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ABSTRACT

In this paper, we propose a general framework to evaluate models of systems that are ill defined, incompletely
known, and furthermore, which cannot be experimented in real conditions, such as the economical systems
at the country scale, epidemics (for obvious ethical reasons) or any natural disasters, for instance where
human lives are the main issue. Our framework relies on the generic Marvin Minsky’s definition of a model
and its specification in the frame of the Theory of Modeling and Simulation, initiated by B.P. Zeigler.
Such a dynamic system vision of the Marvin Minsky model definition enables to address original questions
using what we have called the Minsky triad model, i.e., a coupled model composed of the model of the
user, the model of a real system, and the model of this later model. We think that the Minsky triad model
is very promising as a framework to design decision support systems for crisis management.

1 INTRODUCTION

An important preliminary activity in modeling and simulation is to gather data from the source system we
are interested in. Such data are used to build, to calibrate and to validate the model. Thereafter, we can
learn from the model or forecast behaviors in order to be able to make decisions and to take actions on
the system under study. A problem arises when the source system cannot be experimented for any reason.
For instance, if we consider an epidemic in a human or animal population, we cannot experiment such
a system for obvious moral and ethical reasons. Similar problems arise in many situations where human
lives are the main issue. More generally and less dramatically, we can say that the systems defined at the
ecological, economical or social scales (Socio-Eco-Systems, SES) cannot be experimented in most cases.

A solution is to model a priori such systems, using a non validated model (or validated with previous
similar situations) to support the decisions when a new situation occurs. In that case, we do not know if
the model we are using would provide useful answers regarding to this new situation. In this paper, we
propose a framework to address such an issue. The problem is to evaluate if a given model enables to
make the appropriate decision in situations that have not been previously encountered. Furthermore, to be
complete, such a framework should consider the interdependency between the source system dynamics and
the actions the decision maker decides to perform on the source system based on this model. Indeed, in
the context of SES systems, the objective of the decisions is to control the future trajectories of the system
by acting on it, modifying in return the future trends of the system dynamics.
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The framework we propose in this paper derives from the Marvin Minsky’s definition of what is a
model. In 1965, M. Minsky said: ”To an observer B, an object A∗ is a model of an object A to the extent that
B can use A∗ to answer questions that interest him about A” (Minsky 1965). Starting from that definition,
we call the “Minsky triad” T , the three entities A, B and A∗. Figure 1 represents this triad and the relations
between the three entities that compose it. We call ρo and ρm the relations between the observer and the
object and between the observer and the model respectively. Such a representation is the first step towards
a systemic conception of the triad.

Object

A

Observer

B

Model

A*

Relation to model
ρm

Relation to object
ρo

Figure 1: The Minsky triad T .

The next section will present the general conceptual framework (Section 2). Then we will present
more specifically the model of the triad using the Theory of Modeling and Simulation (Section 3). We
will illustrate the use of this framework on a specific case in Section 4. We will then discuss the results
and conclude in Section 5.

2 THE GENERAL FRAMEWORK

The Figure 1 illustrates the classical relation among a model, the source system and the user of the model,
as a Minsky triad T . The main idea of this work is to model the Minsky triad itself, leading to a reflexive
representation to address questions related to the use of models. Therefore, in order to study the interactions
among the three entities of the triad, we propose to build a model T ∗ of the triad T . Doing that, we create
a new triad in which the source system is the triad T , the observer is the researcher C and the model is
the model T ∗. This last triad is the general conceptual framework that we propose for model evaluation.
We note T ′ this framework and present it in Figure 2 page 3. In order to address questions about the use
of model A∗B, the observer C builds a model T ∗ of the triad T . ρo c is the question C has on T . ρm c is
the experimentation (i.e. the simulations) C performs on T ∗. In this framework, the question of C will not
be about the model A∗B, but about the use of the model A∗B by B, as far as the model A∗C represents the
behavior of A. Consequently, the T ∗ model must contain a model of each entity and relation present in
the triad T : A∗C is a model of entity A for observer C and A∗B is a model of entity A for observer B, A∗∗ is
both a model of A∗C for B∗ and a model of A∗B for the observer C. Finally, ρ∗o is the model of the relation
ρo and ρ∗m is the model of the relation ρm.

Having this general framework, we can use the concepts and formalisms from the Theory of Modeling
and Simulation (TMS) initiated by B.P. Zeigler (Zeigler, Kim, and Praehofer 2000) to specify the model
of the Minsky triad T ∗, and to design and implement the corresponding simulator. Indeed, we could
directly build a morphism between the entities of the Minsky triad including their relations on the one
hand, and the models specified using the Discrete EVent systems Specification (DEVS) formalism on the
other hand. In our framework, the model of the observer B∗ has to manipulate the model A∗∗ in order to
make decisions on the model of the source system A∗C. The main difficulty here is in the formalization of
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Figure 2: The general framework T ′.

the use of a model by another model. Indeed, when an observer uses a model to make decisions, the model
has its own simulation time line, which is different from the time line of the model user. To tackle this
particular problem, we have proposed the use of the recursive simulation technique described in a previous
study (Bonté et al. 2009). This technique is combined to the concept of experimental frames in order
to specify the experiments that B∗ performs on A∗∗. In the TMS, any question about a dynamic system
should be related to an experimental frame (Zeigler, Kim, and Praehofer 2000; Traore and Muzy 2006).
The experimental frame specifies the system environment, or “context of interest”. It basically specifies
the input signals sent to the system (or to the simulator) and the observation policy, i.e. the simulation
outputs that are monitored. For example, any validation process consists in comparing the behavior of the
system with the behavior of the model within the experimental frame related to the question we have on
the system.

In the following, we present a possible specification of the T ∗model using the TMS and more specifically
the DEVS formalism.

3 THE T* DEVS MODEL

The DEVS formalism enables to specify the T ∗ model as a generic hierarchical structure. Within this
structure, some models of sub-processes are generic and others can be specified and reused at will, thanks
to the modularity feature of the DEVS formalism.

The A∗C model is a DEVS model. The ρo relation between the observer and the source system is
formalized as a set of Sub-Processes for Observation and Control (SPOC). Its model is ρ∗o . For instance,
it can be composed of a model of observation and a model of action coupled together.

Considering A∗B is a model of a dynamic system, we can design a simulator to simulate it. We consider
that a simulation is a virtual experiment. Doing so, the ρm relation between the observer and the model
is considered as an experimental process performed on the A∗B model by B. The corresponding ρ∗m model
in Figure 2 page 3 is consequently called the Experimentation Process Model (EPM). It models the ρm
relation between the observer and the model. The EPM is an important piece of our framework. B.P.
Zeigler gives the following definition of a dynamic system simulation model: ”A simulation model [...] is
a set of instructions, rules, equations or constraints allowing to generate an Input/Output (IO) behavior”.
In our case, one can imagine the A∗B model as a set of rules or equations. The dynamic system model
describes a dynamic system behavior, but it is not a dynamic system itself. By opposition, a dynamic
system actually generates IO behavior. Therefore the dynamic system described by A∗B cannot directly
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interact with any triad sub-systems. These equations or rules cannot be coupled with the other sub-systems
of the triad. A∗B can only be simulated. Likewise, the EPM cannot directly interact with the A∗∗ model
by sending events to it because A∗∗ stays a model (a set of instructions, rules etc., and not a physical
dynamic system) within the T ∗ model. To perform experiments that require dynamic interactions with the
dynamic system described by A∗∗, the EPM needs to build an Experimental Frame (EF), which is a model
of dynamic system itself, and which is simulated in the same simulation time line as the A∗∗ model. We
explain in (Bonté et al. 2009) how such EPM can be built by using the recursive simulation technique.
Another specification which takes better benefice of the EF concept is described in (Bonté 2011). The
EPM enables to specify this special interaction between the dynamic system described by the A∗∗ model
and those described by the models of the triad sub-systems.

Finally, the B∗ model is reduced to the decision process that the observer B performs to influence the
SPOC, according to information obtained from the experiments realized with the A∗B model.

A proposal for a general structure of T ∗ using DEVS is presented in Figure 3. The rectangular boxes
represent dynamic system models, specified either as atomic DEVS models or composed DEVS models.
The lines between boxes represent connections between models that can be either “port→ port” connections
or “model→model” connections (meaning one or several “port→ port” connections). We did not represent
any connection within the ρ∗o model because the Observation and Action sub-models are just given as an
example of SPOC components. The decision process model receives information from the ρ∗m model and
can influence the ρ∗o model behavior. The ρ∗m model is an experimentation process model. It embeds the
A∗∗ model and experiments it using an experimental frame.

4 EXAMPLE OF APPLICATION OF THE FRAMEWORK

4.1 Introduction: Evaluation of Model Use in Animal Epidemiology

In order to discuss the interest of our framework, we explain how it can be used in the context of animal
epidemiology. Diseases spread in a human or an animal population is a good example of a non experimentable
system. Furthermore, modeling and simulation is widely used in epidemiology.

Many of the processes involved in diseases spread are identified and are similar from an epidemics
to another. However, the qualitative knowledge of theses processes is not sufficient to predict the system
evolution. An accurate knowledge of the relative weights of each process is necessary. The problem is that
this knowledge will be available only after the epidemics has occurred. Moreover, people may neither just
let some disease spread with no reaction. Consequently the observer is part of the system and cannot stay
passive. The surveillance system must be considered in any disease spread analysis (Höhle, Paul, and Held
2009) because the epidemics itself cannot be directly monitored. The issue is that the epidemics dynamics
may depend on the surveillance system designed to observe it.

With the increasing use in M&S in epidemiology, we have many information on triads used in this
field and some systematic reviews have been published (Singer 2010; Singer, Salman, and Thulke 2011).
Considering the source system A, most of the processes involved in disease transmission and spread have
been precisely described, leading to precise characterization of epidemics systems considered at different
scales. Considering the A∗B model huge work has been done to simulate disease spread and several classes
of models exist (Keeling and Rohani 2007). Considering the observer B, it is composed of the network of
decisional institutions (such as OIE, national veterinary or human health departments) and research teams.
We can observe how the decision process tells which management policy must be applied according to
information gathered from the use of model A∗B. The ρo relation between the observer and the source
system is precisely described as a combination of a surveillance system and a control system. Considering
the ρm relation between the observer and the model, many kind of experimental plans have been designed
and are described in the literature in order to perform calibration, optimization or sensitivity analysis for
instance.
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Figure 3: The T* DEVS structure.

As explained previously, the models themselves can hardly be evaluated in regards to their capacity to
reproduce the source system behavior. Nevertheless, we can evaluate the use of specific models in specific
situations. Thanks to all information concerning model use in epidemiology, we are able to build reliable
simulation models of these situations. In this section, we present how the formal model presented in
Section 3 can be used to evaluate the model use in the case of animal epidemiology. We use the conceptual
framework presented in Section 2 to organize our discourse. Alike the general case of triad of triad presented
in Figure 2 page 3 we consider three triads. The first triad T is a usual situation where the A entity is an
epidemic, the B entity is a surveillance and control system and the A∗ entity is an epidemiological model.
The second triad T ∗ is a model of the T system. Finally, the third triad T ′ is composed of the T system,
the T ∗ model and the research questions we have on T .

4.2 T : Surveillance, Modeling and Control of an Epidemics

In this application we consider a triad T where an epidemics is observed by a surveillance system and
control by a control system. An epidemiological model is used to set the level of control. Recall that
the T system is composed of a system A, a SPOC (ρo), a decision unit B and a model experimentation
process (ρm) using a model A∗. We will refer to the A system as the epidemiological system. It is a
set of a hundred epidemiological units (sub-regions of a geographical area of interest) connected to each
other by an infectious contact network through which an infectious epidemiological unit can infect its
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acquaintances. The SPOC is a system for epidemiological surveillance and control and is composed of a
passive observation system, a proactive observation system and a control system. The passive observation
system observes all components of the epidemiological system until an outbreak is detected. When an
outbreak is detected, the proactive observation system and control system are activated. The control consists
in reducing the movement of animals in the area of interest. Several levels of movement restriction are
defined corresponding to different intensity of control. At first a default level is chosen, then the control
system can modify the level of movement restriction following the decision system. Note that the level of
control is known (it can be quantified as the number of animals allowed to be moved from one place to
another for instance) but the impact it has on the disease spread is unknown. The proactive observation
system observes at regular time step a representative sample of epidemiological units in order to estimate
at each time step the prevalence in the area of interest. (The prevalence in a population is the proportion
of infected individuals in this population). This information is then sent to the model experimentation
process. The model experimentation process uses a SIS model (Anderson and May 1979) consisting in
calibrating the model by using available data (prevalence estimation from the observation system). An
interesting feature of the SIS model is that its dynamics is characterized by the R0 indicator (Keeling and
Rohani 2007). When R0 > 1, a stable state is reached corresponding to a non null proportion of infectious
individuals in the population equal to 1−1/R0. On the other hand, if R0 < 1 the proportion of infectious
individuals will tend to zero. The decision system receives the calibrated model from the experimentation
process and computes the corresponding value of R0 from this model. The decision system increases or
decreases the control level according to the value of R0.

4.3 C: a Set of Questions Related to Model Use in Epidemiology

There are several questions for which we can hardly find answers within T but which we can ask as an
external observer. Within the T ′ triad, we choose three questions to represent different types of questions
that we have on T as an external observer (observer C in Figure 2) and to which we will try to answer using
the model T ∗. The issues we want to address about T as the observer C of the T ′ triad are the following:

1. What is the impact of the epidemiological surveillance system on the production losses due to the
disease?

2. What is the impact of the model experimentation process on the production losses due to the disease?
3. How these impacts depend on the epidemiological system of interest?

Type 1 questions deal with the design of the passive and proactive observation systems (ρo relation). Type 2
questions deal with the design of the model experimentation process (ρm relation). Finally, type 3 questions
deal with the compatibility of the surveillance, control and model experimentation processes (ρo and ρm)
with the nature of the epidemiological system of interest (A). All the questions deal with the consequences
that the design of the surveillance, control and modeling of the disease may have on the disease (possibly
considering the nature of the disease for type 3 questions).

In the T system, we identify factors that we can use to characterize different design modalities of
the surveillance, control and model experimentation processes on the one hand, and different scenarios
of diseases on the other hand. We also identify criteria to evaluate the consequences of the disease in
terms of production losses and to evaluate quantitatively the surveillance and control effort. We choose the
transmission rate between epidemiological units as a factor that would characterize the epidemiological
system. It can be measured using the mean spreading speed between two neighbor units. We choose the
sampling time period of the proactive observation system as a factor that would characterize the design of
the surveillance system, It is measured as the time step between two successive sampling. As a factor that
would characterize the model experimentation process we choose the binary answer to the question: ”do
we know the value of the γ parameter of the SIS model for this disease?” (see equations 1 and 2). We
choose two criteria to characterize the production loss due to the disease. The first is the cumulative time of
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infected epidemiological units measured as the total number of infected epidemiological units multiplied
by the time they have been infected. The second is the quarantine length of the whole geographical area
measured as the time period between the first detected outbreak and the last detected outbreak. Finally,
as a criteria that would characterize surveillance and control cost, we choose to measure the surveillance
effort as the total number of epidemiological units sampled by the proactive surveillance system and the
control effort as the integral of the control intensity.

4.4 T ∗: the Simulation Model of T

The interest in building the T ∗ simulation model is two sided. First, some of the factors or criteria are
not directly measurable in T . It is the case for the cumulative time of infected epidemiological units for
instance. Second, the T ∗ model enables us to realize proper experimental plans allowing to empirically
evaluate the influence of the factors values over the criteria values. The structure of the T ∗ model is similar
to the generic one presented in Figure 3 page 5. Due to lack of space and because our objective is less
to present quantitative results than a methodology, we do not present all details of the T ∗ model. Note
that these details are given, as well as a complete DEVS specification, in the PhD dissertation of the first
author (Bonté 2011). However we must note some important points in order to discuss the simulation
results.

Concerning the model of the epidemiological system, note that each epidemiological unit is modeled
as a DEVS model and that the infectious contact network is the connection graph between IN/OUT ports
of these models. Each model of an epidemiological unit is a two states automaton whose states are either
Susceptible (S) or Infectious (I). In state I, an epidemiological unit can infect its neighbors in state S with
an infection rate noted rin f . The passive observation process model is connected to all epidemiological
units model and detects a switch to an I state with a given detection probability. The proactive observation
process model connects itself at regular time step to a sample of epidemiological unit models. The number
of sampled epidemiological units is computed at each observation time step according to the prevalence
observed at the previous observation time step, a desired relative precision and a statistical formula ordinarily
used to compute the sample size in epidemiological surveys. The model of control modifies the infection
rate rin f of all epidemiological units by multiplying it by a factor chosen in a collection of numbers
corresponding to different control levels. The A∗∗ model is the SIS model given by the equations 1, and 2.
The experimental frame used consists in setting the initial state and parameters and to observe the dynamics
of the I state variable.

dS
dt

= γI−β IS (1)

dI
dt

= β IS− γI (2)

where

{S, I} ∈ R2 are the two state variables (representing respectively the proportion of susceptible and
infectious individuals in the population),
β and γ are two parameters (respectively the infection rate and the recovery rate).

The EPM implements a swarm particle optimization algorithm which enables to estimate the values
of β (and possibly the value of γ if the recovery rate is unknown) that enable the best fit between SIS
simulation results and the time series observed by the proactive observation model. The decision model B∗,
uses β and γ values to compute the R0 indicator (R0 = β/γ). If R0 > 1, the control intensity is increased
to the superior level. If R0 tol < R0 ≤ 1, the control is unchanged. If R0 ≤ R0 tol , the control intensity is
decreased to the inferior level. We consider that the level of control is known by the decision maker but
the corresponding factor applied to the infection rate rin f is unknown.
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4.5 ρm c: Simulation of T ∗

The T ∗ model is stochastic so we can get several different simulation results using the same set of parameters
and changing the random number generator seed of the simulator. In this section we comment the results
of a single simulation. Figure 3 page 5 presents the simulation outputs for this simulation.
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Figure 4: Simulation outputs of T ∗ model.
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4.5.1 Trajectory of the Epidemiological System

On the a) chart, we see the evolution of prevalence in the model of epidemiological system (plain curve). The
dashed curve shows an example of prevalence evolution for the simulation of the model of epidemiological
system with no control. We observe that the epidemics ends when the system is controlled (prevalence
is null at the end of the simulation for the plain curve), although in the case with no control, the disease
becomes endemic (prevalence seams to become stable around a positive value for the dashed curve).

4.5.2 Trajectory Perceived by the Surveillance System

Chart b) shows prevalence values estimated by the proactive observation model (dots). It corresponds to
the prevalence observed in the samples. The “real” prevalence in the model of epidemiological system is
plotted as a plain curve. We observe that both curves are very close. Distance in time between the estimated
prevalence dots corresponds to the sampling time period of the proactive observation model. The date of
the first prevalence estimation corresponds to the activation of the proactive observation model triggered
by the first outbreak detection by the passive observation model. We notice that this activation occurs a
short time after the epidemic starts (the plain curve is already increasing).

4.5.3 Trajectory of an Indicator of the Proactive Observation Model Activity

Chart c) shows the proportion of epidemiological units sampled at each sampling performed by the proactive
observation model (recall that the number of units to sample is computed by the proactive observation
model at each observation time step). We notice that variations are wide.

4.5.4 Information Brought by the EPM

Chart d) shows the results obtained by the EPM. The prevalence data estimated by the proactive observation
model have been replotted (dots). Recall that calibrations performed by the experimentation process model
are based on these data. The vertical dashed lines mark the dates at which calibrations occurs (the EPM
perform a calibration each time 5 new prevalence data are available). For each calibration, the prevalence
evolution simulated with the calibrated SIS model has been plotted (plain short curves) from the date of
the first observation used for this calibration (five observations before), until a prediction horizon fixed
to the time between two calibrations. The R0 value computed for each calibration is written below each
calibration date. Note that the prevalence simulated with the SIS model fits very well the surveillance data
(the five prevalence observations preceding a calibration are almost superimposed with the corresponding
SIS simulation curve), and predicts badly the future prevalence (observations following a calibration can be
very far from the SIS simulation curve corresponding to this calibration). This last result is expected because
the control level following a calibration may be different of the control level preceding the calibration.

4.5.5 Trajectory of an Indicator of the Control Model Activity

Chart e) shows the evolution of the control intensity during the simulation. Note that the control model
is activated at the same time as the proactive observation model (the control intensity is 0 before the first
prevalence value is observed on charts b), c) and d). At each calibration, the control level is revised. It is
increased if the estimated R0 is superior to 1 (which is true until the penultimate calibration), maintained
if Ro tol < R0 < 1 (which is true at the penultimate calibration), and decreased if R0 ≤ R0 tol which is true
for the last calibration.

4.5.6 Experimental Plan

In a M&S approach, we transfer the questions we have on T to T ∗ and we perform an experimental plan
on T ∗. We performed a light experimental plan on T ∗ in order to show that we can formulate questions
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of type 1, 2 and 3 presented in Section 4.3 as experiments on T ∗. This is an empirical approach leading
to statistically measure the influence of our factors on our criteria.

Notice that we can compute our criteria from simulation outputs. For instance, the quarantine duration
criterion can be measured on the chart a) of Figure 4 as the duration between the first detected outbreak
and the last detected outbreak. The surveillance effort criterion can be measured on chart c) as the sum of
all sample sizes. For a given set of parameters and a few modalities tested on our factors, we performed
thirty simulations for each factors combination. As an answer to “type 2” and “type 3” questions, we could
show that for the tested modalities, knowing the value of the γ parameter (fixing γ and calibrating only β

instead of calibrating both β and γ parameters with the EPM) has no significant impact on the cumulative
infected time in the scenario of a slow disease spread but had a significant impact in the case of a fast
disease spread.

For the same set of parameters we also found that decreasing the proactive sampling time period
significantly decreased our surveillance effort indicator for the same value of our control effort indicator.
This result is counter intuitive because more epidemiological units are sampled by time units if sampling
time period is lower. This is due to the fact that epidemics are in average shorter if the sampling is more
frequent (control is more efficient). This kind of answers to questions of type 1 give a different (and we
think interesting) point of view on monitoring systems which are usually evaluated on their capacity to
capture the epidemic trend and not as a part of the epidemics dynamics.

4.6 ρo c: Potential Answers on T

4.6.1 Validation of T ∗

Our motivation to build the model T ∗ is that the model A∗B cannot be validated. However, note that the
system T contains the source system A. Consequently, we could think we would not be able to build a
validated A∗C model. At that point, it is important to notice that the questions we want to address with
the AB* model are not the same that those we want to address with the A∗C model. In the T triad, the A∗B
model is used to produce a summary of the A system (the R0 indicator in our case). In the T ′ triad, the
A∗C model is used to reproduce the complexity of the A system in order to evaluate if the SIS model is
able to produce a satisfactory summary of the disease dynamics. The summary is considered satisfactory
depending on the efficiency of the control that it enables to perform. In the case of the T ∗ model we
presented, we consider that the A∗C is valid to represent the complexity due to non-homogeneous mixing of
the population. Indeed, epidemiological units are connected via a network of infectious contact that may
not be random (we choose a 2D regular lattice network for the shown simulations). Consequently, T ∗ is
valid if we use the A∗C model as a sufficient informative hypothesis. Then, under the hypothesis of A∗C, the
answers we have by experimenting T ∗ can be transferred to T . For this reason, we think that the most
interesting questions to address with the T ∗ model are those of type 3, i.e. evaluating different types of
models integrated in different situation of disease management.

4.6.2 Learning on T and Offered Perspectives

The example of application given in this paper only showed that, under the A∗C hypothesis, model evaluation
can be based on the efficiency of the control the model enables. Intensive experimental plans must now be
performed to bring reliable results to the epidemiological modeling community. The first type of results
would be recommendations about which kind of model (spatial or not, aggregated or individual based) and
model experimentation process could be used depending on the epidemics situation (fast or low infection
rate of the disease, availability of surveillance effort, ... ). The second type of results is to help designing
new T systems that cannot have been designed already because they cannot have been tested yet. We think
that experimenting on T ∗ can help to design new surveillance and control systems based on simulation
model results. Finally, T ∗ can support epidemiologists training by reproducing some of the mechanisms
leading to wrong model predictions.
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5 DISCUSSION AND CONCLUSION

In this paper, we proposed a conceptual, formal and operational framework to evaluate models of systems
that cannot be experimented. This is an important issue in the field of modeling and simulation of large scale
complex systems in disciplines such as economy, ecology, sociology etc. We are facing huge challenges
for the future, and we have to make important decisions. Unfortunately, we can not use the classical
experimental approach for such systems. Indeed, a classical validation process based on comparing system
and model behaviors within an experimental frame is here meaningless. Consequently, it is hardly possible
to evaluate decisions based on model uses.

To deal with this issue, we have proposed a new methodology to evaluate the use of simulation models.
We proposed to model the whole Minsky triad composed of three entities: the object (or source system), the
observer and the model. Doing so, we represented the feedback loop between decision made using a model
of a source system, and the source system itself. Therefore, such a framework can be used to model, and
then to test, a priori decision making process in a context where experimentation is not possible. The first
contribution of this work is then a methodology based on the conceptual framework presented in Section 2,
illustrated Figure 2 and instantiated Section 4. The fundamentals of this methodology are to use the TMS to
enable a reflexive study of the TMS activity, in order to improve its uses in problematic cases. The second
contribution is the generic T ∗ model presented in Section 3. Even if this paper only draws the main lines
of a generic T ∗ model, it offers a strong basis which can be improved in the frame of the TMS, notably
considering all the works already done in concern with the experimental frame specification. The EPM
presented in (Bonté 2011) is generic. Nevertheless, it needs to face more applications. Note that using DEVS
formalism to specify T ∗ allows to build triads using existing models. It is a particularly interesting feature
for A∗C and A∗∗. Finally a third contribution is the demonstration that recursive simulation can be achieved
within a DEVS simulator. All the computer developments have been done using the Virtual Laboratory
Environment (VLE) (Quesnel, Duboz, and Ramat 2009) which provides all the necessary features to design,
implement and analyze DEVS models. VLE is based on the concept of packages to enable the model
developers to share their development. For this work, a package called “experimenter” has been developed
for the EPM.

The reader has probably noted the risk of circularity in our approach, because the source system seems
to disappear in the proposed framework. In fact it is not the case. In practice, we have a collection of
models of the source system that have been built and validated in similar situations; we have hypothesis
on the processes and empirical knowledge on the source system. It is therefor possible to simulate a wide
variety of source system behaviors, and to select the simpler and most accurate model we can use to make
a decision in a particular context. To do that, we propose to introduce the experimental approach in the
framework to perform a type of sensitivity analysis not only with the model parameters, but also with the
model structure. The experimental approach is at the basis of science. Using this approach should gradually
increases the understanding we have on the source system. This may be the only way to address some
essential questions about the use of models for decision making in crisis management. We emphasized
this issue with the example of model used for epidemics management and we are convinced that this work
shall give rise to a new kind of model evaluation in contexts where experiment is not possible, such as
financial crisis management, epidemiology, or climate change for instance. We hope that new kinds of
model based decision support will arise thanks to a better evaluation of these models and models uses.
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