

gle-valued numerical output ty , which is targeting the value of the FoM time series at time t .    Train-

ing or calibrating the network involves the use of sampled simulation runs and solving for the coefficients 

, ,i t n k   and k that minimize the error between the MAV function outputs and ty .   Multiple methods  

have been proposed to solve for these weights and they remain applicable in this time series case.  The 
customized backpropagation method (Man-Chung et al. 2000) works effectively for time series Neural 
Networks.  This is what is applied in the case study discussed in section 5. 

4.2 Experimental Design for Training Neural Network 

We employed a generalized experimental design for training Neural Networks of time series data.  The 
design is based on a Latin Hypercube Design (LHD) (Kleijnen et al. 2005) and consists of random yet 
relatively even sampling of points on the interior of the design space via a LHD structure.  Van Dam et al. 
(2009) discussed the merits of LHD for approximating computational simulation models.  
 In the Latin Hypercube design, for r runs and m simulation inputs, we will be dealing with an r x m 
design.  In this type of design, each factor appears only once with each of the r equally spaced levels.  
LHD permutation within the space defined by each level is selected randomly as it favors Neural Network 
calibration.  Due to the random generation of points, significant gaps in the design space are possible.  
Therefore we suggest a resampling procedure for the LHD component of this hybrid design, which is a 
modification of a method introduced within Alam et al. (2002). 
 The basic procedure here is to create r layers through assigning r equally spaced levels over  the de-
sign range for each index ntix ,  of simulation input time series and to randomly sample once from each of 

the r layers.  The distances ntjixxd ntjntintij   ,,,, between all design point vectors x  in the 

design space with the same time lag t are computed along with ntd  , which is the average distance be-

tween these points at time nt  .   Multiple random samples or multiple candidate designs can be execut-

ed and the design that minimizes 
2/)1(

)( 2
,




  

mnm

dd
S ntntij

d  is the one that should be selected.  Here 

2/)1( mnm represents the total number of distances that need to be computed. 
 The motivation behind the standard deviation calculation is to provide an automated way to select a 
randomized design that is not overly clustered in particular areas of the design space.  A design with a 
high dS  would be due to having design points clustered together along with large gaps in the design 

space. 
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5 CASE STUDY 

This section presents a case study involving the metamodeling of a simulation with financial time series 
to illustrate how the proposed approach can be applied and to examine the level of fidelity that can poten-
tially be obtained with this metamodeling approach.  The simulation model exercised for this experiment 
is a MITRE-developed extension of the Heterogeneous Trading Model (Ghoulmie et al. 2005). The Het-
erogeneous Trading Model is an agent-based simulation that involves modeling of a market, consisting of 
a single asset and traded by N agents.  Trading occurs at discrete dates, t = 0,1,2….m, and at each date, 
every agent receives public news about the asset’s performance.  Through what is referred to as an intrin-
sic subjective criterion, each agent assesses whether the news is positively or negatively significant and 
subsequently decides whether to place a buy or sell order based on trading rules inherent in the model.  
 The MITRE-extension (Tivnan et al. 2011) to the model includes an exogenous news signal for equi-
ties rather than a random draw of news signals.   The main inputs to the model are a time series repre-
senting the level of the news signals and a single-valued variable for the number of traders participating in 
the market.  There are two outputs to the model: an equity price time series and a trade volume time se-
ries.  In order to concentrate on  the metamodeling performance in this case study, we are focusing strictly 
on the equity price time series output and we assume that to be the FoM here.   In practice however, mul-
tiple simulation outputs could be aggregated via Equation (1) before doing the Neural Network calibra-
tion.   
 The metamodeling experiment consists of trying to develop a surrogate model mapping the time se-
ries inputs of the Heterogeneous Trading Model to its equity price output.  Moreover, the experiment en-
tails evaluating how the Neural Network metamodel can replicate this large-scale agent-based simulation 
consisting of time series inputs and outputs.  In other words, the experiment is attempting to determine 
how close is the metamodel output with respect to the simulation output, given that the metamodel has the 
same input information, which is current and past equity price and previous news levels.   As noted in 
Section 4, we are also employing past observations of the equity price time series to aid the prediction for 
an Equity price at the following date.   
 The applied Neural Network metamodel has a single hidden layer feed forward structure as discussed 
in Section 4 with sigmoid transfer functions.  Table 1 below summarizes the inputs used into the Neural 
Network.  The last ten observations of the equity price time series are included along with the last two pe-
riods of the news signal level: current news signal level and previous news signal level.  Only using the 
news signal levels from the last two periods is pertinent for the logic of this model and one can of course 
choose a different number of past observations of the input time series to apply in different situations.  
Held constant during this study in the model are the number of traders and the threshold probabilities for 
trade decisions.  The LHD experimental design component is implemented only on single-valued varia-
bles so it was not utilized for this case study.  
 

Table 1: Inputs to Neural Network 
 

 
 

 
Each of the outputs from the model replications is provided in Figure 3 below.  Thirty replications are 

performed in total of this simulation.   

  Time Periods

News Level t t‐1

Equity Price t ‐1  t ‐2 t ‐3 t ‐4 t ‐5 t ‐6 t ‐7 t ‐8 t ‐9 t ‐10
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 The validation partition of the data is used for model selection and is used during the training phase of 
the Neural Network to ensure that the Network is not overfit.  During validation, the Neural Network 
weights are not being configured any more with the data, but the data is now utilized to check that any in-
crease in accuracy over the training data set actually yields an increase in accuracy over a data set not 
previously shown to the Network.  If the accuracy over the validation data stays the same or decreases, 
then it can be concluded that overfitting is beginning to occur and training should stop.  In our case, the r 
value decreases ever so slightly from 0.99857 to 0.99807 implying that it is an appropriate time for train-
ing to stop.   The regression plot between the simulation data and metamodel data under the validation 
partition is shown below in Figure 5. 
 
 

 
 

Figure 5: Goodness of Fit of Metamodeling with Validation Data 
 
  
 The testing partition of the data is used to evaluate how well the Neural Network can extrapolate out-
side of the data space it was trained.  The reader must be careful in this case as to not misinterpret this as 
the Neural Network capability to predict futures values.  This testing is used to see how well the Neural 
Network can represent the simulation under the simulation inputs that were not used to fit the model.  
However, this is the most appropriate measure in the adequacy of the metamodel here.  The r value be-
tween the metamodel and simulation model for the testing data is 0.99643, which is only a slight decrease 
that what was achieved in the training data.  This is a very encouraging result showing that the metamodel 
is quite capable of replicating the simulation model outside of the training space.  The regression plot be-
tween the simulation data and metamodel data under the testing partition is shown below in Figure 6. 
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Figure 6: Goodness of Fit of Metamodel with Testing Data 
 

 A mean squared error of 0.4119 (error between metamodel output an simulation output of Equity 
Price) was achieved for the training data signifying a sound goodness of fit for the Neural Network met-
amodel.  To further depict the fit of the Neural Network metamodel, the metamodel time series is plotted 
(blue) overtop the simulation output time series (red) in Figure 7 below.  The metamodel appears to be 
able to capture most of the trends of the simulation time series.   
 

  
 

Figure 7: Comparison of Metamodel (Red) and Simulation (Blue) Time Series 
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 This case study has demonstrated the effectiveness of Neural Networks in metamodeling large-scale 
simulations that contain time series inputs and outputs.  A single hidden layer Neural Network was ap-
plied, but there are of course many other Neural Network structures that can be applied in this case.  Oth-
er structures can lead to additional complications with non-linearity, especially when multiple hidden lay-
ers are present.  Under multiple hidden layers, the additivity assumption of a Latin Hypercube Design will 
not necessarily fit so other experimental designs need to be substituted.   

6 CONCLUSIONS  

This paper addresses the problem of metamodeling of time series data that naturally occur in financial 
simulations.  A general approach is presented, which is also suitable to other system domains yielding 
time series outputs.  We provide a procedure generating a single-valued Figure of Merit for time series 
outputs that employs metamodeling and an MAV model that can be recalibrated under different users of 
the simulation(s).  This mapping enables real-time analysis and analysis capabilities that can be easily dis-
tributed amongst multiple stakeholders at play. 

The success of this study lays down the framework for further research.  It will  be important to fur-
ther investigate and identify the time series simulation characteristics where this approach is applicable.  
Moreover, the next step in this research is to see if single hidden layer can be successful across a wider 
range of simulations and under simulations consisting of both singled-valued and time series input pa-
rameters.  In addition, further studies into applying heuristic search procedures, such as Evolutionary Al-
gorithms and Genetic Algorithms to locate effective Neural Network structures will be valuable. 
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