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ABSTRACT

We create the first computationally tractable Bayesian statistical model for learning unknown correlations
among estimated alternatives in fully sequential ranking and selection. Although correlations allow us to
extract more information from each individual simulation, the correlation structure is itself unknown, and we
face the additional challenge of simultaneously learning the unknown values and unknown correlations from
simulation. We derive a Bayesian procedure that allocates simulations based on the value of information,
thus exploiting the correlation structure and anticipating future changes to our beliefs about the correlations.
We test the model and algorithm in a simulation study motivated by the problem of optimal wind farm
placement, and obtain encouraging empirical results.

1 INTRODUCTION

Ranking and selection (R&S) deals with the problem of selecting the best of K design alternatives. The mean
performance values of these alternatives are unknown, but can be estimated through sequential simulation.
Classical ranking and selection create independent estimates of each mean value, and use these estimates
to allocate simulation budget between alternatives. However, in many applications, the performance values
are naturally correlated, in a way that is itself difficult to estimate.

As a motivating example, consider the problem of choosing a location for a new wind farm. We have
a number of candidate locations in a certain region, and we have access to historical data (Cosgrove et al.
2003) about the wind speeds at these different locations. Wind speeds are known to be volatile, however,
and energy output also depends on a variety of other factors such as pressure gradient, frictional forces,
and Coriolis effect, so we would like to perform an additional investigation of several locations before we
commit to one of them. Suppose that we can estimate the energy output at a given location using a simulator
that models the physics of the problem with stochastic wind speeds. The output at different locations will
be highly correlated. However, the correlation between two locations is not a simple function of physical
distance, but also depends on other factors such as wind currents and the topography of the region.

A new and difficult problem arises. Correlation should work to our advantage: simulating one location
should also provide information about similar locations. However, we do not know exactly which locations
are “similar.” Our goal is to find the location with the highest mean performance value, exactly as in
the classic ranking and selection framework, but the task is complicated by the presence of unknown
correlations that have to be learned together with the means. The problem of unknown correlations has
received almost no attention in the literature to date. Previous work on correlated R&S has dealt almost
exclusively with known correlation structures or with correlations arising from common random numbers.

Classical R&S uses frequentist statistics to make decisions; see Bechhofer et al. (1995) for an overview
of such methods. Such procedures often have the objective (known as the indifference-zone criterion) of
ensuring that the best alternative is selected with a certain probability. Numerous surveys and tutorials on
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indifference-zone selection are available, including Kim and Nelson (2006), Hong and Nelson (2009) and
Kim (2013).

A different approach to the same problem uses Bayesian statistics to express the decision-maker’s belief
about the unknown values. The procedures then make decisions by trading off the estimated value of an
alternative against the decision-maker’s uncertainty about this estimate. This school of thought, known
variously as “value of information” or “knowledge gradient” procedures, goes back to Gupta and Miescke
(1996). Chick (2006) surveys the Bayesian approach; see Chick et al. (2010) for an example of more
recent work. The method of optimal computing budget allocation (see Chen et al. 2008, or the monograph
by Chen and Lee 2010) can also be included in this category, as it allows for Bayesian beliefs. Powell and
Ryzhov (2012) provides an up-to-date survey of Bayesian learning techniques.

Correlations have been addressed to some extent in the literature. Most such studies assume that
correlations are induced by common random numbers inside the simulator; see e.g., Yang and Nelson
(1991) or Nelson and Matejcik (1995). Recent work in the Bayesian setting (Fu et al. 2007; Frazier et al.
2009) allows the decision-maker to have correlated beliefs, so that a single simulation provides information
about multiple alternatives. In applications, correlated beliefs significantly improve performance and enable
us to solve very large problems (even problems with continuous decision spaces, as in Scott et al. 2010). Yet,
there has been almost no work on Bayesian R&S with unknown correlation structures. To our knowledge,
Chick and Inoue (2001) is the only work of this kind in the simulation literature.

This lack of attention may be due to the difficulty of creating a computationally tractable Bayesian
statistical model for learning unknown correlations from observations of individual alternatives. The
normal-Wishart distribution is a standard conjugate learning model for situations where each alternative can
be sampled simultaneously; however, in our setting, we observe only one alternative at a time. In statistics,
this is known as a “missing-data” problem, since we are trying to estimate a multivariate distribution from
scalar observations. Statisticians have made a number of attempts to derive conjugate prior distributions for
learning models with missing data; examples include Kadane and Trader (1988), Dominici et al. (2000), or
a recent work by Triantafyllopoulos (2008). However, most of these models present serious computational
difficulties in an R&S setting. Chick and Inoue (2001) uses a tractable prior, but limits decisions to a very
particular structure (first screening out some alternatives, then allocating simulations equally among the
rest).

We present what we believe to be the first work to address this problem from an R&S standpoint.
We create a new Bayesian model for simultaneously learning unknown means and unknown correlation
structures on the basis of scalar observations. Although our prior is not exactly conjugate, we create an
optimal approximation of conjugacy by minimizing the Kullback-Leibler (KL) divergence between the true
posterior and the normal-Wishart distribution (a technique known as density projection). We then derive
a new value of information procedure for this new problem setting that requires no more computational
effort than an existing procedure for known correlation structures. This paper summarizes our work on
this problem and presents simulation experiments motivated by the wind farm placement problem. The
numerical results demonstrate that the new procedure is very promising.

This paper is organized as follows. Section 2 describes the problem of R&S with unknown correlation
structures and presents our Bayesian learning model. Section 3 introduces the KG policy for choosing
simulations and summarizes our study of its properties. Section 4 describes our experiments. Finally, we
conclude the paper in Section 5.

2 LEARNING UNKNOWN CORRELATION STRUCTURES

We summarize the model and give a sketch of the derivation; the full details for all the results presented
in this section can be found in Qu et al. (2012).

Let {1,2, · · · ,K} be a set of alternatives. Let Ŷ be a multivariate normal random vector with mean µµµ

and covariance matrix ΣΣΣ. We assume that ΣΣΣ is invertible and define R = ΣΣΣ
−1 to be the precision matrix of

Ŷ. The vector Ŷ describes the behavior of K alternatives, all observed concurrently. Both µµµ and R are
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unknown to us, and our goal is to discover the alternative x with the largest underlying mean µx. Let ŷx be
a scalar random variable following the marginal distribution of the xth component of Ŷ. We view ŷx as the
output of a stochastic simulation of the behavior of the xth alternative. The sampling distribution given µµµ

and R is univariate normal with probability density function

p(ŷx|µµµ,R) ∝
∣∣e′xR−1ex

∣∣− 1
2 exp

{
−1

2
(ŷx−µx)

′(e′xR−1ex)
−1(ŷx−µx)

}
, (1)

where ex = (0, . . . ,1, . . . ,0) is a K×1 vector, with 1 at the xth component, and 0 at others. Here the prime
denotes transpose. We write (1) in terms of the kernel of the probability density, omitting a normalizing
constant.

Correlations between alternatives are incorporated into the non-diagonal precision matrix R. Therefore,
it is logical to suppose that a single observation ŷx should also provide some information about other
alternatives x′ 6= x that are correlated with x. Unfortunately, the exact correlation structure is unknown, so
we do not know how much extra information is provided.

2.1 Learning Model

We adopt the Bayesian view, where the unknown µµµ and R are viewed as a random vector and a random
matrix respectively. Their distribution represents the decision-maker’s prior beliefs about the unknown
quantities. We assume that

µµµ|R∼NK(θθθ ,qR), R∼WK(b,B).

This notation means that R is a random matrix following a Wishart distribution, whereas µµµ is multivariate
normal conditional on R. The Wishart distribution (see e.g., Gupta and Nagar 2000 for a detailed discussion)
is parametrized by a scalar b and a K×K matrix B, with the density

p(R) =
1

Z(b,B)
|R|

b−K−1
2 exp

{
−1

2
tr(BR)

}
,

where

Z(b,B) = π
K(K−1)

4

∣∣∣∣B2
∣∣∣∣− b

2 K

∏
i=1

Γ

(
b+1− i

2

)
is a normalization constant. Therefore the joint prior distribution of µµµ and R is

p(µµµ,R) =
1

Z(b,B)
|R|

b−K−1
2 exp

{
−1

2
tr(BR)

}( q
2π

)K
2 |R|

1
2 exp

{
−q

2
(µµµ−θθθ)′R(µµµ−θθθ)

}
,

where the vector θθθ and scalar q are additional parameters. If we could observe the entire vector Ŷ∼NK(µµµ,R),
standard results from Bayesian analysis (DeGroot 2004) tell us that the posterior density

p(µµµ,R|Ŷ) =
p(Ŷ|µµµ,R)p(µµµ,R)∫∫

p(Ŷ|µµµ,R)p(µµµ,R)dµµµdR

would also be a normal-Wishart distribution with parameters

q∗ = q+1, (2)

b∗ = b+1, (3)

θθθ
∗ =

qθθθ +1
q+1

, (4)

B∗ = B+
q

q+1
(θθθ − Ŷ)(θθθ − Ŷ)′. (5)
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This property is known as conjugacy of the normal-Wishart prior and the normal sampling distribution.
Now suppose we sample from alternative x only (as is common in fully sequential R&S), collecting

observation ŷx ∼N (µx,e′xR−1ex). Applying Bayes’ rule, the joint posterior distribution of µµµ and R, given
the observation ŷx, can be written as

p(µµµ,R|ŷx) ∝
1

Z(b,B)
|R|

b−K−1
2 exp

{
−1

2
tr(BR)

}( q
2π

)K
2

· |R|
1
2 exp

{
−q

2
(µµµ−θθθ)′R(µµµ−θθθ)

}
(2πR−1)

− 1
2

xx exp
{
−1

2
(R−1)−1

xx (ŷx−µx)
2
}
. (6)

Factoring the distribution in (6) into the conditional distribution of µµµ given R and the marginal distribution
of R, we observe that the conditional distribution of µµµ given R is a multivariate normal distribution, but
the marginal distribution of R is no longer a Wishart distribution.

The distribution in (6) presents computational difficulties. If we can no longer observe the entire vector
Ŷ, the conjugacy property is lost. The non-conjugacy of our prior distribution makes it difficult to develop
sequential simulation procedures, which rely on our ability to compactly represent our uncertainty with a
small number of parameters. Instead of working with (6) directly, we force conjugacy with the density
projection technique. We replace the posterior in (6) by a normal-Wishart distribution whose parameters are
chosen to resemble the true posterior as closely as possible, in the sense of minimizing the Kullback-Leibler
(KL) divergence.

Let ξ (µµµ,R) be a distribution from the normal-Wishart family such that

µµµ|R∼Nk(θθθ
∗,q∗R), R∼WK(b∗,B∗).

Define D(ξ |p) to be the Kullback-Leibler (KL) divergence between p(µµµ,R|ŷx) and ξ (µµµ,R), which is
given by

D(ξ |p) = Eξ

(
log

ξ (µµµ,R)

p(µµµ,R|yx)

)
, (7)

where Eξ [·] is the expectation with respect to ξ (µµµ,R). This quantity is used to measure the “distance”
between the distributions ξ and p. Lower KL divergence suggests that there is more similarity between
the two distributions. We wish to find

(q∗,b∗,θθθ ∗,B∗) = argminEξ [D(ξ |p)] ,

the set of parameters that project (according to KL divergence) the normal-Wishart distribution on the true
posterior in (6).
Proposition 1 The KL divergence D(ξ |p) defined in (7) can be expressed as

D(ξ |p) =b∗−b
2

(
− log |B∗|+

K

∑
i=1

ψ

(
b∗− i+1

2

))
− b∗K

2
+

b∗

2
tr
(
B(B∗)−1)

+ log
Z(b,B)

Z(b∗,B∗)
+

1
2

[
K log

q∗

q
+K

q
q∗

+q(θθθ −θθθ
∗)′b∗(B∗)−1(θθθ −θθθ

∗)

]
+

1
2

logB∗xx−
1
2

ψ

(
b∗−K +1

2

)
+

1
2q∗

+
1
2
(ŷx−θ

∗
x )

2 b∗−K +1
B∗xx

+C,

where ψ(x) = d lnΓ(x)/dx is the digamma function and C is some constant.
Using Proposition 1, we summarize the results in the following theorem.
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Theorem 2 The normal-Wishart distribution that minimizes the KL divergence D(ξ |p) defined in (7) has
the parameters

q∗ = q+
1
K
, (8)

b∗ = b+∆b, (9)

θθθ
∗ =

(
qb∗(B∗)−1 +

b∗−K +1
e′xB∗ex

exe′x

)−1(
qb∗(B∗)−1

θθθ +
b∗−K +1

e′xB∗ex
ŷxex

)
, (10)

B∗ = B+
∆b
b

B+

(
b∗

b+1

)(
q

qb∗
b∗−K+1 +1

(ŷx−θx)
2

B2
xx

− 1
bBxx

)
Bexe′xB. (11)

Using the Sherman-Morrison-Woodbury formula (see e.g., Golub and Van Loan 1996), we can rewrite
(10) without inverse matrices as

θθθ
∗ = θθθ +

ŷx−θx
qb∗

b∗−K+1 Bxx +Bxx
Bex. (12)

The most crucial aspect of (12) is that a single scalar observation is now used to update the entire
posterior mean vector through the matrix B. Similar behavior occurs in the Kalman filter-like update used
by Frazier et al. (2009) in the case of known correlation structures. In that setting, the update incorporates
both the variance of the current belief and the known variance of the observations. However, when the
correlation structure is unknown, the matrix B is used to estimate both variances.

The parameter q in the prior distribution is not a prior sample size; it is intended to be a reflection of
prior precision relative to the sample size that is tunable by the researcher or practitioner to reflect prior
confidence. It increases by 1/K, analogously to the result for complete observations in (2), where a single
vector sample increases q by 1. When we only sample from one alternative, the confidence parameter
should be increased by 1/K.

The parameter b is also increased by 1 when we have complete observations. However, when we
sample from only one alternative, the increment ∆b actually depends on (q,b, ŷx,θx,Bxx). The quantity ∆b
does not have a closed-form expression, but can easily be obtained numerically via a bisection procedure
on the interval [0,1]. However, we have observed in our experiments that the optimal values of ∆b are
smaller than 1/K and approach 1/K asymptotically over time.

2.2 Predictive Distribution

The predictive distribution of ŷx represents the decision-maker’s beliefs about the next observation given the
prior distribution on the unknown parameters. In Section 3, we introduce a policy that uses the predictive
distribution to look ahead to the outcome of a simulation decision. In preparation for this discussion, we
now summarize the predictive distribution for the normal-Wishart model.

We provide the definition of the multivariate t distribution for completeness (Kotz and Nadarajah 2004).
Definition 1 A p-dimensional random vector X = (X1, . . . ,Xp) is said to have the p-variate t distribution
with degrees of freedom ν , mean vector µµµ , and correlation matrix R if its joint pdf is given by

f (x) =
Γ((ν + p)/2)

(πν)p/2Γ(ν/2)|R|1/2

[
1+

1
ν
(x−µµµ)′R−1(x−µµµ)

](ν+p)/2

.

The predictive distribution of ŷx follows from the following two lemmas.
Lemma 3 The predictive distribution of a complete observation Ŷ is a multivariate t distribution with
b−K +1 degrees of freedom, mean vector θθθ and correlation matrix (q+1)B/q(b−K +1).
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Lemma 4 The predictive distribution of ŷx is

ŷx ∼ t
(

b−K +1,θx,
q(b−K +1)
(q+1)Bxx

)
, (13)

which is a univariate Student’s t-distribution with b−K + 1 degrees of freedom, mean θx and variance
(q+1)Bxx/q(b−K−1).

Using the predictive distribution found in (13), we can derive another expression for the updating
equation of θθθ in (12). Define

T =
ŷx−θx(

q+1
q(b−K+1)Bxx

)1/2 ,

s̃(B,x) =

(
q+1

q(b−K+1)

)1/2(
q(b+∆b)

b+∆b−K+1 +1
)

B1/2
xx

Bex.

Then, (12) can be rewritten as
θθθ
∗ = θθθ + s̃(B,x)T, (14)

where T has a Student’s t-distribution with b−K +1 degrees of freedom, mean 0 and scale parameter 1.

3 THE VALUE OF INFORMATION

Value of information procedures allocate the simulation budget by evaluating the potential of new observations
to improve the current estimate of the best value (see Chick 2006 for a survey). The information potential
is defined in terms of the expected difference in the estimated objective value before and after the next
observation occurs. We do not know exactly how an observation of alternative x will change our beliefs
about the best alternative, but we can compute an expectation over the predictive distribution in (14). In
this way, we can “look ahead” to the random outcome of the next observation, attempting to anticipate the
results before we see them. If we sample from alternative x in the nth stage and collect observation ŷn+1

x ,
the value of information is defined as

V (x) = En
[

max
i

θ
n+1
i | xn = x

]
−max

i
θ

n
i ,

where En is the conditional expectation taken with respect to F n, the σ - algebra generated by x0, ŷ1,x1,
ŷ2, . . . ,xn−1, ŷn, i.e., all decisions and observations before stage n.

Using (14), the expected value of information can be rewritten as

V (θθθ n, s̃(Bn,x),m) = En
[

max
i

θ
n
i + s̃(Bn,xn)Tm | xn = x

]
−max

i
θ

n
i , (15)

where V is defined by V (a,b,m) = E[max
i

ai + biTm]−max
i

ai, a and b are K× 1 vectors. The random

variable Tm follows a univariate Student’s t-distribution with degrees of freedom m, mean 0 and variance 1.
We introduce a fully sequential policy called the Projected Learning of Unknown Correlations with

Knowledge gradients (PLUCK). The PLUCK policy chooses its measurement decision by

XPLUCK,n ∈ argmax
x

V (θθθ n, s̃(Bn,x),m).

We now show how the value of information can be computed exactly.
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3.1 Computation of the Value of Information

Define a function h : R 7→ {1,2, . . . ,K} as

h(t) := max(argmax
i

ai +bit).

The function h tells us which alternative will appear to be the best given Tm = t. Instead of calculating
V (a,b,m) directly, we first rewrite ah(Tm)+bh(Tm)Tm as a telescoping sum,

ah(0)+bh(0)Tm +

[
h(Tm)−1

∑
i=h(0)

(ai+1−ai)+(bi+1−bi)Tm

]
+

[
h(0)−1

∑
i=h(Tm)

(ai−ai+1)+(bi−bi+1)Tm

]
.

Using standard techniques (see e.g., Frazier et al. 2009), we can find a non-decreasing sequence {ci}K
i=0

such that h(z) = i if and only if z ∈ [ci−1,ci). It follows that V (a,b,m) can be written as

V (a,b,m) =
K−1

∑
i=1

(bi+1−bi)E[(−|ci|+Tm)
+].

To compute this quantity, we need an expression for the tail expectation of a univariate Student’s t-
distribution. Let gm(·) and Gm(·) be the pdf and cdf, respectively, of a standard Student’s t-distribution
with m degrees of freedom. We proceed with the computation by rewriting E [(Tm−|ci|)+] as

E
[
(Tm−|ci|)+

]
= E(Tm ·1{Tm>|ci|})−|ci|(1−Gm(|ci|)).

It can be shown that

E(Tm ·1{Tm>|ci|}) =
m+ c2

i

m−1
gm(|ci|).

Therefore we can obtain a closed-form expression for the value of information as follows:

V (a,b,m) =
K−1

∑
i=1

(bi+1−bi)

(
m+ c2

i

m−1
gm(|ci|)−|ci|(1−Gm(|ci|))

)
. (16)

3.2 Monotonicity of the Value of Information

The value of information calculated in (16) depends on the degrees of freedom m of the Student’s t-
distribution. As the PLUCK policy collects information, m will increase. The following result shows that,
all else being equal, information is less valuable when m is larger. Since m = b−K + 1, the degrees of
freedom are directly related to the total amount of information we have collected thus far, represented by
b. In other words, the same information is less valuable when we have already accumulated many other
observations.
Theorem 5 For fixed K×1 vectors a and b, the value of information V (a,b,m) is a decreasing function
in the degrees of freedom parameter m.

We point out an interesting consequence of Theorem 5. If we take m→ ∞, the random variable Tm
converges weakly to a standard normal distribution. This is precisely what occurs when the correlation
structure is known: the value of information in (15) will be calculated using a normal random variable (see
Powell and Ryzhov 2012). It follows that, given the same set of beliefs about the means and covariances,
information will be more valuable when the correlation structure is unknown than when the latter is known.
To put it simply, we learn more from a single observation when we are learning both means and covariances.
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Table 1: Final opportunity cost and standard errors for the experiments.

Policies
Experiment Performance Measure PLUCK CKG Greedy LL

1 Opportunity Cost 0.0851 0.2192 0.1950 0.2657
Standard Errors 0.0036 0.0050 0.0049 0.0056

2 Opportunity Cost 0.0031 0.1037 0.1434 0.2424
Standard Errors 0.0026 0.0049 0.0061 0.0060

3 Opportunity Cost 0.0773 0.1430 0.2716 0.2402
Standard Errors 0.0027 0.0051 0.0053 0.0022

4 Opportunity Cost 0.0917 0.1254 0.1784 0.3501
Standard Errors 0.0038 0.0040 0.0039 0.0061

4 APPLICATION TO WIND FARM PLACEMENT

Within the context of the wind farm placement problem described earlier, we compare the performance of
the PLUCK policy with other learning policies. We use hourly wind speed data (Cosgrove et al. 2003)
across the United States with latitude and longitude resolution of 0.125 degrees. The data consist of two
components: the zonal component u (in the west-east direction) and the meridional component v (in the
north-south direction). Assuming for the purpose of this example that all the wind turbines can be placed
in the right direction, we focus on the magnitude of the wind speed, which is defined as

√
u2 + v2. The

objective is to select the location with the highest wind speed over a set of 64 locations.

4.1 Experiment Settings

We considered data from four regions across the United States: California, Texas, Iowa and Washington.
All regions have high wind capacity installed or high percentage of wind power generation in recent years.
For each of the four regions, we selected 64 different locations sitting on an 8×8 grid (area of the grid is
about 3500 square miles to 4500 square miles) within the region as alternatives for wind farm placement.

We used 1800 days of data to estimate the mean and covariance matrix of a multivariate normal
distribution. We then chose these fitted parameters to represent the “true” underlying sampling distribution. In
our experiments, individual observations were sampled by simulating from multivariate normal distributions
with the “true” parameter values. However, the policies were not allowed to see the “truth” when making
decisions. We considered four policies in the comparison: the PLUCK policy, the correlated KG (CKG)
policy in Frazier et al. (2009), a Greedy policy and the LL policy with linear loss in Chick and Inoue
(2001). We briefly explain the distinctions between these policies below.

Both PLUCK and CKG are designed to sample sequentially, with CKG assuming a known covariance
structure. The greedy policy is also sequential, choosing the alternative with the highest value of θθθ

n at time
step n and using our approximate normal-Wishart model to update the beliefs. By contrast, the LL policy
of Chick and Inoue (2001) first screens out a subset of alternatives, then allocates the simulation budget
equally among the rest, and measures them in batch. This structure allows a conjugate normal-Wishart
prior to be used, with the drawback that the policy often samples alternatives that do not provide a lot of
useful information.

4.2 Experimental Results

It is critical to collect information efficiently when the decision-maker’s prior beliefs are inaccurate or
misleading. To show that the PLUCK policy is particularly effective in such a situation, we used a small
number of data points to create a prior for which the location that appeared to be the best was quite different
from the true best location. We discuss this issue further below; for now, we note that each policy was
given a budget of N = 100 measurements to correct this initial error. Table 1 give the final opportunity
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(a) 64 locations from California (b) 64 locations from Texas

(c) 64 locations from Iowa (d) 64 locations from Washington

Figure 1: Averaged opportunity cost vs. the number of samples.

cost, which is defined as
Cπ = max

x
µx−µ(argmaxx θθθ

N
x )

after N measurements for each policy π , averaged over 1000 sample paths. Lower opportunity cost suggests
that a policy selects an alternative closer to the best. The PLUCK policy outperforms all other competing
policies by a statistically significant amount, while the correlated KG policy has smaller final opportunity
cost than the other two policies. The LL policy performs poorly in all four experiments, possibly because
the simulation budget is quite small relative to the number of alternatives.

Figure 1 shows how this performance measure changes as the number of samples N varies from 1 to
100. The bands indicate the mean performance measures plus or minus two standard errors. The LL policy
is omitted from these pictures because it allocates simulations in batch rather than sequentially, by dividing
them uniformly across any alternatives that were not screened out. The opportunity cost for PLUCK
tends to decrease over time. For CKG, there is a general tendency toward improvement; however, there is
also a sharp degradation in performance for every short time horizons. We conjecture that this behavior
arises because CKG assumes a known covariance structure. If the prior beliefs about the correlations are
inaccurate, this misdirects the way in which CKG incorporates new information into the posterior. A small
amount of information can thus make CKG produce even worse performance than what could be obtained
with just the prior.
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(a) Expected Improvement from Experiment 3 (b) Maximum Error from Experiment 3

Figure 2: Value of information and Maximum Error.

We also considered a different set of experiments in which results were averaged across multiple priors
constructed by small-sample bootstrapping from the wind speed data. Overall, we found that PLUCK still
outperformed the competition, with the caveat that all policies were more heavily affected by the initial
degradation in performance (the early iterations needed to get a handle on the true correlation structure).

We also make two interesting observations from the experimental results. Figure 2(a) shows the
logarithm of the value of information as computed by both PLUCK and CKG (for a particular experiment),

Figure 3: Contour map of different policies.
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while Figure 2(b) shows the maximum absolute difference between the posterior and true means for various
policies. Figure 2(a) shows that the value of information is much higher when we consider unknown
correlations, as suggested by Theorem 5. Figure 2(b) shows that the PLUCK policy does a better overall
job of estimating the true values.

Figure 3 gives contour maps of the true means, prior means and posterior means after 100 measurements
with four different policies. The number of times that each alternative is measured is also shown on the
contour maps (zeros are omitted). Red colors indicate higher values. We can see that the true best alternative
is in the upper-left corner, whereas the prior misdirects us toward bottom-center. After 100 measurements,
the PLUCK policy captures the general trend of the true values, whereas CKG is still stuck on beliefs that
resemble the prior. The LL policy comes closer to the true values, but its batch structure ends up allocating
many samples to alternatives that do not provide a lot of useful information.

5 CONCLUSION

We have presented the first computationally tractable statistical learning model for fully sequential ranking
and selection with unknown correlation structures. We have also derived a value of information procedure
that anticipates new information about both the true values and the true correlations when allocating
simulations. Previous work in this area has required known correlation structures, an assumption that is
likely to be violated in many applications. We believe that our work offers a useful way to tackle problems
with difficult correlation structures, and opens up new problem classes for Bayesian optimal learning.
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