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ABSTRACT

Stochastic Approximation (SA) is arguably the most investigated amongst algorithms for solving local
continuous simulation optimization problems. Despite its enduring popularity, the prevailing opinion is
that the finite-time performance of SA-type algorithms is still not robust to SA’s sequence of algorithm
parameters. In the last two decades, two major advances have been proposed toward alleviating this issue:
(i) Polyak-Ruppert averaging where SA is executed in multiple time scales to allow for the algorithm
iterates to use large (initial) step sizes for better finite time performance, without sacrificing the asymptotic
convergence rate; and (ii) efficient derivative estimation to allow for better searching within the solution
space. Interestingly, however, all existing literature on SA seems to treat each of these advances separately.
In this article, we present two results which characterize SA’s convergence rates when both (i) and (ii) are
be applied simultaneously. Our results should be seen as simply providing a theoretical basis for applying
ideas that seem reasonable in practice.

1 INTRODUCTION

The broad setting of this paper is stochastic approximation (SA), the famous iteration originally introduced
by Robbins and Monro (1951) as a method to identify the zero of a function. The modern version of
Robbins and Monro’s SA iteration usually takes the form

Zn = Zn−1− γn
¯̄H−1

n h̃(Zn−1),n = 1,2, . . . (1)

where h̃(·) is an unbiased estimator of a vector valued function h : IRq→ IRq, {γn} is a positive sequence
converging to 0, and ¯̄Hn is an estimator of the Jacobian matrix of the function h at the point Zn−1. The
iteration has been widely used in both the optimization and root-finding contexts. When used in the
root-finding context, the objective of the iteration in (1) is identifying a zero of the function h(·), while
the estimator h̃(·) provides noisy observations of the function h(·). When used in the optimization context,
the objective of the iteration in (1) is identifying a stationary point of a real-valued function g : IRq→ IR
that is “observed” using an unbiased estimator G(·). In such a case, the quantity h̃(Zn−1) appearing in
(1) estimates the gradient of the function g(·) at the point Zn−1, and is usually constructed using forward
or central differencing (Spall 2003). In the optimization setting, ¯̄Hn then estimates the Hessian (matrix
of second derivatives) of the function g(·) at the point Zn−1, and is again calculated using some form of
differencing (Spall 2003). The SA iteration as stated in (1) is for the unconstrained context. Extending
it to tackle problems with a (deterministically) constrained feasible region is usually done by performing
an appropriate projection operation back into the feasible region whenever the iterates drift outside the
feasible region.

SA is arguably the most popular current method of solving continuous local optimization and root-
finding problems when the functions involved can only be estimated (and the constraints are known and
deterministic). Owing to its simplicity, its interpretation as the natural stochastic analogue of Newton’s
method, and its attractive asymptotic properties, SA has seen a tremendous amount of application (Kushner
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and Yin 2003). A lot has been written on the topic, and the finite-time and infinite-time behavior of the
recursion in (1) is well-understood. (There are several books that will serve as good entry points into this
literature, e.g., (Kushner and Yin 2003; Borkar 2008; Spall 2003; Wasan 1969).)

Despite SA’s enduring popularity and the six decades of research supporting its advance, the pre-
vailing opinion is that choosing the gain sequence {γn} to ensure robust and efficient SA performance is
challenging (Spall 1998; Spall 2006; Broadie, Cicek, and Zeevi 2010; Broadie, Cicek, and Zeevi 2009;
Pasupathy and Kim 2011; Pasupathy and Schmeiser 2010). In other words, while it is possible to tune the
gain sequence and “make” SA perform well for a given problem, or even a class of problems, formulating
rules that automatically tune the gain sequence to achieve good finite-time performance is still an open
problem (albeit loosely defined). This opinion is also supported by continuing efforts to devise rules that
either dynamically choose the gain sequence (Broadie, Cicek, and Zeevi 2010; Broadie, Cicek, and Zeevi
2009; Yousefian, Nedić, and Shanbhag 2011) based on the observed history of algorithm evolution, or by
mitigating the effect of the gain sequence (Nemirovski, Juditsky, Lan, and Shapiro 2009; Pasupathy and
Schmeiser 2010).

Of particular interest in this paper are two advances that have been crucial milestones in SA’s history.
The first is what is popularly called “Polyak Averaging” (Polyak and Juditsky 1992) which involves the
simple idea of averaging SA’s iterates. To elaborate, various authors (Chung 1954; Derman 1956; Fabian
1968) prior to 1997 had shown that the best possible convergence rate of SA’s iterates (to the correct
solution) is O(1/

√
n), achieved when the gain sequence γn = O(1/n). (Rigorously, this implies that when

γn = K/n and K is larger than half the inverse of the smallest eigen value of the function g’s Hessian
at the solution, the iterates can be shown to satisfy

√
n(Zn− x∗) D→ N(0,V ) where x∗ is a solution to

the problem, V is a covariance matrix, and D→ denotes convergence in distribution.) While this result is
useful, finite-time performance considerations suggested using step sizes that were larger, i.e., converged
slower, than the O(1/n) suggested by asymptotic performance considerations. The dilemma was that
choosing a slowly converging gain sequence, e.g., γn = O(1/nα),α ∈ (0,1), while often producing better
finite-time performance, degraded SA’s asymptotic convergence rate. Polyak and Juditsky (1992), and
simultaneously Frees and Ruppert (1990), provided an elegant solution for this dilemma. Polyak and
Juditsky (1992) showed that SA can be executed on two timescales to enjoy good finite-time performance
while not sacrificing asymptotic performance. Specifically, he suggested executing SA on the “fast timescale”
Zn = Zn−1−γnh̃(Zn−1),γn = O(n−α),α ∈ (0,1) and then averaging the iterates Zn,n = 1,2, . . . offline to get
Yn = n−1

∑
n
i=1 Zi. He demonstrated the remarkable result that, under certain conditions, such a two timescale

averaging produced the averaged iterates {Yn} having the best possible convergence rate O(1/
√

n). (He
also showed that the iterates Zn attain the degraded convergence rate of O(γn).) Polyak’s paper was written
within the context of root-finding. This was extended to the optimization context by Dippon and Renz
(1997).

The second milestone of interest in this paper is the efficient use of derivatives within SA. It is clear
from the corresponding literature in the deterministic context that knowledge of the Jacobian matrix of
derivatives H : IRq→ IRq of the function h(·) can help immensely with efficient searching within the solution
space. This prompted modifying the original SA iteration to incorporate derivative estimates to obtain
the modified iteration Zn = Zn−1− γn

¯̄H−1
n h̃(Zn−1). While this sounds reasonable, the main issue with this

approach turns out to be the computation involved in estimating the derivative estimate ¯̄Hn. For instance,
if one indulged in estimating every entry of ¯̄Hn using a method such as forward differences, this would
involve O(q2) simulations just to obtain the estimated derivative at the incumbent point. This led Spall
(2003) to investigate more efficient methods to obtain a derivative estimate. While a lot has been written
on this particular issue, the crux of Spall’s work is that with just O(q) simulations, it is possible to obtain
derivative estimates that do not degrade the asymptotic convergence rate of the SA iteration. In other
words, using just a crude calculation of the derivative ¯̄Hn, one could potentially enjoy the benefits of better
finite-time performance without sacrificing the asymptotic convergence rate of O(1/

√
n).
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We see both of the above milestones (Polyak averaging and incorporation of derivatives) as measures
that were undertaken explicitly to improve the finite-time performance of SA while retaining the fastest
possible O(1/

√
n) convergence. Interestingly, however, we have found no evidence of any analysis in the

literature that incorporates both of these ideas. (Even the most recent literature on this topic (Mokkadem
and Pelletier 2011; Nemirovski, Juditsky, Lan, and Shapiro 2009; Yousefian, Nedić, and Shanbhag 2011) do
not incorporate estimated Hessians into the SA iteration, most likely due to computational considerations.)
Towards addressing this gap in the SA literature, we ask the following two questions.

Q.1 When Polyak averaging and derivative estimates are included within the SA iteration, what conditions
ensure that the averaged iterates retain the O(1/

√
n) convergence?

Q.2 Can anything be said about the convergence characteristics of SA’s faster timescale iterates?

We start by answering Q.2. We demonstrate that, amongst other conditions, if the sequence {γn
¯̄H−1

n }
satisfies a certain stochastic-matrix analogue of regularly varying sequences, and the Hessian estimator ¯̄Hn
is consistent in a certain precise sense, the faster timescale iterates {Zn} converge in mean square at the
rate O(γn logn). This rate is slightly slower than that obtained without the Hessian estimator, The condition
we impose on {γn

¯̄H−1
n } is not entirely new and is closely related to conditions established in Polyak and

Juditsky (1992) and Mokkadem and Pelletier (2011).
In answering Q.1, we show that conditions similar to that used in answering Q.2 ensure that the slower

timescale sequence {Yn} retains the O(1/
√

n) convergence rate. This should come as no surprise to the
reader and should be seen simply as theoretical confirmation of what seems intuitively clear.

The remainder of the paper is organized as follows. In Section 2.1, we outline the sufficient conditions
to retrieve the rate at which the fast timescale sequence converges to the root which is established in part
2.2. In section 2.3 we establish the almost-sure convergence of the averaged iterates within the SA iteration
together with a simple extension of the SA iteration for relaxing the need to pre-specify the gain sequence.
Concluding remarks are made finally in section 3.

2 MAIN RESULTS

In everything that follows, the SA iteration of interest is the two timescale recursion given by

Zn = Zn−1−Λnh̃n;

Yn = (1− 1
n+1

)Yn−1 +
1

n+1
Zn; (2)

where Λn = γn
¯̄H−1

n , ¯̄Hn is a consistent estimator of the derivative of h(·) at Zn−1, and {γn} is a positive
sequence converging to 0. Also, as is common SA settings, we assume that h̃n = h(Zn−1)+εn is the noisy
observation of the function h at the point Zn−1, where εn is a random disturbance. We emphasize that for
purposes of this paper, our interest will be limited to the context of root-finding within the unconstrained
context.

2.1 Assumptions and Notation

C.1 Suppose that the solution to the vector equation h(Z) = 0 is z∗. We assume the existence of η > 1
and a neighborhood N (z∗) of z∗ such that h(z) = H(z− z∗)+O(‖z− z∗‖η) for z ∈N (z∗), where
the matrix −H is Hurwitz.

C.2 There exists ρ1 > 0 for which E‖h̃(z)‖2 ≤ ρ1(1+‖z− z∗‖2).
C.3 For the consistent estimator ¯̄Hn, we assume the boundedness of moments, i.e., the existence of a

positive ρ such that E(‖ ¯̄H−1
n ‖2)≤ ρ.

C.4 For each n≥ 1 and all z there exists ρ2 > 0 not dependent on n and z such that
(z− z∗)T h̄n(Z)≥ ρ2‖z− z∗‖2, where h̄n(Z) = ¯̄H−1

n h̃(Zn).
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C.5 (a) limn→∞ n(I −Λ−1
n Λn+1)

p→αI, where
p→ denotes convergence in probability, 1/2 < α < 1,

Λn = γn
¯̄H−1

n , and γn→ 0, γn > 0.

(b) limn→∞ logn/nγn→ 0 and
∞

∑
n=1

(γn logn)
η

2
√

n
< ∞ for η > 1.

C.6 E(εn+1|Fn) = 0 where Fn = {ε0,ε1, . . . ,εn−1,Zn, ¯̄Hn} and there exists a non-random, positive
definite matrix Γ such that limn→∞ E(εn+1εT

n+1|Fn) = Γ almost surely.

Assumptions similar to C.1 and C.2 are common within the literature on Polyak averaging. For
instance, Polyak and Juditsky (1992), Broadie, Cicek, and Zeevi (2010) and Mokkadem and Pelletier
(2011) impose similar conditions. The assumptions C.3 and C.4 are prevalent in the SA literature that
uses an estimated derivative within the recursion. For example, Spall (2000) makes this assumption. The
main condition of interest is C.5(a) and it should be seen as the matrix-analogue of the original condition
introduced by Polyak and Juditsky (1992). Assuming consistency of ¯̄Hn, this assumption implies that γn
is a regularly varying sequence as originally introduced by Galombos and Seneta (2008). Interestingly,
C.5 implies that ∑

n
k=1 γk→ ∞ and ∑

n
k=1 γ2

k < ∞ as n→ ∞, conditions that are routinely assumed (directly)
within the SA literature.

2.2 Behavior of the Fast Timescale Iterates

In this section, we present a result that characterizes the rate at which the fast timescale sequence {Zn}
converges to the root z∗.
Theorem 1 Let assumptions C.1 – C.5 hold, and let ρ2

2 < ρρ1. Then the mean squared error mse(Zn,z∗)
of Zn with respect to z∗ satisfies mse(Zn,z∗) = O(γn logn).

Proof. Let An+1 = ‖Zn+1− z∗‖2. Then

An+1 = ‖Zn− z∗−Λnh̃(Zn)‖2 = ‖Zn− z∗‖2−2γn(Zn− z∗)T h̄(Zn)+ γ
2
n‖h̄(Zn)‖2. (3)

By assumptions C.2 and C.3, we get

E[‖h̄(Zn)‖2|Zn]≤ ρρ1(1+An);

and in view of assumption C.4 we have

E[−(Zn− z∗)T h̄(Zn)|Zn]≤−ρ2An.

Taking expectations on both sides in (3) after conditioning on Zn we get

E[An+1|Zn]≤ An(1−2ρ2γn +ρρ1γ
2
n )+ρρ1γ

2
n . (4)

If we now let bn := E[An+1], we get

bn ≤ b1

n

∏
i=1

pi +
n−1

∑
i=2

n

∏
j=i+1

qi p j +qn := un,

where pi = (1−2ρ2γi+ρρ1γ2
i ),qi = ρρ1γ2

i . Since we have chosen ρ,ρ1,ρ2 in such a way that ρρ1 > ρ2
2 > 0

for all i, pi and qi are positive.
Define n0 := sup{n≥ 1 : ρ2 < 2ρρ1γn, ρ2 < 2ρρ1α

γn
n ,nγn <

2α

ρ2
, and logn−1 < 2ρρ1

ρ2
}+1 and choose

c large enough to satisfy the following
un0+1

γn0 logn0
≤ c.
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Then one can see by induction that for all n≥ 1, bn+1 ≤ cγn logn, where

c = max{1, max
1≤n≤n0

{ un+1

γn logn
}}.

Theorem 1 asserts that the fast timescale iterates converge at the rate O(γn logn). Since the sequence
{γn} converges slower than O(1/n), this points to a degraded rate of convergence for the fast timescale
iterates.

2.3 Weak Convergence of the Slow Timescale Iterates

In this section, we present the main result of the paper. Theorem 2 demonstrates that the averaged iterates
within the SA iteration in (2) attain the best possible convergence rate in a weak sense.
Theorem 2 Under assumptions C.1–C.6, we have

(i)
√

n(Yn−Z∗) D→ N(0,H−1Γ[H−1]T ), where H represents the Jacobian of h(z) at z = z∗;
(ii) Yn−Z∗→ 0 almost surely.

Proof of (i). (Assume that the underlying function h is linear)
Let ∆n = Zn− z∗ and ∆̄n = Yn− z∗. Then

Zn = Zn−1−Λn(H∆n−1 + εn);
∆n−1 = H−1

Λ
−1
n (Zn−1−Zn)−H−1

εn;
∆n = H−1

Λ
−1
n+1(Zn−Zn+1)−H−1

εn+1.

On the other hand

Yn = (1− 1
n+1

)Yn−1 +
1

n+1
Zn;

Yn− z∗ = (1− 1
n+1

)(Yn−1− z∗)+
1

n+1
(Zn− z∗);

∆̄n = (1− 1
n+1

)∆̄n−1 +
1

n+1
∆n.

Set ∏
n
j=n+1(1− 1

j+1) = 1. So we get

∆̄n =
n

∏
j=1

(1− 1
j+1

)∆0

+
n

∑
k=1

n

∏
j=k+1

(1− 1
j+1

)
1

k+1
H−1

Λ
−1
k+1(Zk−Zk+1)

−
n

∑
k=1

n

∏
j=k+1

(1− 1
j+1

)
1

k+1
H−1

εk+1.
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Let

R1
n+1 =

n

∏
j=1

(1− 1
j+1

)∆0;

R2
n+1 =

n

∑
k=1

n

∏
j=k+1

(1− 1
j+1

)
1

k+1
H−1

Λ
−1
k+1(Zk−Zk+1);

R3
n+1 =

n

∑
k=1

n

∏
j=k+1

(1− 1
j+1

)
1

k+1
H−1

εk+1.

Note that as n → ∞,
√

nR1
n+1 =

√
n

n+1 ∆0 → 0 a.s.. Also by Polyak and Juditsky (1992),
√

nR3
n+1

D→
N(0,H−1Γ[H−1]T ). So we just need to prove that

√
nR2

n+1→ 0 in probability:
√

nR2
n+1

P→ 0.

R2
n+1 =

n

∑
k=1

n

∏
j=k+1

(1− 1
j+1

)
1

k+1
H−1

Λ
−1
k+1(Zk−Zk+1)

=
1

n+1

n

∑
k=1

H−1
Λ
−1
k+1[(Zk− z∗)− (Zk+1− z∗)]

=
1

n+1
H−1

Λ
−1
2 (Z1− z∗) +

1
n+1

n

∑
k=2

H−1
Λ
−1
k+1(Zk− z∗)

− 1
n+1

n−1

∑
k=1

H−1
Λ
−1
k+1(Zk+1− z∗)+

1
n+1

H−1
Λ
−1
n+1(Zn+1− z∗).

Since we have
1

n+1

n−1

∑
k=1

H−1
Λ
−1
k+1(Zk+1− z∗) =

1
n+1

n

∑
k=2

H−1
Λ
−1
k (Zk− z∗),

we can write

R2
n+1 =

1
n+1

n

∑
k=2

[H−1
Λ
−1
k+1(I−Λk+1Λ

−1
k )(Zk− z∗)]

− 1
n+1

H−1
Λ
−1
n+1(Zn+1− z∗) +

1
n+1

H−1
Λ
−1
2 (Z1− z∗).

In view of Theorem 1 and assumption C.4, we then get:

R2
n+1 =

1
n+1

n

∑
k=2

[H−1
Λ
−1
k+1op(

1
k+1

)o(
√

γk logk)]− 1
n+1

H−1
Λ
−1
n+1o(

√
γn+1 logn+1) + o(

1√
n+1

)

=
1

n+1

n

∑
k=2

op[
1

k+1

√
γk logk

γ2
k+1

]−op[
1

n+1

√
γn+1 logn+1

γ2
n+1

] + o(
1√

n+1
).

Hence

√
nR2

n+1 =
1√

n+1

n

∑
k=2

op(
1√

k+1
)−op(1) + o(1)

= op(1).
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Proof of part (i). (Assume that the underlying function h is nonlinear)
By assumption C.1 we get:

∆̄n =
n

∏
j=1

(1− 1
j+1

)∆0

+
n

∑
k=1

n

∏
j=k+1

(1− 1
j+1

)
1

k+1
H−1

Λ
−1
k+1(Zk−Zk+1)

+
n

∑
k=1

n

∏
j=k+1

(1− 1
j+1

)
1

k+1
H−1o(‖Zk− z∗‖η)

−
n

∑
k=1

n

∏
j=k+1

(1− 1
j+1

)
1

k+1
H−1

εk+1.

Let

R̃n+1 =
n

∑
k=1

n

∏
j=k+1

(1− 1
j+1

)
1

k+1
H−1o(‖Zk− z∗‖η).

Thus, we are only yet to prove that
√

nR̃n+1→ 0 as n→ ∞. By Theorem 1, we have

√
nR̃n+1 =

1√
n

n

∑
k=1

o((γk logk)
η

2 )

=
1√
n

n

∑
k=1

√
k o(

(γk logk)
η

2
√

k
).

The claim then follows by assumption C.5(b) and Kronecker’s lemma.
Proof of part (ii).

R1
n+1 =

n

∏
j=1

(1− 1
j+1

)∆0 =
∆0

n+1

and so R1
n+1→ 0 as n→ ∞.

R2
n+1 =

1
n+1

n

∑
k=2

op[
1
k

√
γk logk

γ2
k+1

]− 1
n+1

γ
−1
n+1H−1 ¯̄Hn+1o(

√
γn+1 logn+1) + o(

1√
n
),

and by Cesaro summability (Billingsley 1995) and C.5(a), R2
n+1→ 0 as n→ ∞. Finally,

R3
n+1 =

1
n+1

n

∑
k=1

H−1
εk+1

and so by the strong law of large numbers (Billingsley 1995) we get R3
n+1→ 0 as n→ ∞.

In conclusion and as a further step in the direction of completely relaxing the need to pre-specify the
gain sequence, we now propose a simple extension of the SA iteration considered thus far.

Z j+1 = Z j−Λt j h̃(Z j), j = 1,2, . . . (5)

where t j := Min{t : Nt ≥ j} for j = 1,2, . . ., Λt j = γt j
¯̄H−1

j , and ¯̄H j, h̃(Z j) are as defined in (2). It can be
seen that the iteration in (5) is constructed to facilitate designing heuristics that dynamically change the
step sizes based on observed history of the SA iteration.

The following theorem establishes the asymptotic efficiency of (5) under suitable conditions.
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Theorem 3 Let (Nt)t≥0 be an increasing sequence of random variables with N0 = 0 and let ∆t = Nt−Nt−1.

(I) Suppose assumption C.2−C.4 and C.6 hold true. Further suppose that ∆t is uniformly bounded for
all t. If the gain sequence {γt} satisfies ∑

∞
t=1 γt = ∞ and ∑

∞
t=1 γ2

t < ∞, the iteration in (5) converges
to z∗ a.s.

(II) Moreover, consider the following two time scale SA algorithm:

Zn+1 = Zn−Λtn h̃(Zn);

Z̄n+1 = (1− 1
n+2

)Z̄n +
1

n+2
Zn+1; (6)

Suppose conditions C.1−C.4 and C.5−C.6 hold, and for a ζ > 0,
tn
n
→ ζ a.s. as n→ ∞. Then

we have
(i)
√

n(Z̄n−Z∗) D→ N(0,H−1Γ[H−1]T );
(ii) Z̄n−Z∗→ 0 almost surely.

3 CONCLUDING REMARKS

While Polyak averaging and the use of derivative estimates within SA are well-studied individually, there
exist no results (to our knowledge) on the behavior of the SA’s iterates when both of these strategies are
used simultaneously. We have presented two simple results that together characterize the behavior of SA’s
iterates under this joint scenario. The results present no surprises and assert that the averaged iterates retain
the best possible convergence rate under mild stipulations on the quality of the derivative estimates and
the gain sequence. The results should be seen as providing a strong theoretical basis to simultaneously
apply two strategies that make sense in practice. Our treatment in this paper was limited to the context of
root-finding, but extensions to the optimization context seem evident.
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