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ABSTRACT

To address the challenge of automated performance benchmarking in virtualized cloud infrastructures, an
extensible and adaptable framework called CloudBench has been developed to conduct scalable, control-
lable, and repeatable experiments in such environments. This paper presents the hardware-in-the-loop
simulation technique used in CloudBench, which integrates an efficient discrete-event simulation with the
cloud infrastructure under test in a closed feedback control loop. The technique supports the decomposi-
tion of complex resource usage patterns and provides a mechanism for statistically multiplexing applica-
tion requests of varied characteristics to generate realistic and emergent behavior. It also exploits parallel-
ism at multiple levels to improve simulation efficiency, while maintaining temporal and causal
relationships with proper synchronization. Our experiments demonstrate that the proposed technique can
synthesize complex resource usage behavior for effective cloud performance benchmarking.

1 INTRODUCTION

Cloud computing has emerged as an attractive paradigm for on-demand provisioning of computational re-
sources to support a wide spectrum of applications (Armbrust et al. 2009). Virtualization is a key technol-
ogy used in cloud-enabled data centers for elastic scaling, high availability, and functional isolation be-
tween applications consolidated on a shared physical platform (Vaquero et al. 2009). Three primary cloud
service models are commonly adopted, namely Infrastructure as a Service (1aaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). Among them, laaS clouds, such as Amazon EC2 (Amazon
2012) and IBM SmartCloud (IBM 2012a), allocate hardware resources in units of virtual machines
(VMs), giving customers the illusion of having their own dedicated servers while allowing providers to
improve infrastructure efficiency at reduced cost. However, the intrinsic interplay between volatile re-
source demand, changing application behavior, and adaptive resource management strategies poses a sig-
nificant challenge to evaluating system and application performance (Iyer at al. 2009; Jayasinghe et al.
2011). Such evaluation is crucial not only for cloud providers who attempt to optimize resource utilization
in the absence of application specific information, but also for cloud customers who are interested in
comparing the service offerings from different providers (Li et al. 2010).

One approach to addressing this challenge is the use of simplified analytical models to estimate the
average performance measures based on the steady-state arrival rate of requests and their resource re-
quirements (Chen et al. 2007; Jung et al. 2008; Ghosh et al. 2010). Nevertheless, using analytical models
is often inadequate to study transient system behavior under unexpected conditions. Another approach is
through experimentation in real clouds, leading to the development of a few cloud benchmarking tools
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(Yigitbasi et al. 2009; Ye et al. 2010; Cooper et al. 2010). Despite their success, most of these tools lack
the capability of adaptive experimental control and statistical resource demand aggregation for complex
testing scenarios. In contrast to direct experimentation, full system simulation has also been employed to
evaluate performance in simulated clouds, which can be controlled precisely to reproduce test results
(Calheiros et al. 2011; Sriram and Cliff 2010; Ostermann, Plankensteiner, and Prodan 2011; Nunez et al.
2011). Whereas this approach is useful when the cloud infrastructure is not readily available, simulating
the cloud service architecture at full scale is an enormous (if not infeasible) undertaking, requiring diffi-
cult tradeoffs between precision and speed to obtain results in a reasonable time.

Hardware-in-the-loop (HIL) simulation is a methodology for hybrid system synthesis where selected
hardware and software components are immersed in a closed-loop virtual simulation environment (Ledin
1999). It provides a middle ground between physical prototyping and virtual simulation, combining the
advantages of both approaches. Using the HIL simulation methodology, CloudBench is built as an exten-
sible and adaptable framework at IBM Research for automated, scalable, controllable, and repeatable
benchmarking of cloud infrastructures. This paper presents the HIL simulation technique that underlies
the CloudBench capabilities. Specifically, the technique integrates an efficient discrete-event simulation
with real cloud infrastructures in a unified testing framework. A generic method is proposed to facilitate
the modeling of highly dynamic resource usage behavior. The requests from different types of applica-
tions are multiplexed statistically to emulate realistic resource demand fluctuation in IaaS clouds. The
technique also exploits the parallelism between and within application instances to improve execution ef-
ficiency and experiment scalability, while preserving temporal and causal relationships with proper syn-
chronization. In addition, a closed feedback loop is used to enhance experimental controllability and
adaptability. Our preliminary results show that the technique can effectively assist cloud performance
benchmarking by synthesizing complex resource usage patterns from straightforward configurations.

In the rest of the paper, Section 2 reviews related work. Section 3 introduces the CloudBench frame-
work. The HIL simulation technique is covered in Section 4, and the experimental results are discussed in
Section 5. Section 6 concludes the paper with suggested future research directions.

2 RELATED WORK

To evaluate performance in laaS clouds, different analytical methods have been attempted, such as queue-
ing models (Chen et al. 2007), Markov chains (Ghosh et al. 2010), and layered queueing networks (Jung
et al. 2008). Although these methods can be used to estimate the average performance and resource utili-
zation, they are incapable of describing short-lived, transient behavior when system conditions change
drastically (e.g., a sharp surge in application workloads or a sudden change in data access patterns).
Moreover, a substantial level of expertise is required to construct and solve sophisticated analytical mod-
els (Woodside, Franks, and Petriu 2007), especially for large scale cloud infrastructures.

Workload characterization and synthesis play an important role in capacity planning and stress testing
of virtualized data centers. For instance, a statistics-based approach was taken to generate workloads for
MapReduce applications by sampling empirical distributions extracted from production traces (Chen et al.
2010; Ganapathi et al. 2010). In (Bodik et al. 2010), the authors analyzed workload and data spikes in real
Web servers and used a closed-loop generator to synthesize such spiky loads. These studies offer useful
insight that can help system optimization. However, many of them focus only on certain applications,
without paying much attention to the volatility of resource usage as VMs come and go in [aaS clouds.

Direct experimentation in a real cloud environment (or a miniature prototype of it) is still the widely
accepted method for accurate performance assessment, as exemplified in various lines of research (see,
e.g., Jackson et al. 2010). As traditional benchmarks do not fit well the dynamic nature of elastic cloud
services (Binnig et al. 2009), a few cloud benchmarking tools were developed to achieve automated ex-
periment configuration, application workload generation, and on-line performance monitoring (Yigitbasi
et al. 2009; Ye et al. 2010; Cooper et al. 2010). Yet some tools restrict themselves to a specific aspect of
system performance, while others fall short of adaptive control and a reliable way of ensuring experiment
repeatability. These limitations hinder their usability in real test cases.
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Several full system simulators have been developed for cloud infrastructures, including CloudSim
(Calheiros et al. 2011), SPECI (Sriram and Cliff 2010), GroudSim (Ostermann, Plankensteiner, and
Prodan 2011), and iCanCloud (Nunez et al. 2011). Nonetheless, a cloud infrastructure typically includes
multiple geographically distributed data centers connected via wide area networks. Each data center can
have thousands of servers and storage systems networked together. This vast pool of physical resources is
managed by layers of interacting software components. Modeling such a large-scale and diverse distribut-
ed system in detail is an exceedingly complex task, which is compounded further by the fact that the de-
sign and implementation of most commercial clouds are opaque to outside modelers, making it difficult to
validate the models. Moreover, a full infrastructure simulation would suffer from an explosion of parame-
ters (Paxson and Floyd 1997), requiring a systematic sensitivity analysis to avoid misleading results
(Mills, Filliben, and Dabrowski 2011). To obtain performance data within a reasonable time, the simula-
tion would need to trade precision for speed, even with advanced parallel and distributed simulation tech-
niques. On the other hand, modeling and simulation (M&S) has proven to be an invaluable tool for study-
ing various aspects in cloud computing, from horizontal scaling (Idziorek 2010) to resource scheduling
(Assuncao, Costanzo, and Buyya 2009), just to name a few.

Traditionally used as a prototyping and validation technique for embedded systems, HIL simulation
has evolved as a methodology for synergistic system integration and optimization (Schludermann,
Kirchmair, and Vorderwinkler 2000; Papp, Dorrepaal, and Verburg 2003; Hosking and Sahin 2009). A
HIL simulation is a control system that combines a physical system under test (SUT) and a virtual simula-
tion environment within a bidirectional closed loop (Fathy et al. 2006). The simulated environment moni-
tors the state of the SUT via sensor signals and injects synthetically generated actuator commands into the
SUT to trigger operations at appropriate times (Ledin 1999). The use of synthetic command generation
and closed-loop feedback allows for the automation of experiments in a controllable, adaptable, and re-
peatable way. In this paper, we apply the principles of HIL simulation to cloud performance benchmark-
ing, using a discrete-event simulation (with plug-in statistical models) to drive experiments in the clouds.

3 THE CLOUDBENCH FRAMEWORK

This section briefly introduces the CloudBench framework, providing the necessary background for the
proposed HIL simulation technique. From a high-level view as shown in Figure 1, CloudBench consists
of two main components: a front-end and a back-end, which interact with each other in a closed feedback
loop. The former is built around a discrete-event simulation engine that generates synthetic resource us-
age patterns, whereas the latter carries out application benchmarking in a chosen cloud infrastructure.

Performance Operation status
visualization Performance data

- In-memory
‘ tatus Datastore
feedback

Di te-Event Cloud
Si 1s¢l:r:3. e i;en, Resource provisioning requests Infrastructures
Simulation Engine (Back-end)
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Figure 1: CloudBench overview

The front-end models and simulates the resource usage behavior in a cloud by submitting a sequence
of requests through the cloud’s public interface. Each request is represented as an event composed of a set
of ingredient operations for creating or destroying a specific type of application instance with one or
more constituent VMs. For example, an instance of the DayTrader online stock trading benchmark appli-
cation has three VMs (DayTrader 2012): a workload driver that mimics a variable number of clients by
issuing concurrent stock purchase and sell orders to a WebSphere application server (IBM 2012b), which
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processes the client orders using a DB2 database server (IBM 2012c). Note that the requests from the
front-end are actually served by actuators operating in the back-end; and the complete stack of applica-
tion VMs is allocated in the cloud. This enables the front-end to execute in a cloud- and application-
agnostic fashion, without being overwhelmed by the hardware and application configurations. Further-
more, as the clients of the application benchmarks are also hosted in the cloud, this approach enhances
experiment scalability by taking advantage of the scalability of the cloud infrastructure itself.

In response to a request, the back-end actuators perform the VM provisioning operations. Once the
VMs are up and running, the actuators trigger the necessary configuration operations, defined as scripts in
the VM image, to establish the connection between the VMs based on the application topology. The actu-
ators then start the application benchmark and monitor its performance in the cloud. At the end of each
operation, the execution status is sent back to the front-end using a publish/subscribe mechanism through
an in-memory datastore, such as Redis (Redis 2012). The status feedback is used by the front-end for a
variety of adaptive experimental controls, as will be discussed in Section 4. In the meantime, application
performance data (as well as system and guest VM performance measures, if available) are streamed into
the datastore for visualization in real time.

CloudBench supports the definition of resource pools, each with one or more VM containers. A VM
container can represent a single physical server or an EC2 availability zone with multiple data centers.
Different placement strategies, such as round-robin and random, can be applied when submitting VM
provisioning requests to the pools and containers. In this way, the benchmark application clients can run
at remote locations different from that of the application servers, enabling truly distributed benchmarking
experiments. Furthermore, it allows for the investigation of VM migration and load balancing algorithms
across VM containers in a prototype cloud testbed. The framework already includes a collection of macro
and micro application benchmarks, such as DayTrader (DayTrader 2012), LAMP (Linux/Apache/
MySQL/PHP stack), Hadoop (Apache 2012), Windows desktop applications, CoreMark (EEMBC 2012),
10zone (Norcott and Capps 2006), and Netperf (Jones 2012). It also provides an interface to incorporate
additional benchmarks. In the next section, we present the HIL simulation technique used in CloudBench.

4 HIL SIMULATION

4.1 Requirements

To drive large-scale cloud benchmarking experiments in real time, the front-end discrete-event simulation
needs to fulfill the following requirements.

e Synchronous advance of simulated time. Unlike a typical discrete-event simulation wherein the
(simulated) virtual time jumps immediately to the time stamp of the next event after processing
the current event, the front-end must pace the advance of virtual time in synchrony with the ad-
vance of real wallclock time. This is required so that the resource usage patterns appear realistic
to the physical cloud infrastructure under test.

e Asynchronous event processing. Provisioning a VM can take up to tens of minutes, while the
execution of an application benchmark can last hours to days to measure performance variations
under changing loads and across different time periods. Hence, the events should be processed
asynchronously in a parallel and distributed manner to avoid unnecessary blocking.

e Adaptive control. Individual VMs may fail during their lifetime, which could render an applica-
tion instance unusable. Moreover, a user may want to limit the number of active VMs to contain
experiment cost or to avoid running out of available resources. Based on the feedback from the
back-end, the front-end should be able to respond to such situations appropriately in order to, for
example, control event dispatch rate or clean up a failed application instance.

o Experiment replay. It is often desirable to regenerate exactly the same resource usage behavior
as observed in a previous experiment for evaluating alternative algorithms or comparing different
cloud configurations. Therefore, the front-end should preserve the events (and their attributes) in
an experiment to allow for deterministic replay later.
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4.2 Architecture

Figure 2 gives an architectural view of the HIL simulation, showing the main logical processes (LPs) and
the interactions between them. The front-end employs three types of LPs: a set of event generators (EGs),
an event dispatcher (ED), and a set of operation dispatchers (ODs). On the other hand, the back-end de-
fines one type of LPs (or actuators) for each type of benchmarking operation performed in a cloud infra-
structure under test (e.g., create or destroy a VM; define, execute, or undefine an application, and so
forth). While the ED runs continuously in an experiment, the other LPs can be spawned and ended dy-
namically as needed. Depending on the scalability requirement, the LPs can be implemented as physical
processes, threads, or a mix of them, which can be hosted on one or more physical or virtual machines.

Future Event List
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Processed Event List
(PEL) 14/

Front-end ; Back-end
1

Operation
dispatcher
(OD)
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infrastructure
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dispatcher
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Figure 2: HIL simulation architecture

At the front-end, events are loaded from trace files (static sources), or generated by EGs (dynamic
sources), or a combination of both. A static source may be derived from a cloud production trace with ar-
bitrary empirical distributions (e.g., event inter-arrival time and lifetime), while a dynamic source gener-
ates events using predefined parametric distributions that model the dynamics of a certain type of applica-
tion. The events within a source are kept in non-decreasing time stamp order, with a special stop event at
the end of the stream. Multiple streams of events from different sources are multiplexed into a centrally
managed future event list (FEL), which serves as a producer-consumer buffer between the EGs and the
ED. This multi-source statistical event multiplexing offers two advantages. First, it allows for the decom-
position of complex resource usage patterns, which would not be easily described using a monolithic ap-
proach, into more manageable and mathematically tractable components. Each component can be mod-
eled and validated separately, reducing the input modeling effort and promoting the reuse of validated
models. Secondly, the aggregation of individual components with varied characteristics facilitates the
study of emergent overall behavior, bringing the experiment condition closer to the reality in laaS clouds.

During an experiment, the ED retrieves events scheduled for the same time from the FEL and creates
a set of ODs (one per event) to process them concurrently, exploiting event-level parallelism between
simultaneous application requests. An OD in turn creates a set of actuators (one per operation) to execute
the event’s internal operations in parallel, exploring operation-level parallelism between independent ac-
tivities while maintaining the correct ordering of causally related operations. All events executed are ap-
pended into the processed event list (PEL), which is dumped incrementally into a trace file that can be
used for deterministic replay. The status feedback from the actuators is stored along with the events and
operations in the PEL, allowing for adaptive experimental control as will be discussed in Section 4.5.

4.3 Event Generation

An EG generates events using statistical models that describe the resource usage characteristics of a spe-
cific type of application. Although out of the scope of this paper, these statistical models can be con-
structed by mining the data collected from a production cloud, which is an active research area (e.g., Ga-
napathi et al. 2010). Alternatively, they can be provided by users to create synthetic test conditions.
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a. Creation Event Template b. Destruction Event Template
T, @ event {evAnno}
0 @ create VM $Sname; Stype Ssize Scontainer Splacement {opAnno}

Ta @ event {evAnno}

0 @ undefine APP SappName {opAnno}
0 @ create VM Snamey Stype Ssize Scontainer Splacement {opAnno} 1 (@ destroy VM $name; {opAnno}

1 @ define APP SappName SappType Sname,,...,namey {opAnno} _

2 (@ execute APP SappName SloadLevel $duration {opAnno} 1 @ destroy VM $namey {opAnno}

Figure 3: Event templates

As shown in Figure 3, an event has a composite structure with several internal operations needed to
create or destroy an application instance in the cloud. For each application instance, a pair of creation and
destruction events is generated using the event templates and subsequently inserted into the FEL. Based
on given distributions, the event time stamps represent the instance arrival time (T,) and departure time
(Ty) respectively, relative to the experiment start time. The internal operations of an event are grouped by
sequence numbers (shown as bold fields), which serve as a tie-breaking mechanism that indicates the
causal dependency between groups of operations within that event. Operations with the same sequence
number are independent and can be executed in parallel, whereas operations with a larger sequence num-
ber must wait until the preceding group is completed. Taken together, the time stamps and sequence num-
bers unambiguously determine the temporal and causal relations between the events and operations.

An operation is specified by a set of parameters (shown as italic fields), which are passed to back-end
actuators. For example, a VM creation operation uses five parameters: name, type, size, container, and
placement of the VM. An application instance is defined by its name and type, along with the names of its
constituent VMs. The load level and duration parameters tell an actuator how to vary application work-
load periodically during the execution. The VM names assigned in a creation event are used in the corre-
sponding destruction event to destroy the application instance properly. These template parameters are
filled in by an EG using predefined values or random numbers sampled from statistical distributions. Be-
sides, an event or operation is associated with an annotation (shown as underscored fields), which is a
key-value map for storing the status feedback updated by the actuators.

Figure 4 depicts the stream of events generated by an EG. The lifespan of an EG is configured by set-
ting its activation and end times (called activation by schedule). Alternatively, an EG can be spawned and
terminated dynamically according to specific conditions such as when a certain level of resource over-
commitment is reached in the cloud (called activation by condition). Instead of generating and inserting
events into the FEL well in advance, the EGs do so just in time when the time stamp of a creation event
becomes imminent, for several reasons. First, it allows the event insertions to be scattered naturally fol-
lowing the inter-arrival distributions, alleviating the contention when multiple EGs access the FEL at the
same time. Secondly, the FEL is kept relatively short as events are extracted by the ED shortly after inser-
tion, with lower overhead for event queue operations. Finally, it accelerates the deletion of any unpro-
cessed future events originated from an EG when the EG is terminated prematurely before its end time.

activation time; lifetime, end time;

| _; lifetime,
inter-arrivaly|  inter-arrival, .I- : .I
-

EG; ——— R ———— RO — e — ——————— - ——————1 STOP,

Experiment start time N .. . y s 0 . ) ) : time
(time 0) CJ‘;‘ J creation event from EG; D,}- ' destruction event from EG;

Figure 4: Event generation

4.4 Event Dispatching

In the simulation main loop given in Figure 5a, the ED checks the FEL periodically (a configurable poll-
ing interval A) to extract events with time stamps smaller than or equal to the current execution time, thus
synchronizing virtual event time with real wallclock time. An event with time stamp ¢ is guaranteed to be
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processed by the ED no later than wallclock time (¢ + 4). This polling interval should be chosen to strike a
balance: a small value improves the timeliness of event retrieval, but wasting ED cycles that could other-
wise be spent on event dispatching; whereas a large value increases execution efficiency, but at the cost of
reduced responsiveness. In practice, this interval is usually set to be a couple of seconds.

a. ED — Simulation Main Loop b. OD - Operation Dispatch Flowchart
Input: A (FEL polling interval)
1. while termination_flag == false do

Input: evidx (event index into PEL)

2. current_time = time elapsed since experiment start time 1. event = PEL[ev/dx] /fretrieve event from PEL

3. publish current time in datastore 2. opg = divide operations into groups of same sequence
4. next_time = minimum event time stamp in FEL 3. for each group in opg do

5. while current time < next_time do 4. for each op in group do //parallel dispatch

6. sleep(A) /fwait for next future events 5. spawn an actuator to execute op asynchronously
7. current_time = current_time + A 6. if op is of type “execute APP” then

8. publish current time in datastore 7. barrier = false

9.  end while 8. else

10. current_events = extract all current events from FEL 9. barrier = true

11. if current_events '= @ then 10. end if

12. append current_events to the end of PEL 11. end for each

13. sg = divide current_events into simultaneous groups 12.  if barrier == true then

14. for each group in sg do 13. wait for group completion /inter-group barrier
15. for each event in group do //parallel dispatch 14.  end if

16. spawn an OD to process event asynchronously 15. end for each

17. end for each

18. end for each

19. set termination_flag if the stop condition is met

20. endif

21. end while

Figure 5: A skeleton of event and operation dispatch algorithms

In addition, the ED’s current execution time, called ED time, is published to the datastore periodically
(line 3, 8). The ED time defines a moving lower bound on the time stamps of events that can be safely in-
serted into the FEL without causing causality errors during event processing. On the other side, an EG en-
sures that the future events to be inserted are always scheduled after the present ED time, regenerating the
events if necessary. This timing service is especially useful in large-scale distributed experiments where
the ED and EGs are hosted on different machines without a shared clock. The current events extracted
from the FEL are appended to the PEL and divided into simultaneous groups (line 12-13). For each
group, a set of ODs is spawned to process the simultaneous events in parallel (line 16). The simulation is
terminated when all the stop events are executed or when a user-specified stop time is reached (line 19).

As shown in Figure 5b, an OD retrieves the event scheduled for it from the PEL, dispatching groups
of operations with the same sequence number to concurrent actuators (line 5). Note that the actuator cre-
ated to execute/monitor an application instance is completely detached from the OD and continues to run
in the back-end until the instance is destroyed at departure time, while the actuators created for other
types of operations are joined by the OD when the operations are done, using a barrier to ensure causal
consistency between consecutive operation groups (line 12-14).

4.5 Experimental Control

The HIL simulation includes several mechanisms for adaptive experimental control, as follows.

e Parallelism control. The simulation achieves event-level parallelism by processing simultaneous
events concurrently. In a statistical sense, the number of simultaneous events increases with the
number of event sources, as multiple streams of events are merged in the FEL. To increase event
parallelism further, the front-end allows those events scheduled close enough with each other to
be considered as simultaneous, as long as the difference between their time stamps is below a
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predefined time tolerance threshold, exploiting the temporal uncertainty in the arrival and depar-
ture of application instances to improve simulation efficiency. This approach can find analogy in
other works (e.g., Fujimoto 1999; Loper and Fujimoto 2004). As the application instances have a
much longer lifetime than the threshold, the resulting perturbation is negligible. Furthermore, an
event is annotated with its actual dispatch time, which can be used as the effective time stamp of
the event in replay mode to ensure experiment repeatability. On the contrary, the front-end can al-
so put an upper bound on the number of simultaneous events processed at any time, enabling one
to effectively control the maximum degree of event parallelism in an experiment. This parallelism
control provides the adaptability needed to conduct experiments in clouds with restrictions on the
number of VMs that can be created in parallel at a time.

e Flow control. Before an actuator creates a VM, the request is filtered by an admission control
module at the back-end, as illustrated in Figure 2. This module keeps track of the number of VMs
currently active in the overall experiment and on a per VM container basis. The ED is informed
when these numbers reach predefined limits. Consequently, the ED starts to drop the creation and
destruction events of newly arrived application instances, while allowing the destruction events to
pass through for those instances that already existed. The dispatching of creation events is re-
sumed once some of the existing VMs depart the cloud. This flow control mechanism can help
contain cost for experiments in commercial clouds and prevent running out of resources in proto-
type cloud testbeds that do not have internal admission control capabilities.

¢ Rejection and Failure response. If an application instance fails in the cloud due to the rejection
or failure of some of its VMs, the event/operation status is updated based on feedback from the
actuators. Accordingly, the OD schedules a transient event to clean up any dangling VMs in that
rejected/failed application instance and deletes the original destruction event in the FEL. This has
the effect of moving the original destruction event to the present execution time. Purging the dan-
gling VMs allows resources to be released quickly, making room for new application instances
and reducing the experiment cost incurred.

e Replay control. Deterministic replay is achieved by loading the events processed in a previous
experiment directly from a static source without regenerating the random numbers. If a positive
tolerance threshold was used in the original experiment, it is reset to zero during replay to elimi-
nate the uncertainty in event time stamps. Based on the status of the events and their operations, a
replay can be controlled to create the exact conditions observed previously. Depending on the
purpose of the replay, for example, the events could be scheduled at their original time stamps or
at the recorded dispatch times. Those events dropped in the previous experiment would also be
dropped in the replay. Moreover, the front-end could inject specially synthesized events into the
cloud to reproduce the effect of previous VM rejections and failures.

5 EXPERIMENTAL RESULTS

The simulation engine was implemented in Python using multiprocessing. To demonstrate the front-end
capability of synthesizing resource usage patterns, experiments were conducted over a period of 10 hours
in a cloud testbed with three IBM BladeCenter HXS servers running Red Hat Enterprise Linux 6.2 KVM
hypervisors. The front-end and the Redis datastore were hosted on another server in the same chassis.
Each server has two Intel Xeon® E7-4800 processors, a S0GB solid state disk, and different amount of
memory (from 141GB to 283GB). These servers are connected by a 1GB dedicated Ethernet network.
The test case involved three types of synthetic applications of varied sizes (number of VMs per in-
stance), inter-arrival and lifetime distributions, and workload characteristics. All application instances
were created from a common VM image (1 virtual CPU, 192MB virtual memory, and 2GB virtual stor-
age), executing CoreMark and 10zone periodically in an infinite loop throughout its lifetime. Different
types of applications were instructed to pass different parameters to the benchmarks to maintain different
levels of CPU and disk I/O workload intensity. The experiment was first run in parallel event processing
mode, using one EG to generate instances for each type of application. Based on the event trace file ob-
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tained, the experiment was then replayed using the original event time stamps in sequential event pro-
cessing mode with only one OD. Both runs exploited the operation-level parallelism inherent within each
application instance. Table 1 summarizes the EG configuration used in the parallel processing mode.

Table 1: EG configuration (time unit: minute)

EG Instance | Activation | End Inter-arrival Lifetime Application
Name Size Time Time Distribution Distribution Workload
o [ o |0 [0 [ ool | asepien | owannto
el B 0 0O | (042 pras) (iotsos) | moderme disk 10
il B o Jow | PREE (1230.0-60) | intensive disk 10

Figure 6 shows the observed patterns, where the y-axis represents the number of active VMs and the
number of each type of application instances attained in the cloud testbed over time. During the ten-hour
period, there were 1088 VM creations and 980 VM destructions in the parallel run, whereas the sequential
run managed to create and destroy only 528 and 372 VMs respectively (or replaying the events scheduled
in the first 247 minutes in the trace file). It is clear that, all other conditions being equal, the parallel event
processing mode is able to achieve a much higher throughput than the sequential one (by a factor of 2.3 in
this test case), making it more suitable for larger-scale experiments. Moreover, the parallel mode can gen-
erate more complex and dynamic resource usage behavior with irregular spikes and valleys, as commonly
experienced in laaS clouds. A detailed validation of resource usage patterns in production cloud environ-
ments is beyond the scope of this paper and will be addressed elsewhere.

Parallel Event Execution Mode Sequential Event Execution Mode
250 250

200 /\Qiq 200 ML\/A‘
150 150 1 M/"V/
100 100

0 . . T T : T T ; T : . ? 0 T : - T - . T T T T T
0 50 100 150 200 250 300 350 400 450 500 550 600| 0 50 100 150 200 250 300 350 400 450 500 550 600)
Time Time
—— Active VMs —— EGI1 Instances —— EG2 Instances —— EG3 Instances ‘ (min)| |—— Active VMs —— EGI1 Instances —— EG2 Instances —— EG3 Instances‘ (min)

Figure 6. Patterns obtained in parallel and sequential event execution modes

The length of the FEL was monitored regularly during the parallel run. Thanks to the just-in-time
event insertion, the FEL was kept relatively short throughout the experiment with a maximum length of
155 and a time-weighted average length of 75.9 events. In terms of the aggregate memory usage across all
front-end processes, the sequential run consumed a maximum of 1.37GB, while the parallel run required a
maximum of 1.44GB memory (or a slight increase of 4.73%).

6 CONCLUSION AND FUTURE WORK

With the increasing adoption of the IaaS cloud service model, accurate evaluation of application and sys-
tem performance on such virtualized infrastructures has attracted considerable interest. This paper pre-
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sented the HIL simulation technique used in the CloudBench framework for automated benchmarking of
IaaS clouds in a scalable, controllable, and repeatable way. By using generic event templates, the tech-
nique integrates a cloud- and application-agnostic discrete-event simulation with the cloud infrastructure
under test within a closed feedback control loop. It supports the decomposition of complex resource usage
patterns into manageable components and provides a mechanism for statistical multiplexing of requests
from different types of applications to synthesize realistic and emergent behavior in an experiment. It also
exploits parallelism at multiple levels to improve simulation efficiency, while maintaining temporal and
causal relationships with proper synchronization. The experiments demonstrated that the technique can
synthesize complex resource usage patterns for effective cloud performance benchmarking.

As part of our future research, we plan to extend the technique to use fully distributed event manage-
ment for higher scalability and to model other resource management activities in laaS clouds, such as VM
migration and image capturing. We also aim to explore the CloudBench capabilities beyond the perfor-
mance benchmarking arena to orchestrate application deployment within and across cloud infrastructures
and to facilitate decision making in the design and implementation of cloud service architectures.
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