
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

EMBEDDING SIMULATION IN YARD CRANE DISPATCHING TO MINIMIZE JOB
TARDINESS IN CONTAINER TERMINALS

Shell Ying Huang
Xi Guo

Wen Jing Hsu
Wei Lin Lim

School of Computer Engineering

Nanyang Technological University
SINGAPORE, 639798

ABSTRACT

Two optimal algorithms, MTA* and MT-RBA*, are presented to find the optimal yard crane (YC) job
sequence for serving a fleet of vehicles for delivery and pickup jobs with scheduled deadlines and pre-
dicted vehicle arrival times. The objective is to minimize the total tardiness of incoming vehicle jobs. This
is important for minimizing vessel turnaround time. In the search for an optimal job sequence, the eval-
uation of the total tardiness of (partial) job sequences requires sequence dependent job service times.
Simulation is embedded in our optimization algorithms to help provide accurate YC service times. This
results in a more accurate evaluation of job tardiness but incurs costs. Experimental results show that this
is feasible despite the simulation costs. MTA* and MT-RBA* significantly outperform the Earliest Due
Date First and the Smallest Completion time Job First heuristics in minimizing job tardiness. MT-RBA*
is computationally more efficient.

1 INTRODUCTION

Container terminals serve as crucial hubs in the global transportation chain of the ever increasing cargo
flows. When a vessel berths at a terminal, a number of Quay Cranes (QCs) are allocated to serve the ves-
sel. QCs first unload containers from the vessel onto in-terminal vehicles for transferring them to the con-
tainer storage yard. A vehicle would take the containers to specific job locations at various yard blocks in
the storage yard. Yard Cranes (YCs) pick up the containers from the vehicles and temporarily store them
in the yard blocks. The operation of loading containers onto a vessel is carried out in the reverse order.
External trucks come into the storage yard through terminal gates to the yard blocks to get export contain-
ers unloaded or import containers loaded by YCs.

One of the most important objectives of terminal operations is to reduce vessel turnaround time
(Steenken et al. 2004). Previous studies have pointed out that YC operations are of great importance and
are likely to be a potential bottleneck to the overall terminal performance (Li et al. 2009). This is because
when vehicles are delayed in the storage yard, they will not be able to reach their QCs on time. As a re-
sult, QCs’ loading/unloading operations will be delayed and vessel turnaround time lengthened. In YC
operation management there are two main problems: (i) deciding job sequence for an YC which we refer
to as the YC dispatching problem; (ii) allocating YCs to different parts of the yard which we refer to as
the YC deployment problem. We study the YC dispatching problem in this paper.

The YC dispatching problem was studied by Kim and Kim (1999) where they considered the loading
operations only for a single YC with a given load plan and a given bay plan. A Mixed Integer Program-
ming (MIP) model is proposed to minimize the total gantry time of the YC. Later, Kim and Kim (2003)

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 1646978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Huang, Guo, Hsu, and Lim

and Kim et al. (2004) extended the study of this problem by comparing exact optimization, a beam search
heuristic and a Genetic Algorithm (GA). Ng and Mak (2005) developed a heuristic to solve the single YC
dispatching problem with different ready times to minimize the total job waiting time. It is known that
for large problems, the MIP model has limited applicability due to the excessive computational times. On
the other hand, heuristics cannot guarantee optimal solutions. Guo et al. (2011) applied A* search to
compute optimal single YC dispatching sequence based on vehicle arrival times to minimize vehicle wait-
ing times.

Jung and Kim (2006) considered 2 YCs working in one shared zone to support vessels loadings with
a GA and a Simulated Annealing (SA) algorithm to minimize the make-span, i.e. the period between the
starting time of the first YC operation and the finishing time of the last YC operation. Lee et al. (2006)
considered 2 YCs working in 2 non-overlapping zones with a SA algorithm to minimize the make-span.
Cao et al. (2008) considered Double-Rail-Mounted gantry (DRMG) crane systems where two YCs can
pass through each other along a row of blocks with a combined greedy and SA algorithm to minimize the
loading time of containers.

In many works presented in the past, the objective of the YC dispatching algorithm is to minimize the
total (average) vehicle waiting time or to minimize the make-span. While minimizing vehicle waiting
times or minimizing make-span often helps reduce the vessel turnaround time, they may result in vehicles
getting to the quayside earlier than they are needed. A more effective way to help reduce vessel turna-
round time is to help minimize QC waiting time for a vehicle. This translates to minimizing vehicle job
tardiness at a yard block. The vehicle job tardiness is with respect to the time a vehicle is scheduled to fin-
ish the transfer of container from/to a yard block. This time is referred to as the deadline of the vehicle
job. It is not with respect to the time the vehicle arrives at the yard block. For example, consider a load-
ing job, based on the time a QC needs the vehicle at the quayside, the time this vehicle should leave the
yard block with the container to travel to the quayside (the deadline of this vehicle job) can be derived as-
suming no traffic congestions. The deadline of the job is the time the QC needs the vehicle minus the ex-
pected travel time from the yard block to the QC. Depending on which vehicle is assigned this loading
job, the vehicle’s arrival time at the yard block can be derived/predicted. Given the deadlines of the vehi-
cle jobs and their predicted arrival times at the yard block, the YC dispatching algorithm that computes its
serving sequence to minimize the average (total) job tardiness will be more effective in reducing vessel
turnaround time.

When designing a YC dispatching algorithm, many previous work assumes that the YC service times
for vehicle jobs are constant (Cao et al. 2008; Jung and Kim 2006; Lee et al. 2006 Guo et al. 2011). This
is correct when the container to be retrieved/stored is on the top of the container stack in the yard. The
scenarios where the containers to be retrieved/stored are not on top of the stack and thus the times to re-
shuffle some containers are not considered. This assumption simplifies the logic of the algorithms but re-
duces the applicability of the algorithms in real operations. However, it is not a simple matter of assum-
ing that YC service time will be x times the time to move one container if the container to be retrieved is
xth from the top of stack at the time the YC job sequence is planned. Consider a container a that is 3rd
from the top of the stack at the time the job sequence is to be planned. The two containers above a may
or may not be in the set of YC jobs to be planned or one of them may be in the set of jobs. If both of them
are not in the set of jobs, they need to be moved to neighbouring rows before a can be retrieved. If both
of them are in the set, one, two or none of them may need to be moved before a can be retrieved, depend-
ing on whether one or none or both have been retrieved earlier in the job sequence. Therefore, YC ser-
vice time for a job is sequence dependent. When a YC dispatching algorithm searches for an optimal job
sequence, the sequence dependent service times need to be used to evaluate the quality of a sequence
among the alternatives.

Simulation of YC job sequence will enable accurate estimation of YC job service times which leads
to accurate evaluation of total job tardiness of a sequence. Without employing simulation, an alternative
may be to use the tier number of each container job at the time the YC job sequence is planned to estimate
how many containers need to be moved and deduce the service times. This obviously will return wrong

1647

Huang, Guo, Hsu, and Lim

service times from time to time. On the other hand, simulation of each job sequence incurs computational
costs and YC dispatching is NP-hard (Narasimhan and Palekar 2002). Whether embedding simulation in
the YC dispatching algorithm will incur prohibitive computational costs needs to be investigated.

We propose two provably optimal algorithms for an YC to handle the jobs in its assigned zone within
a planning window efficiently. The algorithms take the predicted job arrival times and deadlines as inputs
and minimize average job tardiness. We embed simulation to estimate the sequence dependent YC ser-
vices times for jobs and to compute total job tardiness of a sequence. Our algorithms are evaluated
against the Earliest Due Date first (EDD) and the Smallest Completion time Job First (SCJF). Our algo-
rithms could find the best dispatching sequence with reasonable computational time in solving problems
of practical sizes.

The rest of the paper is structured as follows. Firstly, a formal description of the YC dispatching prob-
lem is given in Section 2. Then two new algorithms with embedded simulation are proposed in Section 3
and the experimental evaluations of the proposed algorithms are presented in Section 4. Conclusion is
drawn in the last section.

2 PROBLEM FORMULATION

2.1 General Description

The following assumptions are made in the YC dispatching model:
 Each vehicle job involves one container only. If a vehicle carries two containers stacked together

and to be delivered at different locations, it will go to the delivery location of the top container
first. A vehicle carrying multiple containers not stacked together and to be delivered at the same
destination slot location is modeled as multiple container jobs as explained later.

 In each working zone in the yard, there is only one YC. Vehicles come to the zone for loading or
unloading of containers.

 The deadlines of vehicle jobs are given.
 The vehicle arrival times can be predicted for a relatively short planning window, e.g. 30 minutes,

and are given.
 YC gantry time between two job positions could be predicted with high accuracy as gantry speed

is usually quite consistent.
 The slot location (yard bay), the row and tier numbers of the container in each vehicle job are

given.
 The yard block status (how many containers are stored in each stack) is given.

In our formulation, the following notations are used:

J = {1, 2, …, n}, the set of job identifiers in a YC’s working zone for a planning window
ai the arrival time of job i.
pi the process time of job i by an YC.
di the deadline of job i
mij the time for YC gantry from the position of job i to that of job j.
Si the time an YC starts processing job i.
Ci the time an YC completes processing job i.

J is the set of jobs to be sequenced. m0j is the YC gantry time from its position at the start of the time
window to the position of job j. C0 is the time the YC is available to start to move to the position of its
first job in the YC dispatching sequence.

For a set J of n vehicle jobs with predicted job arrival times ai (i = 1, 2, …, n), deadline di (i = 1, 2,
…, n) and YC gantry times mij (i = 0, 2, …, n; j = 1, 2, …, n), the tardiness of a job Ji is defined as Ti =

1648

Huang, Guo, Hsu, and Lim

max (0, Ci - di), where Ci is the completion time of Ji. The objective of YC dispatching is to find a se-
quence so as to

 Minimize 
Ji

iT
n

1

The completion time for job i is equal to its start time + process time, that is, Ci=Si+pi. When vehicle
arrivals cannot be predicted, an YC can only start to move towards the next job location after the actual
job arrival. Job starting time in this case could be derived as in Equation (1) where job i is the current job
and job j is the next job. If vehicle arrivals can be predicted and the next job is decided, an YC is able to
start moving towards the next job location before the actual vehicle arrival. This is referred to as the pre-
gantry ability. Job starting time with YC pre-gantry ability is shown in Equation (2). The advantage of the
pre-gantry ability is the possibility of utilizing YC idle time between jobs to transfer between different job
locations.
   maCS ijjij

 ,max (1)

  amCS jijij
,max  (2)

Job process time pi is the YC service time for the job. It is a variable which cannot be pre-determined.
More discussions on pi are given later.

The YC dispatching model is flexible to include operation conditions where some vehicles carry more
than one container not stacked on top of each other, to be loaded/unloaded at the same slot location. They
could be simply modeled as several container jobs with the same arrival time but different deadlines. For
situations where several containers are to be loaded/unloaded at the same slot locations one after another,
they will be individual jobs with their own vehicle arrival times, possibly one after another. In both situa-
tions, the YC dispatching algorithm will find a job serving sequence which returns the minimum total tar-
diness for all the jobs. The average job tardiness is the total tardiness divided by the number of jobs.

Figure 1: Search Space of the Problem.

2.2 YC Dispatching Reduced to a Tree-search Problem

We believe that solving the YC dispatching problem as described in the last section by integer program-
ming approach will not be feasible for practical applications. Given an YC dispatching problem of n jobs,
there are n! possible dispatching solutions in total. The solution space can be transformed into a tree-
search problem as shown in Figure 1. The root of the tree is the start node before the first job is selected.
Each path from the start node to a leaf node in the tree represents a complete dispatching sequence of
height n. The edge weight from node i to node j has a value equal to the tardiness of job j if the YC is to
do job j immediately after finishing job i. This edge weight is given by

[1]= J1 [1]= J2 [1]= Jn

S

[2]=J1 [2]=Jn [2]=J3 [2]=J2 [2]=Jn[2]=J3

[n]=Jn

Partial sequence
{J2, Jn}

1649

Huang, Guo, Hsu, and Lim

 Wij = max {0, max (Ci + mij, aj) + pj - dj} (3)
Note that m0j is the YC gantry time from its position at the start of the job sequence to the position of

job j and C0 is the time the YC is available to start to move to the position of its first job in the YC dis-
patching sequence. The task is to find a path of minimum total distance (i.e. minimum total tardiness for a
given n) from the start node to a leaf node that visits each job exactly once. From (3), it can be seen that
each edge weight is not pre-defined and depend on i. In addition, the YC process time pj depends on not
only i but also all other predecessor jobs in the path from s to j. The YC process time depends on whether
this job is at the top of the stack when YC comes to serve this job. A job which is not at the top of the
stack at the beginning of the job sequence may become top of the stack if the containers above it are load-
ed onto vehicles in the early part of the job sequence. We assume that containers at the top of a stack at
the beginning of the job sequence will not be blocked by other containers during reshuffling in the early
part of the job sequence). Our algorithm will guarantee this. pj needs to be dynamically computed in the
process of searching for the optimal job sequence.

2.3 Dynamic Computation of Job Service Time by Simulation

At the beginning of the planning window, the number of containers in each stack of the yard block is giv-
en. The slot, row and tier numbers of the container of each vehicle job are also given. To determine the
service time of a job [i] in a path in the search tree in Figure 1, simulation of the YC operations starting
from the initial yard block status and the first job in the path will be an effective technique. Each job in
the path will change the yard block status which may affect the service time of jobs later in the path. We
have the following assumption in our simulation of the YC operations.

 When storing a container, the YC will put the container at the top of the allocated stack.
 When retrieving a container, the YC will simply take the container if it is on the top tier of the

stack.
 When retrieving a container that is not on the top tier of the stack, the YC will move the contain-

er(s) to the top of a stack of a different row in the same slot (bay). In doing so, the YC will not
choose a stack which has reached the maximum stack height or it will block the container of a job
later in the job sequence. If a suitable stack cannot be identified, a stack in the neighbouring slot
will be used. If a container moved is one for a job later in the job sequence, the job location of
the affected job will be updated.

 The time to unload a container from a vehicle and put it on top of a stack, the time to take a con-
tainer from the top of a stack and load it on a vehicle and the time to move a container from the
top of one stack to the top of another stack are assumed to be approximately the same. Let this
time be Tp.

3 OPTIMAL SEARCH ALGORITHMS

In finding the least-cost path of the YC dispatching problem, we need to traverse the tree to search for the
optimal solution. As the problem is strongly NP-hard, exhaustive search would be time-consuming to
perform. Here we propose to use modified A* search to reduce search time and yet to guarantee
optimality. We derive a heuristic function using domain knowledge of YC operations for the modified A*
search.

3.1 Modified A* Search: MTA*

A modified A* search algorithm (also called branch-and-bound algorithm) is employed to find the opti-
mal job sequence for a YC in a working zone over a planning horizon. It involves simulating YC opera-
tions following various possible dispatching sequences. The algorithm takes as input the predicted vehi-
cle job arrival times and their deadlines for jobs expected in the YC’s working zone in the planning
window. It also takes in the time the YC is available to start the first job in the planning window and its

1650

Huang, Guo, Hsu, and Lim

initial location. This will be the time and position of the YC when this YC finishes its last job in the pre-
vious planning window.

A YC’s dispatching sequence is built by adding jobs to a partial job sequence one at a time. A partial
job sequence with job i as the last job is chosen to be expanded if the value of f(i) = g(i) + h(i) is the min-
imum among all partial sequences. g(i) is the total tardiness from the start node to i and h(i) is the esti-
mated lowest total tardiness from i to a goal node in the search tree in Figure 1. When a job j is added to
a partial sequence, f(j) is computed.

3.1.1 The Total Tardiness of a Partial Sequence, g(i)

Simulation is employed to compute the sequence dependent total tardiness of a (partial) job sequence.
Figure 2 shows the pseudocode.

Figure 2: Pseudocode for simulation to compute g(i).

sequenceTardiness(JobList) { // JobList with job [i] as the last job
 ReInititalizeYardBlock; //start simulation with initial yard block status
 FOR each job j in JobList {
 serveJob(JobList,j);
 Calculate job_tardiness;

update Cummulative Tardiness of Joblist
 }
}

serveJob(JobList, k) { // called from sequenceTardiness()
 YC moves to JobList[k].slot; // YC gantry move
 IF JobList[k].isLoading {
 //Check for reshuffle and update the process time and ContainerLoc
 IF container not at top tier // reshuffle
 FOR each container above the job {
 Set this container’s location to unoccupied

 moveContainer(container’s slot, container’s row, container’s tier)
 }
 Load JobList[k] to vehicle;
 Set container’s location to unoccupied;
 } ELSE { // unloading
 Unload from vehicle to store in stack;
 Increment the stack height;
 Set container’s location to occupied
 }

pk = number of containers moved * Tp;
}

moveContainer(s,r,t) { //Called from serveJob()
 FOR each yard bay b starting from s
 FOR each neighbouring row of r //Shifting to a neighbouring row
 IF height of stack(b, row)< maximum and this stack has no future job {

 Move the container to the stack;
 Set the location to occupied;

 IF container at (s, r, t) is a future job
 Update job location in JobList;

 Return;
 }
}

1651

Huang, Guo, Hsu, and Lim

The function sequenceTardiness() in Figure 2 simulates the YC operations when following a (partial)
job sequence JobList and computes the total job tardiness of this sequence. A (partial) job sequence is a
path starting from node s and ending at a certain node in the tree in Figure 1. The total tardiness is the
sum of Wij as defined by Equation (3) where (i, j) is an edge in the path. The sequence dependent pj is
obtained dynamically by simulating the YC operations in the job sequence. Note that since YC
operations change the yard block status, the block status has to be restored to its original state before the
simulation of a job sequence is done each time (first line in sequenceTardiness() in Figure 2).

Simulating YC operations for each (partial) job sequence has a cost. For each sequence, the compu-
tation time is O(n2) where n is the number of jobs in the sequence. It is O(n2) because for each loading
job simulated, the job sequence needs to be searched to see whether a reshuffled container is a future job.

3.1.2 Lower Bound of Total Tardiness, h(i), of Jobs Not Sequenced Yet

An admissible heuristic h(i) is designed to estimate the lower bound of the total tardiness of jobs not in-
cluded in the job sequence to help evaluate a partial sequence and guide the search for an optimal one.













earlierFk
kpkiki

plater

laterFj
jpjiji

dTamCMax

TFdTamCih

}),max(,0{

 *)]1|(|...21[])),(max([)(

 (4)

h(i) computes the lower bound in total job tardiness of jobs not yet included in the YC dispatching se-
quence if job i is chosen to be the next job in a partial job sequence. Flater is the set of jobs that will defi-
nitely miss their deadlines. These are the jobs such that even if they are processed immediately after the
completion of job i, their completion time will be after their deadlines. The other group Fearlier is the rest
of the jobs. In other words, a job is in Flater if its completion time would be after dj even when it is the
immediate next job to be served after job i. For each job j in Flater, the minimum tardiness is

jjjiji dpamC ),max(, because the earliest time job j may be started after i is),max(jiji amC  .

Since pi for each future job not included in the partial sequence is unknown, Tp is used in its place so that
we will never overestimate the tardiness. Tp is The minimum processing time of a job (time to load or un-
load one container without the need to reshuffle other container(s)).

In addition to the above minimum tardiness just explained, the second job to be handled in Flater has
an additional tardiness of at least one Tp, the minimum processing time of the first job handled in Flater.
The third job to be handled in Flater has an additional tardiness of at least 2*Tp, the sum of minimum job
process times of the first and the second job handled in Flater. Likewise, the last job to be handled in Flater
will have an additional tardiness of at least (| Flater |-1)*Tp , the sum of the job process times for the pre-
vious (| Flater |-1) jobs in Flater. To sum up these minimum tardiness, we have (1 + 2 + … + (| Flater |-
1))*Tp.

Jobs in Fearlier are the ones for which kpiki dTmC  . However, tardiness for a job k in this

set will happen if ak is after iki mC  and its completion time kpk dTa  . Note that pk Ta  is a

very conservative estimation of the job completion time since the actual job service time may be longer
than Tp if reshuffling of containers is required. The minimum tardiness for such a job is

)),max(,0max(kpkiki dTamC 
.

3.2 Prioritized Recursive Backtracking with Heuristics: MT-RBA*

A* search has actually a best-first search feature and thus may take a long time to obtain a solution (i.e.,
not anytime) in the worst case or near-worst case. It is also memory intensive. We therefore propose a

1652

Huang, Guo, Hsu, and Lim

Recursive Backtracking (RB) based algorithm. RB is complete and optimal if the depth of a search tree is
finite and there is no time constraint. It greatly reduces memory usage by keeping only the nodes on cur-
rent path during search. However, it needs to traverse the entire tree to find the optimal solution, which is
time-consuming. We therefore introduce the evaluation function f(i) = g(i) + h(i) which is explained in
section 3.1 to trim the search space. The algorithm MT-RBA* will not miss the optimal solution and will
greatly reduce the computation time of RB. At any time when expanding the current partial job sequence,
if f(i) = g(i) + h(i) is not smaller than the total tardiness of the current best solution, the search path will be
pruned. Therefore, discovery of a good path which has near-optimal total tardiness at the early stage of
the tree search is crucial to the performance of MT-RBA*. For this purpose, we proposed a technique
called prioritized search order which is more likely to discover a good dispatching sequence early in the
planning process, instead of choosing the next job randomly. The prioritized search order we use is the
ascending order of the job deadlines. Intuitively, if the YC serves a job with an earlier deadline first, it
will contribute to the minimization of total job tardiness.

4 PERFORMANCE EVALUATION

4.1 Design of Experiments

To evaluate the performance of the proposed YC dispatching algorithms, YC planning experiments were
carried out. Parameter settings in the experiments were obtained from real world terminal models as in
past projects (Guo et al. 2007). The linear gantry speed of an YC is 7.8km/hour. A yard block has a size
of 36 slots. We conducted experiments where a YC is in charge of one yard block. A planning window of
10 jobs for a YC is simulated.

Vehicle jobs arrive at the yard block at four different arrival rates. We assume that the vehicle inter-
arrival times follow exponential distributions. Mean inter-arrival time is set to 180, 240, 300 and 360 se-
conds respectively. The slot and row numbers of the jobs are generated randomly within the zone. Other
recent studies using randomized container locations include, for example, Zeng and Yang (2009). The ti-
er number of a job is generated according to Table 1.

Table 1: Mixture of jobs

Percentage Job type Tier number of job Percentage

40% Vessel loading Top tier 50%
2nd top tier 30%
3rd top tier 20%

40% Vessel unloading Top tier 100%
10% External truck loading Tier 1, 2, 3, 4 Equal probability
10% External truck unloading Top tier 100%

The deadlines depend on the type of jobs: relatively tight deadlines for loading jobs and less tight

deadlines for unloading jobs. This reflects the fact that it is more important to finish loading jobs on time
than unloading jobs. Following the design of Chu (1992), deadlines are generated from a uniform distri-
bution. Let T = a vehicle’s arrival time + 2 minutes. 2 minutes is the YC time to load/unload one con-
tainer from/to the top of a stack, not including the crane gantry time. In other words, Tp = 2 minutes. For
a vessel loading job, its deadline is a random variable from a uniform distribution with a width of 360 se-
conds around T such that 95% of the time its deadline is after T. Since vehicle arrivals at the yard side
may be late in special cases like traffic congestions or machine break downs, 5% jobs will have deadlines
earlier than T. For a vessel unloading job, the uniform distribution has a range of 720 seconds around T.
5% jobs will have deadlines earlier than T. For external vehicle jobs, the deadline is 30 minutes after the

1653

Huang, Guo, Hsu, and Lim

truck’s arrival. This follows the practice of some terminals where they guarantee that external trucks will
finish their loading/unloading jobs within half an hour after their arrivals to the terminal.

The types of jobs that arrive at the yard block are a mixture of vessel loading/unloading jobs and ex-
ternal truck loading/unloading jobs. We tested a mixture of jobs as shown in Table 1. The percentage of
each type of jobs is set which is similar to the scenarios in a terminal with high volumes for transhipment
containers. When the tier number of a job is not the top tier, reshuffling may be needed depending on the
job sequence as discussed in Section 3.3.

The algorithms MTA* and MT-RBA* are evaluated against the greedy heuristics Earliest Due Date
first (EDD) and Smallest Completion Time Job First (SCJF). EDD and SCJF could find a solution fast
but the optimal solution is not guaranteed. EDD generates job sequences in increasing order of jobs’
deadlines. SCJF is a heuristic algorithm by Ng (2005). For each experimental setting, 30 independent
runs were performed.

4.2 Results and Discussions

Table 2 shows the average job tardiness of the four algorithms tested for the four average inter-arrival
time scenarios. Since MTA* and MT-RBA* compute the optimal job sequence for minimizing job tardi-
ness, their results are the same even though the resulting job sequences may be different. As the average
job inter-arrival time increases, average job tardiness decreases. However, the results confirm that our
optimization algorithms make significant improvements from the greedy heuristics in all tested scenarios.

Table 2: Average job tardiness (seconds)

 IAT 180 IAT 240 IAT 300 IAT 360

MTA* 32.15 26.75 23.08 19.67

MT‐RBA* 32.15 26.75 23.08 19.67

EDD 59.07 47.55 44.25 38.41

SCJF 74.96 58.04 47.94 36.90

Table 3: Computational time (seconds)

 IAT 180 IAT 240 IAT 300 IAT 360

MTA* 462.0 256.0 153.0 131.6

MT‐RBA* 3.7 2.8 2.0 2.3

EDD 0.1 0.1 0.1 0.1

SCJF 0.1 0.1 0.1 0.1

Table 3 shows the average computational times taken by the four algorithms tested for the four aver-

age inter-arrival time scenarios. As expected, the greedy heuristics EDD and SCJF takes little computa-
tional time, much faster than MTA* and MT-RBA*. MTA* is more time consuming than MT-RBA*.
Although MT-RBA* explores more nodes in the search tree than MTA* method because MTA* is opti-
mally effective, it outperforms the MTA* method because it does not have the overhead to maintain the
queue for deciding which node to visit next. The prioritized search order in MT-RBA* also helps to get a
good solution at the beginning of the search which effectively prunes many branches of the search tree at
early stage, reducing computational time.

For both MTA* and MT-RBA*, the computation for heavy workload scenario (average inter-arrival
time of 180 seconds) is much higher than the other scenario. With our mixture of the different job types as
shown in Table 1, the average YC service time is 166 seconds without including inter job gantry time. So
this represents the situation where the YC is almost 100% busy. In such a situation, jobs have smaller in-

1654

Huang, Guo, Hsu, and Lim

ter-arrival time differences and the optimal sequence is harder to find. This can be explained using queu-
ing theory: the closer the job arrival rate is to the process rate (YC handling rate), the higher probability
there is to see queuing jobs. When several vehicle jobs wait for the YC service, their relative job locations
would be an important factor in determining the optimal service order. The algorithms may need to ex-
pand and evaluate more alternative job sequences in finding the optimal, resulting in longer computation-
al times. However, MT-RBA* only takes a few seconds to find the optimal solution.

Our admissible heuristic h(i) designed to estimate the lower bound of the total tardiness of jobs not
yet included in the job sequence has no knowledge of the actual YC process time for a job. However the
results in Table 3 show that h(i) is effective to reduce search time for an optimal solution. The results in
Table 3 also show that it is feasible to embed simulation to obtain the sequence dependent YC process
times in the computation of the total tardiness of alternative job sequences in the optimal YC dispatching
algorithms. For the tested scenarios, the total computational time which includes the time for the embed-
ded simulation is not excessive and is in fact quite reasonable.

5 CONCLUSION

We propose to compute job sequences for YCs to minimize vehicle job tardiness instead of minimizing
vehicle waiting time. This helps vehicles to support QC operations with minimal delays in the loading
and unloading process and therefore reduce vessel turnaround time. We present a modified A* search al-
gorithm MTA* with an admissible heuristic to compute optimal YC dispatching solutions to minimize
vehicle job tardiness in the storage yard. To overcome the large memory usage limitation of the MTA*
search, we further present MT-RBA* algorithm that combine the advantages of A*search and Backtrack-
ing with prioritized search order.

In real operations, containers involved in a YC job may not be on top of the stack. To handle such
jobs, some containers have to be moved first. Such scenarios are very often ignored in some other stud-
ies. In order to consider such jobs in the planning of YC dispatching sequence, simulation is embedded in
our optimization algorithms to help provide accurate YC service times. This results in a more accurate
evaluation of job tardiness. Experiments were carried out to evaluate the algorithms under four levels of
job arrival rates. Our results show that the proposed algorithms consistently perform very well in all
tested cases, significantly reducing the vehicle job tardiness. Our planning window of 10 jobs represents
30 minutes (IAT = 180 seconds) to one hour (IAT = 360 seconds) terminal operation time. The computa-
tional time used in planning by MT-RBA* is only a few seconds.

Future work includes more comprehensive evaluation of our algorithms. For example, a different dis-
tribution of the job deadlines may be used. How the computational time will increase when a longer
planning window has to be handled should also be investigated. In fact, the time spent in the embedded
simulation can be reduced if the yard block status can be saved for partial sequences. In this way, we do
not need to start simulation from the first job in the sequence each time. However, this will significantly
increase the memory usage of the algorithms. Therefore whether the saving in time will out-weigh the
higher costs in memory has to be evaluated.

ACKNOWLEDGMENTS

This project is funded by the NOL Fellowship program.

REFERENCES

Cao, Z., D. H. Lee, and Q. Meng. 2008. Deployment strategies of double-rail-mounted gantry crane sys-
tems for loading outbound containers in container terminals, International Journal of Production
Economics, 115, 221–228.

1655

Huang, Guo, Hsu, and Lim

Guo, X, S. Y. Huang, W. J. Hsu, M. Y. H. Low, T. H. Chan, and J.H. Liu. 2007. Vehicle Dispatching
with real time location information in container terminals, In Proceedings of the European Modeling
and Simulation Symposium.

Guo, X., S. Y. Huang, W. J. Hsu, M. Y. H. Low. 2011. Dynamic Yard Crane Dispatching in Container
Terminals with Predicted Vehicle Arrival Information, Advanced Engineering Informatics, 25(3),
472-484.

Jung, S. H., and K. H. Kim. 2006. Load scheduling for multiple quay cranes in port container terminals,
Journal of Intelligent Manufacturing, 17, 479–492.

Kim, K. H., J. S. Kang, and K. R. Ryu. 2004. A beam search algorithm for the load sequencing of out-
bound containers in port container terminals, OR Spectrum, 26, 93–116.

Kim, K. M., and K. Y. Kim. 1999. An optimal routing algorithm for a transfer crane in port container
terminals, Transportation Science, 33(1), 17–33.

Kim, K. Y., and K. H. Kim. 2003. Heuristic algorithms for routing yard-side equipment for minimizing
loading times in container terminals, Naval Research Logistics, 50, 498–514.

Lee, L. H., E. P. Chew, K. C. Tan, and Y.B. Han. 2006. An optimization model for storage yard manage-
ment in transshipment hubs, OR Spectrum, 28, 539-561.

Li, W., Y. Wu, M. Petering, M. Goh, and R. d. Souza. 2009. Discrete time model and algorithms for con-
tainer yard crane scheduling, European Journal of Operational Research, 198, 165–172.

Narasimhan A. and U.S. Palekar. 2002. Analysis and Algorithm for the Transtainer Routing Problem in
Container Port Operation, Transportation Science 36(1), 63–78.

Ng, W. C. 2005. Crane scheduling in container yards with intercrane interference, European Journal of
Operational Research, 164, 64–78.

Ng, W. C. and K. L. Mak. 2005. An effective heuristic for scheduling a yard crane to handle jobs with
different ready times, Engineering Optimization, 37(8), 867-877.

Steenken, D., S. Voβ, and R. Stahlbock. 2004. Container terminal operation and operations research – a
classification and literature review, OR Spectrum, 26, 3-49.

Zeng, Q. and Z. Yang. 2009. Integrating simulation and optimization to schedule loading operations in
container terminals, Computers & Operations Research, 36(6), 1935–1944.

AUTHOR BIOGRAPHIES

SHELLYING HUANG is a senior lecturer in School of Computer Engineering at Nanyang Technologi-
cal University (NTU), Singapore. Her research interests are in intelligent decision support systems, simu-
lation optimization, heuristics and logistic systems. Her email address is ASSYHUANG@ntu.edu.sg.

XI GUO obtained her Ph.D. from School of Computer Engineering, NTU, Singapore. Her research inter-
ests include real time control, artificial intelligence, and efficiency enhancement techniques for simula-
tion-based optimization. She is now with Murex (Singapore). Her email address is guox0006@ntu.edu.sg.

WEN JING HSU is an associate professor in School of Computer Engineering at NTU, Singapore. His
research interests include parallel and distributed processing and Provable efficient algorithms. His email
address is hsu@ntu.edu.sg.

WEI LIN LIM is a final year undergraduate student in School of Computer Engineering at NTU, Singa-
pore. Her email address is LIMW0129@e.ntu.edu.sg.

1656

