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ABSTRACT 

In this paper, we introduce a simulation-based algorithm for solving the single-period Inventory Routing 
Problem (IRP) with stochastic demands.  Our approach, which combines simulation with heuristics, con-
siders different potential inventory policies for each customer, computes their associated inventory costs 
according to the expected demand in the period, and then estimates the marginal routing savings associat-
ed with each customer-policy entity.  That way, for each customer it is possible to rank each inventory 
policy by estimating its total costs, i.e., both inventory and routing costs.  Finally, a multi-start process is 
used to iteratively construct a set of promising solutions for the IRP.  At each iteration of this multi-start 
process, a new set of policies is selected by performing an asymmetric randomization on the list of policy 
ranks.  Some numerical experiments illustrate the potential of our approach. 

1 INTRODUCTION 

Today, one of the most important concepts in supply chain management is that of replacing sequential de-
cision making with global decision making, where all parties in the supply chain determine the best policy 
for the entire system. Inventory and transportation systems are good examples of sequential decision mak-
ing.  However, driven by business practices such as vendor managed inventory (VMI), integrated invento-
ry and transportation systems have received much recent attention (Kleywegt et al. 2004).  VMI is a sup-
ply chain centralized control initiative where the supplier is authorized to manage inventories of the 
retailers and to make decisions such as when and how much inventory to ship to the retailer.  VMI is seen 
as an effective means of managing inventory through the strategic use of technologies which enable the 
flow of information throughout the entire supply chain.  Despite the potential benefits, and probably due 
to its complexity, only a relatively small number of articles have analytically approached the issue of in-
tegrating decisions.  This issue is known in the literature as the Inventory Routing Problem or IRP 
(Campbell et al. 2002). Therefore, model formulations with exact or approximate solution procedures are 
still needed to assist with the widespread adoption of VMI and use of synchronized inventory and trans-
portation systems.  

In this paper, a hybrid approach is proposed. Our approach combines Monte Carlo simulation (MCS) 
with a multi-start asymmetric randomization of a classical routing heuristic.  We consider a single-period 

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 3114978-1-4673-4782-2/12/$31.00 ©2012 IEEE



Caceres-Cruz, Juan, Grasman, Bektas, and Faulin 
 

 

IRP consisting of multiple retailers with stochastic demands and a single distribution depot.  Since final 
demands at the retailer centers are assumed to be random variables, potential stock-outs are considered in 
our model.  In the centralized version of this problem that we are addressing, no assumption is made 
about the inventory policy at an individual retailer.  The distribution depot will analyze the inventory po-
sition of the retailers and make joint inventory and routing decisions that minimize the total cost to the 
system, which consists of treated individually retailers. 

Another aspect to notice is that most of the existing literature has considered the IRP as a long-term, 
multi-period problem (Campbell and Savelsbergh 2002).  This is especially the case when the final demands at the 
retailer centers are assumed to be deterministic.  However, we feel that it is also important to study the single-
period problem, particularly in those scenarios characterized by: (a) information and communication tools 
that are able to efficiently monitor and report retailers’ stock levels at the end of each period; and (b) ran-
dom demands with a high variability, which makes it difficult to forecast future inventory levels. 

The remainder of the article is structured as follows: Section 2 briefly describes the IRP with stochas-
tic demands and reviews some related work; Section 3 gives an overview explanation of our approach; 
Section 4 presents and discusses some numerical experiments that serve to both illustrate and validate our 
approach; and finally, Section 5 summarizes the main contributions and results of this work. 

2 THE IRP WITH STOCHASTIC DEMANDS AND RELATED WORK 

The IRP with stochastic demands, which is an NP-hard problem, can be described as follows: consider a 
Capacitated Vehicle Routing Problem (CVRP) with n nodes or retailing centers (RC), plus the depot.  
Each RC owns an inventory, which is managed by the central depot.  For each RC, the inventory level at 
the end of a period depends on the initial stock level and also on the end-clients’ demands during that pe-
riod.  These end-clients’ demands are stochastic in nature.  In our approach, we will assume that, for each 
RC, it has been possible to use historical data to model end-clients’ demands through a theoretical or em-
pirical probability distribution.  Notice that no particular assumption is made on the type of distribution 
used to model these demands.  Therefore, at the end of each period there might be some costs associated 
with inventory holding and inventory stock-outs.  These costs might be incorporated into the decision-
making process and integrated with (added to) the distribution or routing costs, which are usually based 
on traveling distances and/or times.  At the end of each period, inventory levels are registered by the RC 
and updated in the central depot, so that a new routing strategy is defined for the new period taking into 
account the new data.  Our goal is to minimize total expected costs (distribution plus inventory-related 
costs) in each single-period scenario. 

Some of the first work on the IRP with stochastic demands is due to Federgruen and Zipkin (1984).  
They address the single-period combined problem of “allocating a scarce resource available at some cen-
tral depot among several locations, each experiencing a random demand pattern”.  They propose a math-
ematical model and design a modified interchange heuristic as well as an exact algorithm to solve some 
randomly generated instances with up to 75 nodes.  In Bard et al. (1998), the authors study the IRP with 
satellite facilities (depots geographically scattered throughout the service area).  Interestingly, the authors 
use a randomized version of the classical Clarke and Wright Savings (CWS) heuristic (Clarke and Wright 
1964) to solve routing instances with up to 500 nodes in about two hours.  They show that this random-
ized heuristic outperforms other algorithms, including a Greedy Randomized Adaptive Search Procedure 
(GRASP).  The GRASP procedure consists in successive constructions of a greedy randomized solution 
and subsequent iterative improvements of it using local search procedures (Feo and Resende 1989, 1995).  
While the randomness process they propose is based on a uniform (symmetric) distribution, in this paper 
we make use of an asymmetric distribution.  Berman and Larson (2001) focus on the problem associated 
with the distribution of industrial gases to replenish customer tanks with random demands.  They propose 
four dynamic-programming algorithms for solving the associated problem.  In Jarugumilli et al. (2006), 
the authors make use of a modified version of the A* algorithm (originally used in path-finding in graphs) 
to solve the stochastic IRP with a single vehicle.  Hvattum et al. (2009) address the stochastic IRP with an 
infinite horizon as a Markov process.  They formulate a scenario tree in order to examine a finite horizon 
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as a good approximation to the infinite horizon model.  Again, since solving stochastic IRP cases with a 
Markov process is impractical for all but the smallest instances, they proposed to employ a GRASP heu-
ristic.  Finally, Bertazzi et al. (2011) undertake a stochastic IRP with stock-outs and a finite horizon.  
They assume an order-to-level policy i.e., “the quantity sent to each retailer is such that its inventory level 
reaches the maximum level”.  They present a dynamic programming model and propose a hybrid rollout 
algorithm.  The authors use a randomly generated set of instances with up to 50 nodes and 6 periods. 

The approach we present in this paper is similar to with some of the previous work, especially with 
those considering stochastic demands, stock-outs, and rollout periods.  However, our approach has some 
significant differences: (a) we consider several replenishment policies; (b) we use a hybrid algorithm 
combining simulation with a metaheuristic, which allows us to obtain ‘good’ solutions to large-size in-
stances in a reasonable time; (c) we promote the use of asymmetric randomization of heuristics; and (d) 
we propose a completely described set of instances (not a randomly generated one). 

3 AN OVERVIEW OF OUR APPROACH 

Our approach focuses on solving the single-period IRP with stochastic demands and possible stock-outs.  
In this context, we propose a hybrid approach which combines MCS with an efficient CVRP heuristic.  
MCS can be defined as a set of techniques that make use of random numbers and statistical distributions 
to solve certain stochastic and deterministic problems (Law 2007).  When properly combined with heuris-
tic techniques, MCS has proved to be extremely useful for solving stochastic VRPs (Juan et al. 2011a).  
Our approach is also based on the SR-GCWS-CS randomized algorithm proposed by Juan et al. (2011b) 
for solving the CVRP.  This algorithm makes use of a pseudo-geometric distribution to induce an asym-
metric randomization process into the CWS heuristic; and it also employs a memory-based local search.  

In this paper we consider five different service policies or inventory levels for each customer.  Specif-
ically, given a customer, we consider the following policies: (a) no refill for that customer; (b) refill up to 
one quarter of its capacity; (c) refill up to half of its capacity; (d) refill up to three quarters of its capacity; 
and (e) full refill. The flow diagram of our algorithm is depicted in Figure 1 and described next as a five-
step procedure.  In fact, our methodology could consider more intermediate policies if necessary, which 
makes it quite flexible.  Of course, considering more intermediate policies can lead to slightly better solu-
tions, but will also increase somewhat the computational effort.  Thus, for each combination of customer-
service policy, MCS is used to obtain estimates of the inventory costs associated with it – “including both 
surplus and shortage costs”.  As with any other approximate approach, this method is unlikely to produce 
an optimal solution, but it can produce near-optimal solutions in a reasonable amount of time. 

First, for each customer in the problem, the expected inventory costs associated with each eligible 
policy are estimated throughout by MCS.  Here, both potential surpluses and shortages (stock-outs) are 
considered for each of the refill policies described in the previous section.  In the second step of the pro-
cedure, we consider the worst-case scenario from a distribution point of view, i.e., all customers receive a 
full refill.  In this scenario, a fast heuristic is used to obtain a ‘good’ solution for the associated CVRP.  
This solution will provide an estimate of the total distribution costs under the full-refill policy.  In the 
third step, we estimate for each customer the routing “marginal savings”, i.e., the reduction in distribution 
costs associated with each non-full-refill policy.  In order to do this, a fast heuristic is used to solve a large 
set of CVRPs.  A fast heuristic should be employed here since this step requires us to solve one CVRP for 
each customer-policy combination, i.e., for each customer and for each non-full-refill policy.  Once these 
marginal costs have been estimated, for each customer an approximated value for the total costs associat-
ed with each eligible policy can be obtained by simply adding up estimated routing and inventory costs.  
Thus, for each customer, the associated eligible policies can be sorted from lower to higher total costs, 
thus defining a priority policy rank for each customer.  In the fourth step, the ‘top’ policy for each cus-
tomer (i.e., the one showing the lowest total cost) is selected, and a pseudo-optimal solution is obtained 
for the corresponding CVRP by using an efficient algorithm, e.g., the SR-GCWS-CS (Juan et al. 2011b).  
Finally, in the fifth step, a multi-start process is carried out. At each iteration of this multi-start process, a 
new policy is randomly selected for each customer and, in a similar way as in the previous step, a new 
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pseudo-optimal solution is obtained for the corresponding CVRP.  The best solution found so far is rec-
orded. Notice, however, that the random selection process uses an asymmetric distribution (like the geo-
metric).  With this, we aim at assigning more probabilities of being selected to those policies which are 
located at the top positions of each customer’s ranking of policies. Using a multi-start approach makes it 
difficult for the algorithm to get trapped in a local minimum. 

 

 
 

Figure 1. Flow diagram for our algorithm. 
 

4 NUMERICAL EXPERIMENTS 

In the CVRP literature, there exists a classical set of well-known benchmarks commonly used to test new 
CVRP algorithms.  However, this is not the case for the single-period IRP with stochastic demands and 
stock-outs.  For this reason, and with the goal of providing complete information about the set of bench-
marks employed so that other researchers can use them, we have developed our own set of data by gener-
alizing the well-known datasets A and B from the CVRP literature (Augerat et al. 1995).  These datasets 
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consist of 27 small- and medium-size test instances (available at http://www.branchandcut.org/VRP).  A 
natural generalization of these datasets has been carried out by using random demands instead of deter-
ministic ones.  So, for each instance, while we decided to keep all node coordinates and vehicle capaci-
ties, we changed di, the deterministic demand of customer i (for all i = 1, 2,…, n) to the probabilistic de-
mand Di with E[Di] = di. Since we use MCS, these random demands can follow any probability 
distribution having a finite mean.  For the numerical experiments of this paper, however, we will assume 
that Di follows a LogNormal distribution with E[Di] = di and Var[Di] = 0.25di. Other classical hypothe-
ses design the demand random variables as following a Normal distribution, but this assumption is not re-
alistic due to the fact that the Normal variable can take negative values which are not allowed to describe 
a demand. Regarding the inventory part of the problem, we will also make the following assumptions:  

a) For each customer i, its maximum inventory capacity is defined as maxi = 2di. As it usually hap-
pens in real-life, customers with higher expected demands will have higher inventory capacities. 

b) In correspondence with the distribution policies considered, the quantity that can be delivered to 
each customer, qi, can only take a discrete number of values, i.e., according to the policies de-
scribed above, qi can only take floating values in the set {0, 0.5di, di, 1.5di, 2di}. 

c) Trying to imitate a realistic scenario, in which it is likely that different customers will present dif-
ferent starting stock levels, the initial inventory level at customer i, Li, is assigned according to 
the following expression: 

 
0 if    is odd  and  a multiple of  3

0.5 if    is odd  and  not a multiple of 3

if    is even  and  a multiple of  4

1.5 if    is even  and  not a multiple of  4
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Finally, regarding the inventory costs, these must be of the same order of magnitude as the routing costs 
in order to reach a proper balance between those two costs. In fact, this helps to make sense of not serving 
some customers under certain conditions, e.g., high inventory levels and low stock-out costs.  In order to 
attain this goal, we have used the following expression to define the inventory costs, ICi, associated with 
each customer:  

 
if 0 (surplus)   

cost of a round trip from  to depot if 0 (shortage),
i i

i
i

surplus surplus
IC

i surplus

  
    

 
where surplusi = Li + qi – Di. Notice that λ represents the cost per unit of stock at the end of the period.  
In the numerical experiments, we have used a value of  λ = 0.01.  This value was chosen in order to bal-
ance routing and inventory costs in such a way that it might be not worthwhile to serve some of the cus-
tomers. Thus those nodes with a low probability of suffering a stock-out, or those with low penalty costs 
in case they suffer from a stock-out are being adequately considered in our approach. 

Our algorithm was implemented as a Java application and used to run the 27 instances described 
above on an Intel Xeon E5603 at 1.60 Ghz and 8 GB of RAM.  For each instance, a single run with a total 
maximum time of 3 minutes was employed.  Table 1 shows the results obtained in our experiments for 
the following policies: 

(a) Full-refill policy, i.e., all customers are served up to their maximum capacity. 
(b) Top policy, i.e., each customer is served according to the ‘best’ policy in its sorted priority list 

of policies (notice that this top policy could imply that the customer does not need to be served). 
(c) Asymmetrically-randomized policy, i.e., as explained in our approach, each customer is served 

according to a policy which has been asymmetric-randomly selected from its sorted policies list. 
Additionally, Table 1 also shows the percentage gaps between the solution obtained using each policy 
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and our best solution, i.e., the one obtained with the asymmetric-randomized process.  Positive gaps im-
ply that the total cost obtained with the asymmetric-randomized process is lower (and therefore better) 
than the total cost obtained with the alternative method. 
 
Table 1: Results for full-refill, top, and asymmetrically-randomized policies (λ = 0.01, max. computation time = 3 
minutes). 

 FULL-REFILL POLICY (1) TOP POLICY (2) 
ASYMMETRICALLY-

RANDOMIZED POLICY (3) GAPS 

Instance 
Routing 

Costs 
Inventory 

Costs 
Total 
Costs 

Routing
Costs

Inventory
Costs

Total 
Costs

Routing 
Costs

Inventory 
Costs

Total 
Costs (1)-(3) (2)-(3) 

A-n32-k5 981.38 4.72 986.10 600.08 24.12 624.21 547.49 50.66 598.15 64.86% 4.36%

A-n33-k5 805.34 4.62 809.96 421.17 41.70 462.87 421.17 41.70 462.87 74.99% 0.00%

A-n33-k6 841.43 5.72 847.15 504.88 27.20 532.08 503.92 23.49 527.41 60.62% 0.88%

A-n37-k5 751.56 5.66 757.22 437.12 26.53 463.65 427.67 32.49 460.15 64.56% 0.76%

A-n38-k5 797.92 5.53 803.45 529.83 18.60 548.44 529.83 18.60 548.44 46.50% 0.00%

A-n39-k6 940.61 5.74 946.35 491.57 47.61 539.18 491.57 47.61 539.18 75.52% 0.00%

A-n45-k6 1,102.03 6.15 1,108.18 628.52 33.07 661.60 628.52 33.07 661.60 67.50% 0.00%

A-n45-k7 1,423.45 7.15 1,430.60 683.32 52.95 736.27 683.32 52.95 736.27 94.30% 0.00%

A-n55-k9 1,372.01 8.66 1,380.67 688.91 61.03 749.94 688.91 61.03 749.94 84.10% 0.00%

A-n60-k9 1,683.88 8.90 1,692.78 765.50 78.11 843.60 765.50 78.11 843.60 100.66% 0.00%

A-n61-k9 1,146.35 9.15 1,155.50 559.50 51.32 610.82 559.50 51.32 610.82 89.17% 0.00%

A-n63-k9 1,941.07 9.32 1,950.40 952.33 72.16 1,024.49 952.33 72.16 1,024.49 90.38% 0.00%

A-n65-k9 1,372.32 9.83 1,382.16 672.13 62.72 734.86 672.13 62.72 734.86 88.09% 0.00%

A-n80-k10 2,153.31 10.65 2,163.96 1,019.82 148.77 1,168.59 1,019.82 148.77 1,168.59 85.18% 0.00%

B-n31-k5 807.06 4.27 811.33 495.18 12.66 507.84 453.40 34.50 487.89 66.29% 4.09%

B-n35-k5 1,179.77 5.49 1,185.27 713.53 18.87 732.40 532.69 48.76 581.45 103.85% 25.96%

B-n39-k5 652.67 6.05 658.72 357.73 18.35 376.08 357.73 18.35 376.08 75.15% 0.00%

B-n41-k6 931.99 5.87 937.86 536.08 24.35 560.43 510.57 35.99 546.56 71.59% 2.54%

B-n45-k5 866.29 6.55 872.84 432.14 32.88 465.03 432.14 32.88 465.03 87.70% 0.00%

B-n50-k7 891.43 6.34 897.76 480.60 33.68 514.28 480.60 33.68 514.28 74.57% 0.00%

B-n52-k7 926.11 7.06 933.17 458.30 45.18 503.48 458.30 45.18 503.48 85.34% 0.00%

B-n56-k7 761.51 7.09 768.60 434.08 20.74 454.82 434.08 20.74 454.82 68.99% 0.00%

B-n57-k9 1,940.14 8.36 1,948.50 1,136.54 39.62 1,176.17 1,066.85 84.92 1,151.77 69.18% 2.12%

B-n64-k9 1,070.40 9.54 1,079.94 604.24 31.42 635.66 604.24 31.42 635.66 69.89% 0.00%

B-n67-k10 1,311.06 10.09 1,321.16 701.14 52.95 754.09 701.14 52.95 754.09 75.20% 0.00%

B-n68-k9 1,541.41 9.59 1,551.00 735.64 67.35 803.00 735.64 67.35 803.00 93.15% 0.00%

B-n78-k10 1,423.15 9.99 1,433.14 764.51 56.54 821.05 764.51 56.54 821.05 74.55% 0.00%

Averages 1,170.95 7.34 1,178.29 622.39 44.46 666.85 608.28 49.55 657.83 79.12% 1.37%

 
From Table 1, it is clear that the best results are obtained using our asymmetric-randomization approach 
(average gap of almost 80% with respect to the full refill policy), i.e., using a different refill strategy for 
each node according to different factors such as distance from the depot, current inventory level, expected 
demand, demand variability, etc.  Notice also that using the top strategy for each node as proposed in an 
intermediate stage of our approach provides a competitive solution for most instances (average gap of 
1.37% with respect to our best solution).  However, using non-personalized refill strategies – “i.e., using 
the same refill strategy for all the customers as proposed in most existing articles” – is not a good meth-
odology since it results in considerably higher costs. 

Finally, Figure 2 illustrates two different routing solutions obtained with the two different refill poli-
cies proposed in our algorithm (‘top’ and ‘asymmetric-randomization’) for the A-n32-k5 instance.  
Squares (■) represent customers receiving a full-refill.  Diamonds (♦) show customers receiving a ¾-
refill.  Triangles (▲) represent customers receiving a ½-refill.  Circles (●) represent customers receiving a 
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¼-refill.  Finally, stars (*) represent non-served customers.  On the left side, the top policy solution 
proposes to visit some nodes with a specific inventory refill strategies and a routing configuration.  While, 
on the right side, the asymmetrically-randomized policy applies some other inventory policies to some 
nodes.  Thus the subset of served nodes are distinct.  Both solutions propose three routes but the 
compositions of each is different thanks to the application of dissimilar refill policies to each node.  The 
asymmetrically-randomized policy allows to find a better and balanced configurations with individual 
policies for each node. 

 

 
 

Figure 2: Solutions obtained for A-n32-k5 using the ‘top’ refill and ‘asymmetrically-randomized’ refill 

policies. 

5 CONCLUSIONS 

In this paper, we have presented a hybrid approach for solving the Inventory Routing Problem with Sto-
chastic Demands (IRPSD) and with stock-outs.  The IRPSD is a challenging research area because it in-
troduces random behavior into a problem combining two steps of supply chain management –“inventory 
control and distribution planning”.  The proposed approach integrates Monte Carlo simulation into differ-
ent key phases of a heuristic approach.  One of the main contributions of our methodology is that it can 
consider personalized refill policies for each customer, which contributes to significantly to reduce total 
costs over other approaches using standard refill policies.  A set of benchmarks for the IRPSD were de-
veloped and a realistic expression to model inventory costs was also proposed.  A complete set of tests 
have been performed to illustrate the methodology and analyze its efficiency as well as its potential bene-
fits. 

ACKNOWLEDGMENTS 

This work has been partially supported by the Spanish Ministry of Science and Innovation (TRA2010-
21644-C03) and by the Ibero-American Programme for Science, Technology and Development 
(CYTED2010-511RT0419) in the context of the IN3-HAROSA (http://dpcs.uoc.edu) and Sustainable 
TransMET (Government of Navarre, Spain) research networks. 
 

3120



Caceres-Cruz, Juan, Grasman, Bektas, and Faulin 
 

 

REFERENCES 

Augerat, P., J.M. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi. 1995. “Computational 
Results with a Branch and Cut Code for the Capacitated Vehicle Routing Problem”. Research Report 
949-M, Université Joseph Fourier, Grenoble, France. 

Bard, J. F., L. Huang, P. Jaillet, and M. Dror. 1998. “A Decomposition Approach to the Inventory Rout-
ing Problem with Satellite Facilities”. Transportation Science 32:189–203. 

Berman, O., and R. C. Larson. 2001. “Deliveries in an Inventory/Routing Problem Using Stochastic Dy-
namic Programming”. Transportation Science 35(2):192–213. 

Bertazzi, L, A. Bosco, F. Guerriero, and D. Lagana. 2011. “A Stochastic Inventory Routing Problem with 
Stock-out”. Transportation Research Part C, (in press) doi: 10.1016/j.trc.2011.06.003. 

Campbell, A., L. W. Clarke, and M. Savelsbergh. 2002. “Inventory Routing in Practice”. In The Vehicle 
Routing Problem, SIAM Monographs on Discrete Mathematics and Applications, Edited by P. Toth 
and D. Vigo. Philadelphia. 

Clarke, G., and J. W. Wright. 1964. “Scheduling of Vehicles from a Central Depot to a Number of Deliv-
ery points”. Operations Research 12:568–581. 

Federgruen, A., and P. Zipkin. 1984. “A Combined Vehicle Routing and Inventory Allocation Problem”. 
Operations Research 32:1019–1036. 

Feo, T.A. and Resende, M.G.C. 1989. “A probabilistic heuristic for a computationally difficult set cover-
ing problem”. Operations Research Letters, 8:67–71. 

Feo, T.A. and Resende, M.G.C. 1995. “Greedy randomized adaptive search procedures”. Journal of 
Global Optimization, 6:109–133, 1995. 

Golden, B., S. Raghavan, and E. Wasil. 2008. The Vehicle Routing Problem: Latest Advances and New 
Challenges. Springer, New York. 

Hvattum, L. M., A. Løkketangen, and G. Laporte. 2009. “Scenario Tree Based Heuristics for Stochastic 
Inventory Routing Problems”. INFORMS Journal on Computing 21(2):268–285. 

Jarugumilli, S., S.E. Grasman, and S. Ramakrishnan. 2006. “A Simulation Framework for Real-Time 
Management and Control of Inventory Routing Decisions”. In Proceedings of the 2006 Winter Simu-
lation Conference. Edited by L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. 
M. Fujimoto, 1485–1492. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, 
Inc. 

Juan, A., J. Faulin, S. Grasman, D. Riera, J. Marull, and C. Mendez. 2011a. “Using Safety Stocks and 
Simulation to Solve the Vehicle Routing Problem with Stochastic Demands”. Transportation Re-
search Part C 19:751–765. 

Juan, A., J. Faulin, J. Jorba, D. Riera, D. Masip, and B. Barrios, 2011b. “On the Use of Monte Carlo Sim-
ulation, Cache and Splitting Techniques to Improve the Clarke and Wright Savings Heuristics”. 
Journal of the Operational Research Society, 62(6):1085–1097. 

Kleywegt, A. J., V. S. Nori, and M. W. Savelsbergh. 2004. “Dynamic Programming Approximations for a 
Stochastic Inventory Routing Problem”. Transportation Science 38(1):42–70. 

Law, A. 2007. Simulation Modeling and Analysis. 4th edition. McGraw-Hill: Boston. 

AUTHOR BIOGRAPHIES 

JOSE CACERES-CRUZ is a Ph.D. student of the Information and Knowledge Society Doctoral Pro-
gramme in the Open University of Catalonia.  He holds a Specialization on Information Systems from the 
Central University of Venezuela and a Computer Engineering degree from the Simón Bolívar University.  
His main research interests are related to optimization of vehicle routing on realistic scenarios, and simu-
lation solutions.  His email address is jcaceresc@uoc.edu. 
 

3121



Caceres-Cruz, Juan, Grasman, Bektas, and Faulin 
 

 

ANGEL A. JUAN is an Associate Professor of Applied Optimization and Simulation in the Computer 
Science Department at the IN3-Open University of Catalonia (Barcelona, Spain).  Dr. Juan holds a Ph.D. 
in Applied Computational Mathematics, an M.S. in Information Systems and Technology, and an M.S. in 
Applied Mathematics.  His research interests include Applied Optimization and Randomized Algorithms.  
He has published over 100 peer-reviewed papers in international journals, books, and proceedings.  Cur-
rently, he is the coordinator of the CYTED-IN3-HAROSA@IB Network and an editorial board member 
of both the Int. J. of Data Analysis Techniques and Strategies and the Int. J. of Information Systems and 
Social Change.  His e-mail is ajuanp@gmail.com and his web page is http://ajuanp.wordpress.com. 
 
SCOTT GRASMAN is a Full Professor and Department Head of Industrial and Systems Engineering at 
Rochester Institute of Technology. Dr. Grasman received his B.S., M.S., and Ph.D. degrees in Industrial 
and Operations Engineering from the University of Michigan.  His primary research interests relate to the 
application of quantitative models to manufacturing and service systems, focusing on the design and de-
velopment of supply chains and logistics.  His e-mail address is segeie@rit.edu. 
 
TOLGA BEKTAS is a Reader in Management Science at the University of Southampton and Director of 
M.S. Business Analytics and Management Sciences and M.S. Management Science and Finance at the 
Southampton Management School.  He holds B.S., M.S., and Ph.D. degrees in Industrial Engineering 
with postdoctoral research experience at the University of Montreal.  His research interests are in discrete 
optimisation with applications to vehicle routing, service network design, and freight transportation and 
logistics.  He is an Editor of OR Insight and an Associate Editor of Computers and Operations Research.  
His publications have appeared in journals such as Transportation Research Part B, Transportation Sci-
ence, Networks, European Journal of Operational Research, International Journal of Production Re-
search, Omega, and the Journal of the Operational Research Society.  His e-mail is t.bektas@soton.ac.uk. 
 
JAVIER FAULIN is a Professor of Statistics and Operations Research at the Public University of Na-
varre (Pamplona, Spain).  He holds a PhD in Economics, a MS in Operations Management, Logistics and 
Transportation and a MS in Applied Mathematics.  His research interests include logistics, vehicle routing 
problems and simulation modeling and analysis.  He is a member of INFORMS and EURO societies and 
an editorial board member of the International Journal of Applied Management Science and the Interna-
tional Journal of Operational Research and Information Systems. His e-mail address is 
javier.faulin@unavarra.es. 
 

3122


