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ABSTRACT 

The analysis of production systems using discrete, event-based simulation is wide spread and generally 
accepted as a decision support technology. It aims either at the comparison of competitive system designs 
or the identification of a “best possible” parameter configuration of a simulation model. Here, combinato-
rial techniques of simulation and optimization methods support the user in finding optimal solutions, but 
typically result in long computation times, which often prohibits a practical application in industry. This 
paper presents a fast converging procedure as a combination of heuristic approaches, namely Particle 
Swarm Optimization and Genetic Algorithm, within a material flow simulation to close this gap. Our in-
tegrated implementation allows automated, distributed simulation runs for practical, complex production 
systems. First results show the proof of concept with a reference model and demonstrate the benefits of 
combinatorial and parallel processing. 

1 MOTIVATION 

Modern business computing, especially in the area of operations research, offers a wide variety of meth-
ods for complex problem solving for planning, scheduling and control of production and logistic process-
es. Those processes, which are to be either designed or improved, are typically projected to models and 
then optimized by the use of simulation and/or optimization technologies in order to improve decision 
variables and resulting key performance indicators under a given set of restrictions.  
 In simulation, this improvement is usually achieved by the iterative evaluation of multiple scenarios 
and their subsequent simulation results (Law and Kelton 2000). In the case of optimization, the optimal 
configuration is achieved by mathematical optimization algorithms or (meta-) heuristic approaches 
(Rardin and Ronald 1997). 
Due to the high computational demand of both iterative evaluation and mathematical optimization, specif-
ic procedures as a combination of both simulation and optimization were derived. They combine both ad-
vantages: an optimization algorithm can be used to automatically generate a specific model configuration, 
which can be evaluated by simulation runs (Fu 2002). Especially for simulation models with stochastic 
influence factors, which need a high amount of simulation runs, these procedures can lead to faster identi-
fication of improving model configurations than standard methods for the design of simulation experi-
ments (Fu 2002). 
 It remains a challenge to further improve the performance of finding a good solution with a high 
global quality, especially in the area of production. The given complexity of the underlying systems, and 
thereby the simulation model, is very high, so that the application of standard combinatorial approaches 
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of mathematical optimization and material flow simulation is infeasible for industrial applications due to 
high computation costs. 
 Our approach uses a combination of heuristics, Particle Swarm Optimization and a Genetic Algo-
rithm, that are employed in a distributed matter. We speed up computation through parallel processing 
and achieve fast convergence. Our implementation is integrated with the material flow simulator d³fact 
and manages initiation of nodes and data exchange between them. By using generic interfaces to d³fact, 
we are able to apply our method in a practical, industrial environment.  
 The paper presents in short the necessary state of the art in simulation based optimization and design 
of experiments in the following section. The conceptual approach of the procedure is presented in section 
3, followed by the prototypical implementation in the material flow simulation tool d³fact in section 4. 
The first evaluation results of the procedure are shown in section 5. The paper closes with an outlook on 
future work in this area. 

2 STATE OF THE ART 

The following section presents previous approaches regarding simulation based optimization as a design 
of experiment and using metaheuristics. 

2.1 Experimental Design 

Design of experiments (DOE) refers to the use of statistical techniques to create an efficient, systematic 
set of controlled experiments for collecting data in order to estimate relationships between independent 
and dependent variables through measurement. In the area of simulation, DOE is used for the systematic 
evaluation of simulation models in order to identify a set of model parameters, which leads to the desired 
simulation results. Each simulation run hereby evaluates a concrete set of parameters. Typically, the 
simulation models include stochastic influence factors, so that a single simulation run is not sufficient for 
the evaluation of the parameter set, and multiple simulation runs for each of the configuration sets are to 
be performed. Efficient procedures like 2k-factorial-Design (Banks et al. 2000), Plackett-Burman-
experiments as well as response-surface method (RSM) or evolutionary optimization (EVOP) (Fu 2002) 
are used to reduce the number of required simulation runs by determining parameter sets that will likely 
lead to a good result.  

2.2 Simulation-based Optimization 

Simulation-based optimization is an automated DOE method to find a set of globally optimal simulation 
parameters regarding a given optimization problem. It can be seen as a two stage method, as depicted in 
Figure 1. In each step, the optimization package outputs a set of simulation parameters that are to be eval-
uated by the simulation. Based on previous results, the next set of parameters are computed until a stop-
ping criteria is satisfied.  
 Simulation-based optimization can be seen as a movement through the search space of simulation pa-
rameters, where the simulation maps a point in that space to a point in the space of performance indica-
tors. The optimization therefore needs to ensure that the found solution is not just a local optimum, and it 
needs to find a good solution (optimality is generally not guaranteed) in a small number of simulation 
runs, i.e. converge quickly (Karibian and Olafsson 2007). Many different types of optimization strategies 
exist (see (Hachicha et al. 2010) for a classification approach) and have also partially been implemented 
in commercially available tools (Fu 2002) (Law and Kelton 2000). 
 We focus on metaheuristics, specifically Genetic Algorithms (Russell and Norvig 2009) and Particle 
Swarm Optimization (Kennedy and Eberhart 1995). Both methods work generically without knowledge 
of the concrete problem, making them universally applicable using standard implementations. Each simu-
lation parameter set is mapped to an individual or particle.  
 

2888



Laroque, Klaas, Fischer, and Kuntze 

 

Figure 1: Overview of a simulation-based optimization as an interacting optimization and simulation 
package. Based on (Law and Kelton 2000). 

 In the case of Genetic Algorithms (GA), these individuals are selected based on their “fitness” – the 
quality of a parameter set which the simulation determines, in our case – and form new individuals (a new 
generation) through crossover and mutation. Similar to natural evolution, fitness is expected to increase 
over time. Particle swarm optimization improve the set of particles by moving them within the search 
space based on their position and assigned “velocity”, inspired by the way a bird flock or fish school 
would behave. Advantages of both methods (fast convergence, broad search area) can easily be trans-
ferred to the simulation optimization problem.  
GAs have been successfully applied to simulation based optimization (Paul and Chanev 1998), (Krug 
2002), (Krug et al. 2002) and general implementations of these metaheuristics are available in various 
open software libraries (e.g. ECJ (Luke 2012)). Some of these solutions offer multiple optimization strat-
egies: the user can select, dependent on a specific use-case, which one to select. An implementation of 
multiple optimization strategies in parallel in a common distributed environment, where identified solu-
tions are interchanged, are not known. 

3 CONCEPT 

This work presents an approach to simulation-based optimization using distributed evolutionary compu-
ting algorithms with a web-based interface for heuristic’s selection and parameter setting. A frequently 
occurring problem in simulation-based optimization are prohibitively long run times to evaluate a single 
design point. Further computation time is needed for multiple replications of stochastic simulation mod-
els. To be able to optimize complex simulation models, a solution is needed which allows faster evalua-
tion of potential solutions and a fast solution finding process to achieve low overall run times with respect 
to finding near-optimal solutions. To achieve this, we use distributed islands and (a)synchronous coopera-
tive evolutionary metaheuristics to guide the solution finding process. This concept uses separately work-
ing evolutionary metaheuristics, which are able to exchange solutions. Each evolutionary metaheuristic 
has a master/slave architecture for the parallel evaluation of individuals. A web-based user interface of-
fers the possibility to assign Genetic Algorithms and particle swarm optimization to the islands and to set 
the respective heuristic‘s parameters. 

3.1 Optimization by Heuristics 

In evolutionary metaheuristics, the “fitness” of an individual serves as a good abstraction of the rough po-
sition in the solution space of a possible solution to a problem. Fitness values provide rules of thumb as 
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the main metric for the quality of a solution, as better fitnesses also generally describe “better” situations 
in the problem domain overall. 
 With our approach, metaheuristic optimization is done using individual fitness values that are deter-
mined through the usage of simulation. Through this, it is possible to map the abstract concept of “fit-
ness” against the functionality of a complex system, e.g. a production system. Metaheuristic individuals 
generally consist of a limited set of essential numerical data or similarly simple data structures. This in-
formation is not sufficient to model the complexity of many systems, given the system behavior in ques-
tion cannot be itself abstracted easily into closed mathematical form or sufficiently approximated in other 
ways. This is most likely the case when there are emergent effects inherent in the system that are highly 
non-linear. 
 In effect, what our approach is focused on are systems that are sufficiently complex, so that breaking 
down their behavior into any exact or approximated mathematical form is considerably more difficult 
than to model it using DES methods and running simulations on it. For modeling, it is generally sufficient 
to know roughly the input and output characteristics of all contained subsystems or modules. Understand-
ing their interplay is less a requirement but rather a result of doing simulation. 
 On the other hand, using metaheuristics can yield large combinatorial advantages for the search in the 
solution space to a given problem. If properly applied, metaheuristics enable a somewhat directed and on-
ly semi-random  (evolutionary, natural) traversal of solution spaces using diversification and intensifica-
tion (Blum 2003). Relatively “good” solutions can be found faster than when using more exhaustive 
methods (e.g., MILP, brute force), in addition to being more easily applicable to a range of problems than 
problem specific heuristics, e.g., a tailored one-use-only local search heuristic algorithm that approxi-
mates specific system behavior. 
 There are also various technical advantages, some of which we emphasis in our approach. The fact 
that individuals are semi-random data structures, mostly independent from each other, allows us to evalu-
ate a number of them at the same time (in parallel). The single notion of order is given through the gen-
erations. Only once at the end of every generation, the comparison and selection of good individuals and 
the creation of new individuals has to occur in an orderly, centralized fashion. So, parallel evaluation of 
many individuals belonging to the same generation is apparently easily possible. This promises big ad-
vantages regarding computational times. Here, parallel metaheuristic evaluation can be seen as a special 
case of parallel computing where a deliberate increase of the problem size (here: population sizes, genera-
tions) will in the end lead to better results faster than just solving one problem instance at a time (Cung et 
al. 2002). Many variants are evaluated and compared with each other per time unit, leading to a potential 
decrease in overall convergence time. In addition, through the use of the island concept, entirely different 
paths of solution search can be pursued at the same time. 

3.2 Webbased User Interface 

 Setting and testing the heuristic parameters takes often a considerable amount of time during the de-
velopment of problem and case specific solutions. These parameters have a large influence on the heuris-
tic‘s behavior such as exploration of the solution space or premature convergence in local optima and 
should be therefore fit for the problem (Talbi 2009). The repetitive tasks of this process are configuration, 
execution, output analysis and documentation and often not integrated in one tool and must be done in pa-
rameter text files or source code. In a distributed island environment, parameters must be set and send for 
each run to each participating machine. After the execution the results must be collected and analyzed. 
Due to the fact, that all executions are distributed on multiple machines, it complicates the output analysis 
of individual machines. A solution is needed that integrates all these aspects and reduces time and effort 
for these tasks. Our proposed approach uses a web-based interface for a server which controls the com-
plete process. It offers the possibility to set parameters, assign machines and number of threads to use for 
each machine. After initializing the run, the execution can be observed in an aggregated overview on the 
outputs of all machines. The parameters, outputs and results for each are stored in a database for later 
analysis and reuse. 
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4 IMPLEMENTATION 

 In our approach, we specifically use the metaheuristic concepts of Genetic Algorithms (GA), Particle 
Swarm Optimization (PSO) and the island concept. Additionally, we make use of the parallel evaluation 
of individuals, as discussed in the concept chapter 3.1. We looked at different existing frameworks that 
allow for optimization modeling using metaheuristics and the features we desired. The one that came 
closest to our considerations  was the ECJ Framework. This is a software framework with an extensive 
range of functionalities in the field of metaheuristics. ECJ comes with many well-known concepts already 
pre-implemented, including genetic algorithms and the island concept. It also already contained a semi-
functional implementation for PSO which we could easily complete and adapt to our needs. 
 As mentioned earlier, one of the key aspects of our implementation is to explicitly make use of paral-
lelism when evaluating individuals. ECJ supports this directly, as it provides a robust master-slave archi-
tecture for distributed evaluation. We integrated a material flow simulation into ECJ to determine the in-
dividual’s fitness value. A Microsoft IIS Application Server hosts the control website and manages the 
virtual machines for the island models. 

4.1 Optimization by Heuristics 

In contrast to standalone operation, master-slave evaluation consists of a master process that controls the 
creation of generations through the evolution of prior individuals. In effect, it holds the complete state of 
an optimization run. It does not directly evaluate newly created individuals, though. They are rather sent 
to a number of slave processes which may be running on an arbitrary machine. Communication takes 
place over a standard TCP/IP channel using Java sockets. 
 To include the d³fact DES kernel in the evaluation, we put it inside of the evaluation function of these 
slave processes (see Figure 2). Every time a slave starts to evaluate an individual sent to it by the master 
process, a DES simulation is started using the individual’s parameter vector. The slave runs this simula-
tion completely non-threaded and is blocked until the run is completed. It then takes the solution of the 
run and puts it as the individuals fitness value before it sends it back to the master as the result. It also un-
blocks and waits for another individual. The waiting time is very short in most cases, provided the current 
generation at the master is not already completely distributed to slaves. If not, the slave must wait until all 
other slaves that are still evaluating (i.e., simulating) finish their work. These are the only cases when the 
overall parallelization is not constantly n-fold, given n slave processes. 
Because evaluation does not generally involve simulating a complex model for several seconds like in our 
approach, ECJ offers techniques to overcome delays and waiting times caused by communication. Several 
individuals can be bundled and sent as a batch job and waiting times at the slaves could also be used for 
distributed evolutionary steps using all individuals from a batch job. Those features can most certainly 
improve average delays and throughputs in many cases. But in our case, they would be unnecessary or 
counterproductive. Sending only single individuals and keeping all state centralized at the master ensures 
that waiting times at the end of a generation are minimized. Otherwise, one of the slaves could be back-
logged with several individuals and slow down the whole optimization considerably. Because the effort 
for generating and transmitting individuals is negligible compared with the simulation runs, single indi-
viduals can always be sent as “late” as possible. Through this, there is no backlogging at slaves and the 
evaluation is slowed down less near the end of a generation, which does not end until the last individual 
has been evaluated.  
Our observations show that this approach yields considerable benefits in terms of runtimes. The speedup 
rate of solving a problem in parallel is given as: 
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What follows is that a (theoretical) perfect parallelism of 100% will lead to an n-th of the single-
threaded runtime, given the initial problem size stays the same over every level of parallelization. Test 
runs for our exemplary model in fact show distinct rates of actual parallelism and speedup. 

Observed speedup rates for fixed problem size of 20 individuals per generation: 
 for 4 CPUs: 3.2 
 for 8 CPUs: 5.2 

 These figures imply an effective parallelism of over 90%, according to Amdahl's Law (Amdahl 
1967). We conclude from this that our approach at parallelization works as expected. On average, pro-
cesses run simulations in parallel for more than 90% of the time, which allows the whole evaluation of a 
generation to scale well by adding slave processes on additional processors. 
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Figure 2: master-slave scheme used within two islands 

 Parallelizing the evaluation to speed it up is not the only instance of parallelism we worked with, 
though. We also made use of the island concept which also constitutes a form of parallelism, but rather on 
a conceptual level of the metaheuristics themselves, as illustrated in Figure 3. Instead of having one 
population with a set of individuals and one evolutionary “tree”, optimization using islands makes use of 
several of these. This enables multiple varying evolutions and, in effect, ways of movement through the 
solution space in parallel. These metaheuristic sub-runs function in isolation from one another to a certain 
extent. Once every number of generations, the best individual of each island is sent over to other islands 
where they might be incorporated into the “local” population and have some impact on the convergence 
of the best found solution there.  
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 Figure 3: Overview of our parallel, distributed optimization scheme using metaheuristics 

 Both this, having sub-runs at all and periodically sending individuals, brings together two advantages. 
One is the diversity through differentiation in evolutionary paths and, through this, a better chance to 
avoid hitting the same “good” local optima, a common problem of metaheuristics. The other is agility by 
the introduction of individuals of a wholly different evolutionary process. Metaheuristics like the PSO or 
Simulated Annealing show a strong convergence behavior after some time of running, which is a 
deliberate part of their operating principle. Having different instances of this convergence behavior and 
the sharing of good solutions found by these instances is a promising approach to improve the expectable 
solution quality of an optimization run. 
 We combined ECJ’s modules for the island concept with its master-slave parallelization to combine 
both forms of parallelism and their advantages, speed and diversity. Every island is also a master process 
of its own and has its own pool of slave processes. An island is responsible for breeding and selecting 
from its own population and distributing every generation among its slaves for evaluation. In the results 
chapter, we examine the behavior of island processes with different configurations of metaheuristics on 
the basis of simple ECJ models. 

4.2 DES-Simulation with d³fact 

d³fact is a discrete, event –based material flow simulation framework, designed and implemented at the 
Heinz Nixdorf Institute of the University of Paderborn, Germany. Designed as a multi-user environment, 
it allows simultaneous, collaborative modeling and simulation of a model by multiple simulation experts. 
d³fact consists of a modeling tool, a simulation server, that runs the simulation and few visualization op-
tions from 2D to 3D. The freeware software is based on the Eclipse Rich Client Platform (RCP) and is 
implemented in Java (Dangelmaier, Huber, Laroque, and Mueck 2005), (Laroque 2007). The project pro-
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vides a Java API to program material flow simulation models independently from the modeling interface.
 In order to integrate the material flow simulation with ECJ, it suffices to implement the necessary 
„Problem“ interface and class. The simulation model is built on the individual‘s evaluation step according 
to the individual‘s position. The position of the individual is a vector which represents a possible design 
point of the simulation model. The simulation is used to determine the fitness value for this parameter set 
by generating the model and simulating it. After generating the simulation model automatically based on 
the design point, the simulation run is performed. In case of stochastic influences, several replications are 
done to receive a reliable mean. The results of the simulation are used as the individual‘s fitness value. 
 Unfortunately, the simulator does not support threading for the parallel execution of simulation mod-
els. This design flaw was overcome by using ECJ’s master/slave architecture for performing the evalua-
tions. This made it possible to speed up the evaluation steps substantially. 

4.3 Webbased User Interface 

The central management site runs on a Microsoft IIS Application Server and acts as the island server as 
well. Each island runs on a virtual machine with four processors each. The user interface (depicted in 
Figure 4) allows to select the participating islands and to set relevant parameters defining the heuristic’s 
behavior. It is possible as well, to select for each metaheuristic the evolutionary strategy. E.g. for GA be-
tween one- or two-point crossover and the associated mutation and crossover probabilities. When the op-
timization is started, the server sends the configuration via web service to the connected virtual machines. 
These start the islands according to the configuration, which then connect back to the main island server.
 During the execution, the island prints information on optimization run to the command line. All oc-
curring console outputs are intercepted and stored in the main database, running on the central manage-
ment server. The user interface shows windows for each island in which the console outputs are shown. 
These are updated steadily to be able to observe the optimization process. All runs are stored with their 
parameters in the database for later analysis and evaluation. 

 

        

Figure 4: User Interface: Parameter setting for one island (left) and  
global optimization run output observation and analysis (right) 

2894



Laroque, Klaas, Fischer, and Kuntze 

5 RESULTS 

5.1 Evaluation Model 

To evaluate our solution, we use a simple material flow simulation problem. The use case examines vari-
ous possible layouts of a production system in planning for a small automotive supplier. The basic mate-
rial flow simulation model is enriched by specific model features, allowing the dynamic calculation of to-
tal costs parallel to the performance evaluation of the material flow. Therefore, the results of a specific 
parameter configuration can, later on, be evaluated on a cost base. The goal is to set up a production sys-
tem that fulfills capacity restrictions and minimizes cost (total cost for a specific parameter configuration 
is major KPI for the evaluation of a simulation run). Some parts of the system are fixed and some can be 
changed. For three workstations, the to be bought machine must be chosen out of several available ma-
chine types. These differ in total costs, machine hour rate and cycle time and maintenance frequency. The 
optimal cycle time of four machines must be determined to fit in the production system. The total output 
of work pieces of the system is restricted by a lower bound and upper bound. Violations to this re-
strictions are penalized with higher costs. To determine the optimal machine selection and configuration 
with minimal total costs at an given output level is the goal of the optimization study. It is a deterministic 
model in this proof of concept approach, so that no replications in this comparison are implemented. 

5.2 Performance Evaluation 

We tested our model on various combinations of islands and metaheuristics to evaluate our approach. 
Each run was performed with an population size for each island of 10, 20 and 30 individuals. Every island 
used four slaves for the evaluation step. Figures 5-7 are showing the development of the best found solu-
tion over 50 generations for selected island/metaheuristic combinations, measured in total cost as the KPI 
given as a result by the simulation model.  

 

 

Figure 5: Performance of using PSO on a single Island 

In a direct comparison for the single island approach, the Particle Swarm Optimization (Figure 5) 
converges considerably faster than the Genetic Algorithm (Figure 6). In all cases, feasible solutions with-
out penalty costs are found already in the first generation.   

The results of the combination of GA and PSO (Figure 7) with the exchange of individuals are com-
parable to the single island PSO case. Good solutions are found very early during the optimization and the 
overall best solutions are better as well. It is observable that the combination of Genetic Algorithm and 
Particle Swarm Optimization improves the results, even though the results of the metaheuristics on their 
own are inferior. 
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Figure 6: Performance of using GA on a single Island 

With 20 and 30 individuals per island, near-optimal solutions can be found very quickly. Whereas 
with only 10 individuals, several generations more are needed to find equally good solutions. But since 
the evaluation of one individual takes a substantial amount of time, the total time to reach a good solution 
does not differ much. In this case a balance between the number of generations and the total time to find a 
near-optimal solution must be made. 

 

 

Figure 7: Performance of a combination of using GA  and PSO on one island each 

6 CONCLUSION & OUTLOOK 

This paper presents an combinational approach of material flow simulation and meta-heuristic for an in-
novative, fast converging procedure for the optimization of simulation model’s parameters. Based on a 
specific test setting, Particle Swarm Optimization, Genetic Algorithm as well as their combination are 
used as an automatic experiment design in a distributed simulation environment. The given results show 
in a first step, that the procedure in sum is converging fast and leads to optimal parameter values for the 
simulation model. Best performance is achieved by the use of Particle Swarm Optimization and Genetic 
Algorithm which transfer the best-found-solution from time-to-time during optimization. 
 Future work will be derived in the following areas: a) select, implement and test other heuristics, 
preferably from the area of evolutionary algorithms; b) improve further convergence of the overall proce-
dure by stopping simulation scenarios with a given parameter set during execution, which is significantly 
worse and the gap to the best solution cannot be caught up. 
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