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ABSTRACT 

Two optimal algorithms, MTA* and MT-RBA*, are presented to find the optimal yard crane (YC) job 
sequence for serving a fleet of vehicles for delivery and pickup jobs with scheduled deadlines and pre-
dicted vehicle arrival times. The objective is to minimize the total tardiness of incoming vehicle jobs. This 
is important for minimizing vessel turnaround time. In the search for an optimal job sequence,  the eval-
uation of the total tardiness of (partial) job sequences requires sequence dependent job service times.  
Simulation is embedded in our optimization algorithms to help provide accurate YC service times.  This 
results in a more accurate evaluation of job tardiness but incurs costs. Experimental results show that this 
is feasible despite the simulation costs. MTA* and MT-RBA* significantly outperform the Earliest Due 
Date First and the Smallest Completion time Job First heuristics in minimizing job tardiness. MT-RBA*  
is computationally more efficient.  

1 INTRODUCTION 

Container terminals serve as crucial hubs in the global transportation chain of the ever increasing cargo 
flows. When a vessel berths at a terminal, a number of Quay Cranes (QCs) are allocated to serve the ves-
sel. QCs first unload containers from the vessel onto in-terminal vehicles for transferring them to the con-
tainer storage yard. A vehicle would take the containers to specific job locations at various yard blocks in 
the storage yard.  Yard Cranes (YCs) pick up the containers from the vehicles and temporarily store them 
in the yard blocks. The operation of loading containers onto a vessel is carried out in the reverse order.  
External trucks come into the storage yard through terminal gates to the yard blocks to get export contain-
ers unloaded or import containers loaded by YCs.  

One of the most important objectives of terminal operations is to reduce vessel turnaround time 
(Steenken et al. 2004). Previous studies have pointed out that YC operations are of great importance and 
are likely to be a potential bottleneck to the overall terminal performance (Li et al. 2009).  This is because 
when vehicles are delayed in the storage yard, they will not be able to reach their QCs on time.  As a re-
sult, QCs’ loading/unloading operations will be delayed and vessel turnaround time lengthened.  In YC 
operation management there are two main problems: (i) deciding job sequence for an YC which we refer 
to as the YC dispatching problem; (ii) allocating YCs to different parts of the yard which we refer to as 
the YC deployment problem.  We study the YC dispatching problem in this paper. 

The YC dispatching problem was studied by Kim and Kim (1999) where they considered the loading 
operations only for a single YC with a given load plan and a given bay plan. A Mixed Integer Program-
ming (MIP) model is proposed to minimize the total gantry time of the YC. Later, Kim and Kim (2003) 
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and Kim et al. (2004) extended the study of this problem by comparing exact optimization, a beam search 
heuristic and a Genetic Algorithm (GA). Ng and Mak (2005) developed a heuristic to solve the single YC 
dispatching problem with different ready times to minimize the total job waiting time.  It is known that 
for large problems, the MIP model has limited applicability due to the excessive computational times. On 
the other hand, heuristics cannot guarantee optimal solutions.  Guo et al. (2011) applied A* search to 
compute optimal single YC dispatching sequence based on vehicle arrival times to minimize vehicle wait-
ing times.  

Jung and Kim (2006) considered 2 YCs working in one shared zone to support vessels loadings with 
a GA and a Simulated Annealing (SA) algorithm to minimize the make-span, i.e. the period between the 
starting time of the first YC operation and the finishing time of the last YC operation. Lee et al. (2006) 
considered 2 YCs working in 2 non-overlapping zones with a SA algorithm to minimize the make-span. 
Cao et al. (2008) considered Double-Rail-Mounted gantry (DRMG) crane systems where two YCs can 
pass through each other along a row of blocks with a combined greedy and SA algorithm to minimize the 
loading time of containers. 

In many works presented in the past, the objective of the YC dispatching algorithm is to minimize the 
total (average) vehicle waiting time or to minimize the make-span. While minimizing vehicle waiting 
times or minimizing make-span often helps reduce the vessel turnaround time, they may result in vehicles 
getting to the quayside earlier than they are needed.  A more effective way to help reduce vessel turna-
round time is to help minimize QC waiting time for a vehicle.  This translates to minimizing vehicle job 
tardiness at a yard block. The vehicle job tardiness is with respect to the time a vehicle is scheduled to fin-
ish the transfer of container from/to a yard block.  This time is referred to as the deadline of the vehicle 
job.  It is not with respect to the time the vehicle arrives at the yard block.  For example, consider a load-
ing job, based on the time a QC needs the vehicle at the quayside, the time this vehicle should leave the 
yard block with the container to travel to the quayside (the deadline of this vehicle job) can be derived as-
suming no traffic congestions.  The deadline of the job is the time the QC needs the vehicle minus the ex-
pected travel time from the yard block to the QC.  Depending on which vehicle is assigned this loading 
job, the vehicle’s arrival time at the yard block can be derived/predicted.  Given the deadlines of the vehi-
cle jobs and their predicted arrival times at the yard block, the YC dispatching algorithm that computes its 
serving sequence to minimize the average (total) job tardiness will be more effective in reducing vessel 
turnaround time.   

When designing a YC dispatching algorithm, many previous work assumes that the YC service times 
for vehicle jobs are constant (Cao et al. 2008; Jung and Kim 2006;  Lee et al. 2006 Guo et al. 2011).  This 
is correct when the container to be retrieved/stored is on the top of the container stack in the yard.  The 
scenarios where the containers to be retrieved/stored are not on top of the stack and thus the times to re-
shuffle some containers are not considered.  This assumption simplifies the logic of the algorithms but re-
duces the applicability of the algorithms in real operations.  However, it is not a simple matter of assum-
ing that YC service time will be x times the time to move one container if the container to be retrieved is 
xth from the top of stack at the time the YC job sequence is planned.  Consider a container a that is 3rd 
from the top of the stack at the time the job sequence is to be planned.  The two containers above a may 
or may not be in the set of YC jobs to be planned or one of them may be in the set of jobs. If both of them 
are not in the set of jobs, they need to be moved to neighbouring rows before a can be retrieved.  If both 
of them are in the set, one, two or none of them may need to be moved before a can be retrieved, depend-
ing on whether one or none or both have been retrieved earlier in the job sequence.  Therefore, YC ser-
vice time for a job is sequence dependent.  When a YC dispatching algorithm searches for an optimal job 
sequence, the sequence dependent service times need to be used to evaluate the quality of a sequence 
among the alternatives.   

Simulation of YC job sequence will enable accurate estimation of YC job service times which leads 
to accurate evaluation of total job tardiness of a sequence.  Without employing simulation, an alternative 
may be to use the tier number of each container job at the time the YC job sequence is planned to estimate 
how many containers need to be moved and deduce the service times. This obviously will return wrong 
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service times from time to time.  On the other hand, simulation of each job sequence incurs computational 
costs and YC dispatching is NP-hard (Narasimhan and Palekar 2002).  Whether embedding simulation in 
the YC dispatching algorithm will incur prohibitive computational costs needs to be investigated. 

We propose two provably optimal algorithms for an YC to handle the jobs in its assigned zone within 
a planning window efficiently. The algorithms take the predicted job arrival times and deadlines as inputs 
and minimize average job tardiness.  We embed simulation to estimate the sequence dependent YC ser-
vices times for jobs and to compute total job tardiness of a sequence.  Our algorithms are evaluated 
against the Earliest Due Date first (EDD) and the Smallest Completion time Job First (SCJF).  Our algo-
rithms could find the best dispatching sequence with reasonable computational time in solving problems 
of practical sizes. 

The rest of the paper is structured as follows. Firstly, a formal description of the YC dispatching prob-
lem is given in Section 2.  Then two new algorithms with embedded simulation are proposed in Section 3 
and the experimental evaluations of the proposed algorithms are presented in Section 4. Conclusion is 
drawn in the last section. 

2 PROBLEM FORMULATION 

2.1 General Description 

The following assumptions are made in the YC dispatching model: 
 Each vehicle job involves one container only. If a vehicle carries two containers stacked together 

and to be delivered at different locations, it will go to the delivery location of the top container 
first. A vehicle carrying multiple containers not stacked together and to be delivered at the same 
destination slot location is modeled as multiple container jobs as explained later.  

 In each working zone in the yard, there is only one YC. Vehicles come to the zone for loading or 
unloading of containers. 

 The deadlines of vehicle jobs are given. 
 The vehicle arrival times can be predicted for a relatively short planning window, e.g. 30 minutes, 

and are given.  
 YC gantry time between two job positions could be predicted with high accuracy as gantry speed 

is usually quite consistent. 
 The slot location (yard bay), the row and tier numbers of the container in each vehicle job are 

given. 
 The yard block status (how many containers are stored in each stack) is given. 

In our formulation, the following notations are used: 
 

J = {1, 2, …, n},    the set of job identifiers in a YC’s working zone for a planning window 
ai   the arrival time of job i. 
pi  the process time of job i by an YC.  
di  the deadline of job i 
mij   the time for YC gantry from the position of job i to that of job j.  
Si  the time an YC starts processing job i. 
Ci  the time an YC completes processing job i.   
 

J is the set of jobs to be sequenced. m0j is the YC gantry time from its position at the start of the time 
window to the position of job j.  C0 is the time the YC is available to start to move to the position of its 
first job in the YC dispatching sequence. 

For a set J of n vehicle jobs with predicted job arrival times ai (i = 1, 2, …, n), deadline di (i = 1, 2, 
…, n) and YC gantry times mij (i = 0, 2, …, n; j = 1, 2, …, n), the tardiness of a job Ji is defined as Ti = 
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max (0, Ci - di ), where Ci is the completion time of Ji. The objective of YC dispatching is to find a se-
quence so as to  

  Minimize 
Ji

iT
n

1   

The completion time for job i is equal to its start time + process time, that is, Ci=Si+pi.  When vehicle 
arrivals cannot be predicted, an YC can only start to move towards the next job location after the actual 
job arrival. Job starting time in this case could be derived as in Equation (1) where job i is the current job 
and job j is the next job. If vehicle arrivals can be predicted and the next job is decided, an YC is able to 
start moving towards the next job location before the actual vehicle arrival. This is referred to as the pre-
gantry ability. Job starting time with YC pre-gantry ability is shown in Equation (2). The advantage of the 
pre-gantry ability is the possibility of utilizing YC idle time between jobs to transfer between different job 
locations. 
     maCS ijjij

 ,max     (1) 

    amCS jijij
,max    (2) 

Job process time pi is the YC service time for the job.   It is a variable which cannot be pre-determined. 
More discussions on pi are given later. 

The YC dispatching model is flexible to include operation conditions where some vehicles carry more 
than one container not stacked on top of each other, to be loaded/unloaded at the same slot location. They 
could be simply modeled as several container jobs with the same arrival time but different deadlines. For 
situations where several containers are to be loaded/unloaded at the same slot locations one after another, 
they will be individual jobs with their own vehicle arrival times, possibly one after another. In both situa-
tions, the YC dispatching algorithm will find a job serving sequence which returns the minimum total tar-
diness for all the jobs. The average job tardiness is the total tardiness divided by the number of jobs. 

 

 
 

Figure 1:  Search Space of the Problem. 

2.2 YC Dispatching Reduced to a Tree-search Problem 

We believe that solving the YC dispatching problem as described in the last section by integer program-
ming approach will not be feasible for practical applications. Given an YC dispatching problem of n jobs, 
there are n! possible dispatching solutions in total. The solution space can be transformed into a tree-
search problem as shown in Figure 1. The root of the tree is the start node before the first job is selected. 
Each path from the start node to a leaf node in the tree represents a complete dispatching sequence of 
height n. The edge weight from node i to node j has a value equal to the tardiness of job j if the YC is to 
do job j immediately after finishing job i. This edge weight is given by 

 

[1]= J1   [1]= J2  [1]= Jn

S

[2]=J1  [2]=Jn  [2]=J3 [2]=J2   [2]=Jn[2]=J3  

[n]=Jn  

Partial sequence 
{J2, Jn} 
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   Wij = max {0, max (Ci + mij, aj) + pj - dj}   (3) 
Note that m0j is the YC gantry time from its position at the start of the job sequence to the position of 

job j and C0 is the time the YC is available to start to move to the position of its first job in the YC dis-
patching sequence. The task is to find a path of minimum total distance (i.e. minimum total tardiness for a 
given n) from the start node to a leaf node that visits each job exactly once. From (3), it can be seen that 
each edge weight is not pre-defined and depend on i. In addition, the YC process time pj depends on not 
only i but also all other predecessor jobs in the path from s to j.  The YC process time depends on whether 
this job is at the top of the stack when YC comes to serve this job.  A job which is not at the top of the 
stack at the beginning of the job sequence may become top of the stack if the containers above it are load-
ed onto vehicles in the early part of the job sequence.  We assume that containers at the top of a stack at 
the beginning of the job sequence will not be blocked by other containers during reshuffling in the early 
part of the job sequence).  Our algorithm will guarantee this.  pj needs to be dynamically computed in the 
process of searching for the optimal job sequence. 

2.3 Dynamic Computation of Job Service Time by Simulation 

At the beginning of the planning window, the number of containers in each stack of the yard block is giv-
en.  The slot, row and tier numbers of the container of each vehicle job are also given. To determine the 
service time of a job [i] in a path in the search tree in Figure 1, simulation of the YC operations starting 
from the initial yard block status and the first job in the path will be an effective technique.  Each job in 
the path will change the yard block status which may affect the service time of jobs later in the path.  We 
have the following assumption in our simulation of the YC operations. 

 When storing a container, the YC will put the container at the top of the allocated stack. 
 When retrieving a container, the YC will simply take the container if it is on the top tier of the 

stack. 
 When retrieving a container that is not on the top tier of the stack, the YC will move the contain-

er(s) to the top of a stack of a different row in the same slot (bay).  In doing so, the YC will not 
choose a stack which has reached the maximum stack height or it will block the container of a job 
later in the job sequence.  If a suitable stack cannot be identified, a stack in the neighbouring slot 
will be used.  If a container moved is one for a job later in the job sequence, the job location of 
the affected job will be updated. 

 The time to unload a container from a vehicle and put it on top of a stack, the time to take a con-
tainer from the top of a stack and load it on a vehicle and the time to move a container from the 
top of one stack to the top of another stack are assumed to be approximately the same. Let this 
time be Tp. 

3 OPTIMAL SEARCH ALGORITHMS 

In finding the least-cost path of the YC dispatching problem, we need to traverse the tree to search for the 
optimal solution. As the problem is strongly NP-hard, exhaustive search would be time-consuming to 
perform. Here we propose to use modified A* search to reduce search time and yet to guarantee 
optimality. We derive a heuristic function using domain knowledge of YC operations for the modified A* 
search. 

3.1 Modified A* Search: MTA* 

A modified A* search algorithm (also called branch-and-bound algorithm) is employed to find the opti-
mal job sequence for a YC in a working zone over a planning horizon. It involves simulating YC opera-
tions following various possible dispatching sequences.  The algorithm takes as input the predicted vehi-
cle job arrival times and their deadlines for jobs expected in the YC’s working zone in the planning 
window. It also takes in the time the YC is available to start the first job in the planning window and its 
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initial location.  This will be the time and position of the YC when this YC finishes its last job in the pre-
vious planning window.  

A YC’s dispatching sequence is built by adding jobs to a partial job sequence one at a time.  A partial 
job sequence with job i as the last job is chosen to be expanded if the value of f(i) = g(i) + h(i) is the min-
imum among all partial sequences. g(i) is the total tardiness from the start node to i and h(i) is the esti-
mated lowest total tardiness from i to a goal node in the search tree in Figure 1.  When a job j is added to 
a partial sequence, f(j) is computed. 

3.1.1 The Total Tardiness of a Partial Sequence, g(i) 

Simulation is employed to compute the sequence dependent total tardiness of a (partial) job sequence.  
Figure 2 shows the pseudocode. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2:  Pseudocode for simulation to compute g(i). 

 

sequenceTardiness(JobList) {  // JobList with job [i] as the last job 
  ReInititalizeYardBlock; //start simulation with initial yard block status 
  FOR each job j in JobList    { 
 serveJob(JobList,j); 
   Calculate job_tardiness; 

update Cummulative Tardiness of Joblist 
  } 
} 
 
serveJob(JobList, k) {    // called from sequenceTardiness() 
  YC moves to JobList[k].slot;   // YC gantry move  
  IF JobList[k].isLoading  { 
 //Check for reshuffle and update the process time and ContainerLoc 
 IF container not at top tier   // reshuffle   
  FOR each container above the job  { 
   Set this container’s location to unoccupied  

  moveContainer(container’s slot, container’s row, container’s tier) 
  } 
 Load JobList[k] to vehicle; 
 Set container’s location to unoccupied; 
  }  ELSE  {   // unloading 
 Unload from vehicle to store in stack; 
 Increment the stack height; 
 Set container’s location to occupied 
  } 

pk = number of containers moved * Tp; 
} 
 
moveContainer(s,r,t) {   //Called from serveJob() 
   FOR each yard bay b starting from s 
    FOR each neighbouring row of r  //Shifting to a neighbouring row 
   IF height of stack(b, row)< maximum and this stack has no future job { 

       Move the container to the stack; 
       Set the location to occupied; 

        IF container at (s, r, t) is a future job   
      Update job location in JobList; 

      Return; 
   } 
} 
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The function sequenceTardiness() in Figure 2 simulates the YC operations when following a (partial) 
job sequence JobList and computes the total job tardiness of this sequence.  A (partial) job sequence is a 
path starting from node s and ending at a certain node in the tree in Figure 1.  The total tardiness is the 
sum of Wij as defined by Equation (3) where (i, j) is an edge in the path. The sequence dependent pj is  
obtained dynamically by simulating the YC operations in the job sequence.  Note that since YC 
operations change the yard block status, the block status has to be restored to its original state before the 
simulation of a job sequence is done each time (first line in sequenceTardiness() in Figure 2). 

Simulating YC operations for each (partial)  job sequence has a cost.  For each sequence, the compu-
tation time is O(n2) where n is the number of jobs in the sequence.  It is O(n2) because for each loading 
job simulated, the job sequence needs to be searched to see whether a reshuffled container is a future job. 

3.1.2 Lower Bound of Total Tardiness, h(i), of Jobs Not Sequenced Yet 

An admissible heuristic h(i) is designed to estimate the lower bound of the total tardiness of jobs not in-
cluded in the job sequence to help evaluate a partial sequence and guide the search for an optimal one. 













earlierFk
kpkiki

plater

laterFj
jpjiji

dTamCMax

TFdTamCih

}),max(,0{

 *)]1|(|...21[])),(max([)(

      (4)
 

 
h(i) computes the lower bound in total job tardiness of jobs not yet included in the YC dispatching se-
quence if job i is chosen to be the next job in a partial job sequence.  Flater is the set of jobs that will defi-
nitely miss their deadlines.  These are the jobs such that even if they are processed immediately after the 
completion of job i, their completion time will be after their deadlines.  The other group Fearlier is the rest 
of the jobs.  In other words, a job is in Flater if its completion time would be after dj even when it is the 
immediate next job to be served after job i.  For each job j in Flater, the minimum tardiness is 

jjjiji dpamC  ),max( , because the earliest time job j may be started after i is ),max( jiji amC  .  

Since pi for each future job not included in the partial sequence is unknown, Tp is used in its place so that 
we will never overestimate the tardiness.  Tp is The minimum processing time of a job (time to load or un-
load one container without the need to reshuffle other container(s)).   

In addition to the above minimum tardiness just explained, the second job to be handled in Flater has 
an additional tardiness of at least one Tp, the minimum processing time of the first job handled in Flater.   
The third job to be handled in Flater has an additional tardiness of at least 2*Tp, the sum of minimum job 
process times of the first and the second job handled in Flater.  Likewise, the last job to be handled in Flater 
will have an additional tardiness of at least ( | Flater |-1)*Tp , the sum of the job process times for the pre-
vious (| Flater |-1) jobs in Flater.  To sum up these minimum tardiness, we have (1 + 2 + … + ( | Flater |-
1))*Tp. 

Jobs in Fearlier are the ones for which kpiki dTmC  .  However, tardiness for a job k in this 

set will happen if ak is after iki mC  and its completion time kpk dTa  .  Note that pk Ta   is a 

very conservative estimation of the job completion time since the actual job service time may be longer 
than Tp if reshuffling of containers is required.  The minimum tardiness for such a job is 

)),max(,0max( kpkiki dTamC 
.
 

3.2 Prioritized Recursive Backtracking with Heuristics: MT-RBA* 

A* search has actually a best-first search feature and thus may take a long time to obtain a solution (i.e., 
not anytime) in the worst case or near-worst case. It is also memory intensive.  We therefore propose a 
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Recursive Backtracking (RB) based algorithm.  RB is complete and optimal if the depth of a search tree is 
finite and there is no time constraint. It greatly reduces memory usage by keeping only the nodes on cur-
rent path during search.  However, it needs to traverse the entire tree to find the optimal solution, which is 
time-consuming.  We therefore introduce the evaluation function f(i) = g(i) + h(i) which is explained in 
section 3.1 to trim the search space.  The algorithm MT-RBA* will not miss the optimal solution and will 
greatly reduce the computation time of RB.  At any time when expanding the current partial job sequence, 
if f(i) = g(i) + h(i) is not smaller than the total tardiness of the current best solution, the search path will be 
pruned.  Therefore, discovery of a good path which has near-optimal total tardiness at the early stage of 
the tree search is crucial to the performance of MT-RBA*.  For this purpose, we proposed a technique 
called prioritized search order which is more likely to discover a good dispatching sequence early in the 
planning process, instead of choosing the next job randomly. The prioritized search order we use is the 
ascending order of the job deadlines.  Intuitively, if the YC serves a job with an earlier deadline first, it 
will contribute to the minimization of total job tardiness. 

4 PERFORMANCE EVALUATION 

4.1 Design of Experiments 

To evaluate the performance of the proposed YC dispatching algorithms, YC planning experiments were 
carried out. Parameter settings in the experiments were obtained from real world terminal models as in 
past projects (Guo et al. 2007). The linear gantry speed of an YC is 7.8km/hour. A yard block has a size 
of 36 slots. We conducted experiments where a YC is in charge of one yard block. A planning window of 
10 jobs for a YC is simulated.  

Vehicle jobs arrive at the yard block at four different arrival rates. We assume that the vehicle inter-
arrival times follow exponential distributions. Mean inter-arrival time is set to 180, 240, 300 and 360 se-
conds respectively.  The slot and row numbers of the jobs are generated randomly within the zone. Other 
recent studies using randomized container locations include, for example, Zeng and Yang (2009).  The ti-
er number of a job is generated according to Table 1. 

 
Table 1: Mixture of jobs 

Percentage Job type Tier number of job Percentage 

40% Vessel loading Top tier 50% 
2nd top tier 30% 
3rd top tier 20% 

40% Vessel unloading Top tier 100% 
10% External truck loading Tier 1, 2, 3, 4 Equal probability 
10% External truck unloading Top tier 100% 

 
The deadlines depend on the type of jobs: relatively tight deadlines for loading jobs and less tight 

deadlines for unloading jobs. This reflects the fact that it is more important to finish loading jobs on time 
than unloading jobs.  Following the design of Chu (1992), deadlines are generated from a uniform distri-
bution.  Let T = a vehicle’s arrival time + 2 minutes.  2 minutes is the YC time to load/unload one con-
tainer from/to the top of a stack, not including the crane gantry time.  In other words, Tp = 2 minutes.  For 
a vessel loading job, its deadline is a random variable from a uniform distribution with a width of 360 se-
conds around T such that 95% of the time its deadline is after T. Since vehicle arrivals at the yard side 
may be late in special cases like traffic congestions or machine break downs, 5% jobs will have deadlines 
earlier than T. For a vessel unloading job, the uniform distribution has a range of 720 seconds around T.  
5% jobs will have deadlines earlier than T.  For external vehicle jobs, the deadline is 30 minutes after the 
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truck’s arrival.  This follows the practice of some terminals where they guarantee that external trucks will 
finish their loading/unloading jobs within half an hour after their arrivals to the terminal. 

The types of jobs that arrive at the yard block are a mixture of vessel loading/unloading jobs and ex-
ternal truck loading/unloading jobs.  We tested a mixture of jobs as shown in Table 1.  The percentage of 
each type of jobs is set which is similar to the scenarios in a terminal with high volumes for transhipment 
containers.  When the tier number of a job is not the top tier, reshuffling may be needed depending on the 
job sequence as discussed in Section 3.3. 

The algorithms MTA* and MT-RBA* are evaluated against the greedy heuristics Earliest Due Date 
first (EDD) and Smallest Completion Time Job First (SCJF).  EDD and SCJF could find a solution fast 
but the optimal solution is not guaranteed. EDD generates job sequences in increasing order of jobs’ 
deadlines. SCJF is a heuristic algorithm by Ng (2005).  For each experimental setting, 30 independent 
runs were performed. 

4.2 Results and Discussions 

Table 2 shows the average job tardiness of the four algorithms tested for the four average inter-arrival 
time scenarios.  Since MTA* and MT-RBA* compute the optimal job sequence for minimizing job tardi-
ness, their results are the same even though the resulting job sequences may be different.   As the average 
job inter-arrival time increases, average job tardiness decreases.  However, the results confirm that our 
optimization algorithms make significant improvements from the greedy heuristics in all tested scenarios. 
 

Table 2: Average job tardiness (seconds) 

 IAT 180  IAT 240  IAT 300  IAT 360 

MTA*   32.15  26.75  23.08  19.67 

MT‐RBA*  32.15  26.75  23.08  19.67 

EDD  59.07  47.55  44.25  38.41 

SCJF  74.96  58.04  47.94  36.90 

 

Table 3: Computational time (seconds) 

 IAT 180  IAT 240  IAT 300  IAT 360 

MTA*   462.0  256.0  153.0  131.6 

MT‐RBA*  3.7  2.8  2.0  2.3 

EDD  0.1  0.1  0.1  0.1 

SCJF  0.1  0.1  0.1  0.1 

 
Table 3 shows the average computational times taken by the four algorithms tested for the four aver-

age inter-arrival time scenarios.  As expected, the greedy heuristics EDD and SCJF takes little computa-
tional time, much faster than MTA* and MT-RBA*.  MTA* is more time consuming than MT-RBA*.  
Although MT-RBA* explores more nodes in the search tree than MTA* method because MTA* is opti-
mally effective, it outperforms the MTA* method because it does not have the overhead to maintain the 
queue for deciding which node to visit next.  The prioritized search order in MT-RBA* also helps to get a 
good solution at the beginning of the search which effectively prunes many branches of the search tree at 
early stage, reducing computational time. 

For both MTA* and MT-RBA*, the computation for heavy workload scenario (average inter-arrival 
time of 180 seconds) is much higher than the other scenario. With our mixture of the different job types as 
shown in Table 1, the average YC service time is 166 seconds without including inter job gantry time.  So 
this represents the situation where the YC is almost 100% busy.  In such a situation, jobs have smaller in-
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ter-arrival time differences and the optimal sequence is harder to find. This can be explained using queu-
ing theory: the closer the job arrival rate is to the process rate (YC handling rate), the higher probability 
there is to see queuing jobs. When several vehicle jobs wait for the YC service, their relative job locations 
would be an important factor in determining the optimal service order. The algorithms may need to ex-
pand and evaluate more alternative job sequences in finding the optimal, resulting in longer computation-
al times.  However, MT-RBA* only takes a few seconds to find the optimal solution. 

Our admissible heuristic h(i) designed to estimate the lower bound of the total tardiness of jobs not 
yet included in the job sequence has no knowledge of the actual YC process time for a job.  However the 
results in Table 3 show that h(i) is effective to reduce search time for an optimal solution.  The results in 
Table 3 also show that it is feasible to embed simulation to obtain the sequence dependent YC process 
times in the computation of the total tardiness of alternative job sequences in the optimal YC dispatching 
algorithms.  For the tested scenarios, the total computational time which includes the time for the embed-
ded simulation is not excessive and is in fact quite reasonable. 

5 CONCLUSION 

We propose to compute job sequences for YCs to minimize vehicle job tardiness instead of minimizing 
vehicle waiting time.  This helps vehicles to support QC operations with minimal delays in the loading 
and unloading process and therefore reduce vessel turnaround time.  We present a modified A* search al-
gorithm MTA* with an admissible heuristic to compute optimal YC dispatching solutions to minimize 
vehicle job tardiness in the storage yard. To overcome the large memory usage limitation of the MTA* 
search, we further present MT-RBA* algorithm that combine the advantages of A*search and Backtrack-
ing with prioritized search order.   

In real operations, containers involved in a YC job may not be on top of the stack.  To handle such 
jobs, some containers have to be moved first.  Such scenarios are very often ignored in some other stud-
ies.  In order to consider such jobs in the planning of YC dispatching sequence, simulation is embedded in 
our optimization algorithms to help provide accurate YC service times.  This results in a more accurate 
evaluation of job tardiness.  Experiments were carried out to evaluate the algorithms under four levels of 
job arrival rates.   Our results show that the proposed algorithms consistently perform very well in all 
tested cases, significantly reducing the vehicle job tardiness.  Our planning window of 10 jobs represents 
30 minutes (IAT = 180 seconds) to one hour (IAT = 360 seconds) terminal operation time.  The computa-
tional time used in planning by MT-RBA* is only a few seconds. 

Future work includes more comprehensive evaluation of our algorithms.  For example, a different dis-
tribution of the job deadlines may be used.  How the computational time will increase when a longer 
planning window has to be handled should also be investigated.  In fact, the time spent in the embedded 
simulation can be reduced if the yard block status can be saved for partial sequences.  In this way, we do 
not need to start simulation from the first job in the sequence each time.  However, this will significantly 
increase the memory usage of the algorithms.  Therefore whether the saving in time will out-weigh the 
higher costs in memory has to be evaluated. 
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