
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

REAL-WORLD SIMULATION-BASED MANUFACTURING
OPTIMIZATION USING CUCKOO SEARCH

Anna Syberfeldt

Simon Lidberg

University of Skövde Volvo Cars Engine
SE-54148 Skövde, SWEDEN SE-54187 Skövde, SWEDEN

ABSTRACT

This paper describes a case study of real-world simulation-based optimization of an engine manufacturing
line. The optimization aims to maximize utilization of machines and at the same time minimize tied-up
capital by manipulating 56 unique decision variables. A recently proposed metaheuristic algorithm that
has achieved successful results in various problem domains called Cuckoo Search is used to perform the
simulation-based optimization. To handle multiple objectives, an extension of the original Cuckoo Search
algorithm based on the concept of Pareto optimality is proposed and used in the study. The performance
of the algorithm is analyzed in comparison with the benchmark algorithm NSGA-II. Results show that the
combinatorial nature of the optimization problem causes difficulties for the Cuckoo Search algorithm, and
a further analysis indicates that the algorithm might be best suited for continuous optimization problems.

1 INTRODUCTION

Discrete-event simulation combined with optimization, so called simulation-based optimization, is a pow-
erful method to improve real-world systems (April et al. 2004). While traditional, analytical optimization
methods have been unable to cope with the challenges imposed by many simulation-based optimization
problems in an efficient way, such as multimodality, non-separability and high dimensionality, so called
metaheuristic algorithms have been shown to be applicable to this type of problem (Boesel et al. 2001;
Laguna and Marti 2002). Metaheuristic algorithms are powerful stochastic search algorithms with mecha-
nisms inspired from natural science. A metaheuristic algorithm optimizes a problem by iteratively im-
proving one or several candidate solution(s) with regard to a given objective function. The algorithms are
not guaranteed to find the optimal solution for the given problem, but are instead computationally fast and
make no explicit assumptions about the underlying structure of the function to be optimized. These prop-
erties make them well suited for simulation-based optimization as the simulation is often time consuming
and can be seen as a black-box (Bäck et al. 1997).
 There exist plenty of metaheuristic algorithms, among the most well-known including simulated an-
nealing, tabu search, and genetic algorithms. One of the most recently proposed is called Cuckoo Search,
an algorithm inspired by the parasitic breeding behavior of cuckoos (Yang and Deb, 2009; Yang, 2010).
Several studies indicate that Cuckoo Search is a powerful algorithm and successful results have been
achieved in various applications such as welded beam design, nurse scheduling and wireless sensor net-
works (Yang and Deb 2010; Tein and Ramli 2010; Dhivya et al. 2011). A review of the literature, howev-
er, reveals no applications in manufacturing optimization and the aim of this study is therefore to investi-
gate the algorithm’s performance in this domain.
 A real-world problem of engine manufacturing at a Volvo factory in Sweden is focus of the study. In
short, the problem is about finding the best prioritization of the different engine components being simul-
taneously processed in a manufacturing line. Basically, this is a combinatorial problem involving the set-
ting of 56 unique decision variables. The prioritization is used to determine which specific component has

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 2899978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Syberfeldt and Lidberg

precedence when two or more components are available at a machine or station. Based on the priorities, it
is possible to create a schedule showing which component should be processed in which machine at each
point in time. However, finding an efficient processing schedule is not trivial, due to the considerable
complexity of the cell in combination with a fluctuating inflow and resource constraints. This fact has
raised a need to perform automatic simulation-optimizations and has motivated an evaluation of different
algorithms for this purpose. To perform simulation-optimizations, a discrete-event simulation of the mod-
el is constructed by simulation experts at Volvo using the SIMUL8 software. The next section presents
the optimization in further detail.

2 REAL-WORLD MANUFACTURING OPTIMIZATION

In Volvo’s manufacturing line under study, engine components of eleven different types are being pro-
cessed. The line includes ten different processing stations that can perform single or multiple operations
(including for example burring, welding, and assembly). The operations performed at a specific station
and the tools used vary depending on the type of component. The high degree of variety in processing of
different components, in combination with a fluctuating inflow and several resource constraints, make it
virtually impossible to plan the production manually in an efficient way. Automatic optimizations are in-
stead needed, and for this purpose a discrete-event simulation model of the line has been developed by
simulation experts at the company using the SIMUL8 software package1. The simulation model has a
front-end interface developed in Excel, which facilitates the user in entering input parameters to the mod-
el without the need to learn the simulation language. Validity tests indicate that the simulation model rep-
resents reality well, and the model is generally accepted among operators working in the line.
 The optimization problem to be solved using the simulation model consists of constructing a pro-
cessing schedule for the manufacturing line by setting 56 unique decision variables. These variables basi-
cally represents the order of operations for different components and also which component has prece-
dence in case of queues in front of machines. According to the company, a processing schedule should
preferably be configured so that a high utilization of all machines are achieved, as these involve expen-
sive investments. The company has also stated that it is important to reduce tied-up capital by minimizing
each component’s lead time (that is, the time between a component entering and exiting the line). Alto-
gether there are two objectives that must be considered simultaneously in the optimization process: a) uti-
lization, and b) tied-up capital.
 For high utilization, a large number of components within the line is needed in order to avoid ma-
chine starvation. However, a large number of components imply occasional queues in front of some ma-
chines, which results in longer lead-times for components and thereby tied-up capital. In relation to each
other, the two objectives of maximal utilization and minimal tied-up capital are therefore conflicting. No
single optimal solution with respect to both objectives exists, as improving performance on one objective
deteriorates performance of the other objective.

One way to handle conflicting objectives is to derive a set of alternative trade-offs, so called Pareto-
optimal solutions (Deb, 2004). Figure 1 illustrates the Pareto concept for a minimisation problem with
two objectives f1 and f2. In this example, solution A-D are non-dominated, i.e. Pareto optimal, since for
each of these solutions there exist no other solution that is superior in one objective without being worse
in another objective. Solution E is dominated by B and C (but not by A or D, since E is better than these
two in f1 and f2, respectively).

1 www.simul8.com

2900

Syberfeldt and Lidberg

Figure 1: Illustration of dominance

Although it is important to find as many (trade-off) optimal solutions as possible in multi-objective op-

timisation, the user needs only one solution regardless of the number of objectives (Deb 2004). Which of
the optimal solutions to choose is up to the user based on previous experiences and qualitative infor-
mation (for example, ergonomic conditions or set-up of factory workers for the day).

3 CUCKOO SEARCH

This section presents the optimization of the manufacturing line using the Cuckoo Search algorithm.

3.1 Algorithm Description

In nature, cuckoos lay eggs in other birds’ nests and rely on those other birds to rear the cuckoo’s off-
spring. According to the so called “selfish gene theory” proposed by Dawkins (1989), this parasitic be-
havior increases the chance of survival of the cuckoo’s genes since the cuckoo needs not expend any en-
ergy rearing its offspring. Instead, the cuckoos can spend more time on breeding and thereby increasing
the population. However, the birds whose nests are invaded have developed counter strategies and in-
creasingly sophisticated ways of detecting the invading eggs.
 These behaviors found in nature are utilized in the Cuckoo Search algorithm in order to traverse the
search space and find optimal solutions. A set of nests with one “egg” (candidate solution) inside are
placed at random locations in the search space. A number of “cuckoos” traverse the search space and rec-
ords the highest objective values for different encountered candidate solutions. The cuckoos utilize a
search pattern called Lévy flight which is encountered in real birds, insects, grazing animals and fish ac-
cording to Viswanathan et al. (1999). The Lévy flight is characterized by a variable step size punctuated
by 90-degree turns, as can be seen in Figure 2. The large steps occasionally taken makes the algorithm
suitable for global search.

Figure 2: Example of Lévy Flight starting at [0,0].

f1

A

B
E

f2

C

D

2901

Syberfeldt and Lidberg

 Lévy flights, according to Yang (2010) and Gutowski (2001), are more efficient for searching than
regular random walks or Brownian motions. Equation 1 shows how a solution, , is updated to a new
value with the use of Lévy flights.

 (1)

 In the equation, represents the step size, and this must be fine-tuned for the specific problem
at hand. Yang (2010) advocates the use of as , where represents the difference be-
tween the maximum and minimum valid value of the given problem. In order to implement the Lévy
flight, a fast algorithm needed to be used to approximate the Lévy distribution. Leccardi (2005) compared
three different approaches to generating Lévy distributed values and found that the algorithm published in
Mantegna (1994) proved to be the most efficient. Mantegna’s algorithm is divided into three steps in or-
der to generate the step length, in Equation 2 needed for the Lévy flight.

 (2)

The parameters and in the above equation are given by the normal distributions in Equation 3.

 (3)

The variance, , is calculated as Equation 4 with and where (z) is the gamma function.

 (4)

 Cuckoo Search is a population based, elitist, single-objective optimization algorithm utilizing the
concept of Lévy flight. The pseudo code for the algorithm is presented in Figure 3 below (Yang et al.
(2009, page 107). Note that only two parameters need to be supplied to the algorithm; the discovery
rate and the size of the population, n. When n is fixed, controls the elitism and the balance
of randomization and local search (Yang 2010). The fact that the algorithm comes with just two parame-
ters does not only increase the ease of implementation, but also potentially makes it a more general opti-
mization solution to be applied to a wide range of problems.

Generate initial population of n host nests
while (t < MaxGeneration or stopCriterionNotFulfilled)
 Generate a solution by Lévy flights
 and then evaluate its quality/fitness Fi
 Choose a nest among n (say, j) randomly
 if (Fi > Fj),
 Replace j by the new solution
 end
 Abandon the pa nests with worst quality and build new ones
 Keep best solutions/nests
 Rank the solutions/nest and find the current best
 Pass the current best to the next generation.
end while
Postprocess results and visualization

Figure 3. Pseudo code for Cuckoo Search with Lévy flight

2902

Syberfeldt and Lidberg

 The real-world problem to be optimized by Cuckoo Search in this study involves the optimization of
two objectives. A Pareto-based approach to handle multiple optimization objectives is, however, currently
not supported in Cuckoo Search. Before applying the algorithm to the real-world problem it must there-
fore be adjusted to consider more than one objective. How this is done is described in the next section.

3.2 Multi-objective Extension

In order to convert Cuckoo Search from a single-objective optimization algorithm into multi-objective op-
timization algorithm, concepts from an existing Pareto-based algorithm is used, namely elitist non-
dominated sorting genetic algorithm (NSGA-II). NSGA-II is a widely used multi-objective algorithm that
has been recognized for its great performance and is often used for benchmarking (Coello Coello et al.
2007). The pseudo-code for NSGA-II can be seen in Figure 4 and for details about the algorithm the read-
er is referred to Deb et al. (2002).

 Initialize Population
 Generate N random solutions and insert into Population
 for (i = 1 to MaxGenerations) do
 Generate ChildPopulation of size N
 Select Parents from Population
 Create Children from Parents
 Mutate Children
 Combine Population and ChildPopulations into CurrentPopulation with size 2N
 for each individual in CurrentPopulation do
 Assign rank based on Pareto – Fast non-dominated sort
 end for
 Generate sets of non-dominated vectors along PFknown
 Loop (inside) by adding solutions to next generation of Population starting from the best front
 until N solutions found and determine crowding distance between points on each front
 end for
Present results

Figure 4: Pseudo code for NSGA-II

 In the NSGA-II algorithm, the selection of solutions is done from a set R, which is the union of a par-
ent population and an offspring population (both of size N) (Deb et al. 2000). Non-dominated sorting is
applied to R and the next generation of the population is formed by selecting solutions from one of the
fronts at a time. The selection starts with solutions in the best Pareto front, then continues with solutions
in the second best front, and so on, until N solutions have been selected. If there are more solutions in the
last front than there are remaining to be selected, niching is applied to determine which solutions should
be chosen. In other words, the highest ranked solutions located in the least crowded areas are the ones
chosen. All the remaining solutions are discarded. The selection procedure is illustrated in Figure 5
(adopted from Deb 2004).

2903

Syberfeldt and Lidberg

Population

Offspring

Front 1

Front 2

Front 3

Rejected

Population

Non-dominated
sorting Niching

R

Figure 5: Non-dominated sorting.

The concept of non-dominated sorting utilized in the NSGA-II algorithm has been used to create a multi-
objective extension of Cuckoo Search. Besides the non-dominated sorting procedure, other differences
between NSGA-II and the new version of the Cuckoo Search algorithm include the use Lévy flights in-
stead of mutation and the abandonment and movement of nests instead of crossover. The pseudo code for
the multi-objective version of Cuckoo Search is presented in Figure 6.

 Initialize Population
 Generate N random solutions and insert into Population
 for (i = 1 to MaxGenerations) do
 Generate ChildPopulation using Cuckoo Search (pseudo code in Figure 3)
 Non-dominated-sort
 for each individual in CurrentPopulation do
 Generate sets of non-dominated vectors along PFknown
 Loop (inside) by adding solutions to next generation starting from the best front
 until N solutions found and determine crowding distance between points on
 each front
 end for
 end for
Present results

Figure 6. Pseudo code for the proposed multi-objective Cuckoo Search

 The next section presents results from applying the multi-objective version of Cuckoo Search on the
real-world manufacturing problem.

4 EVALUATION

4.1 Configuration

As previously mentioned in Section 2, the real-world manufacturing problem is basically a combinatorial
problem with 56 unique decision variables representing a processing schedule. The proposed multi-
objective extension of Cuckoo Search is applied on the problem with the maximum number of simulation
evaluations set to 1000 (according to the time budget stated by the company). The population size is set to
20, and the percentage of abandoned nests to 40% (the values have been found by trial-and-error tests).
The algorithm uses a swap operator utilizing the Lévy flights to determine the indices to swap.
 For comparison, the NSGA-II algorithm is also applied on the problem. NSGA-II is run with the
same number of simulation evaluations as Cuckoo Search and implemented with the same population

2904

Syberfeldt and Lidberg

size. NSGA-II uses swap range mutation with a mutation probability of 10%. Furthermore, the algorithm
is implemented with a partially mapped crossover operator

 As baseline for the comparison between Cuckoo Search and NSGA-II, a basic scheduling function
defined by the company is being used. In this function, a Critical Ratio (CR) value of each component is
calculated to determine how well it is on schedule. The CR value is derived by dividing the time to due
date (i.e. scheduled completion) by the time expected to finish the component, according to Equation 5.

 (5)

In this Equation, due is the due date of the component (i.e. deadline), now is the current time, and TRPT
is the theoretical total remaining processing time (the active operation time including set-up times and
movements between machines/stations). A component with a CR value of 1.0 is "according to schedule”,
while it is behind if the value is less than 1.0 and ahead if the value is larger than 1.0. In case of a race
condition, the component with the lowest CR value has precedence.

4.2 Integrating the Optimization Algorithm and the Simulation

To run the algorithms along with the SIMUL8 simulation model, a component called “simulation control-
ler” is implemented. The simulation controller, whose purpose is to start the simulation and collect re-
sults, is implemented using the application programming interface (API) provided by SIMUL8. This API
enables the simulation model to be controlled programmatically. When the simulation controller receives
a request (i.e., a set of priority values to be evaluated) from the optimization algorithm, the simulation
controller invokes the simulation model with a “Run” command and provides the priority values. When
the simulation has been completed (after about two seconds), the simulation controller collects the results
and sends them back to the optimization algorithm.

4.3 User Interface

The user interacts with the simulation-optimization through a web page displayed in a web browser. Us-
ing a web page as user interface enables access to the platform from any hardware (e.g., PC, mobile
phone, tablet, etc.) at any site, as long as a web browser and an internet connection are available. This is
especially advantageous in industrial environments, since employees often have limited (or no) possibili-
ties of installing, running, and maintaining software at their work stations.

The content of the web page was developed during an iterative process undertaken in close cooperation
between the company and the University’s software developers. A screenshot of one part of the resulting
web page is presented in Figure 7 (for integrity reasons, company specific information was deleted before
the screenshot was taken). The panel to the left in the screenshot constitutes the menu from which the user
accesses various functions in the platform. In the screenshot, the menu alternative “RESULTS” have been
chosen. This alternative shows the output from a simulation-optimization run, namely, a production
schedule derived from a prioritization of all components to be processed during a specific time period.
The aim of the production schedule is to support the operators of the manufacturing cell by specifying
which component should be processed in which machine at each point in time.

� � � �

1
1

1
1 1

:

:
*

due nowdue now
TRPT

due now
now due TRPT

� �
�

�

�
� � �

CR �

2905

Syberfeldt and Lidberg

Figure 7. Screenshot of user interface.

4.4 Results

The optimization results achieved by Cuckoo Search and NSGA-II are presented in Table 1 and stated in
relation to the CR function. More specifically, the percentage numbers given in the table represent the rel-
ative improvement achieved by each algorithm when compared to the result of the CR function. No real
numbers can be presented due to company restrictions.

Table 1: Results with CR function as baseline (average of 20 replications).

 Utilization
(improvement)

Tied-up capital
(improvement)

Cuckoo Search 10% 15%
NSGA-II 19% 23%

As shown in Table 1, the results clearly indicate that NSGA-II outperforms Cuckoo Search considering
both optimization objectives. An analysis of this result is given in the next section.

5 ANALYSIS

This chapter presents an analysis of the results, both from a technical point of view and from a user per-
spective.

2906

Syberfeldt and Lidberg

5.1 Technical Analysis

As mentioned in the introduction, Cuckoo Search has proven to be able to efficiently solve different op-
timization problems in various domains. Nevertheless the algorithm shows a weak performance on the re-
al-world manufacturing problem of focus for this paper. When going through previous studies on Cuckoo
Search and analyzing the nature of the optimization problems solved in these papers, it is clear that con-
tinuous problems have been the main target for Cuckoo Search so far. In this study, the problem to be
solved is combinatorial and a hypothesis is this fact is the reason behind the results. To investigate the
hypothesis, five continuous problems from the well-known ZDT test suit are implemented. A detailed de-
scription of the ZDT problems is provided in Zitzler et al. (2000).

Results from applying the multi-objective version of Cuckoo Search on the continuous ZDT problems
are presented in Table 3. For comparison, the NSGA-II algorithm has also been applied on the same prob-
lems. Two performance measures are being used: convergence and spread (both are to be minimized).
These two are commonly used for the ZDT problems and a detailed explanation of their implementation
can be found in Deb (2004).

As can be seen in Table 3, Cuckoo Search achieves the best results on the ZDT1, ZDT2 and ZDT4
problems. On the ZDT3 problem, it achieves a better convergence than the NSGA-II algorithm, but a
worse spread. On the ZDT6 problem, NSGA-II performs the best on both objectives.

Table 3. Results from ZDT problems (average of 1000 replications)

Convergence
(minimize)

Spread
(minimize)

ZDT1 NSGA-II 0.037582 0.613663
Cuckoo Search 0.002561 0.613206

ZDT2 NSGA-II 0.030753 0.684501
Cuckoo Search 0.003855 0.649924

ZDT3 NSGA-II 0.001460 0.615773
Cuckoo Search 0.001149 0.616611

ZDT4 NSGA-II 0.075159 0.700399
Cuckoo Search 0.000437 0.623540

ZDT6 NSGA-II 0.002848 0.616384
Cuckoo Search 0.085899 0.675200

The results from the test suit shows that Cuckoo Search outperforms NSGA-II on the majority of the

ZDT problems, which is probably due to use of the efficient Lévy flight method. These results are in line
with results from previous studies found in the literature on applying Cuckoo Search on continuous opti-
mization problems.

To investigate further if Cuckoo Search is better suited for continuous optimization problems, the al-
gorithm is also evaluated on a combinatorial test problem. The problem implemented is the symmetrical
traveling salesman problem named berlin52 (Reinelt 2008), which was chosen due to the similar number
of parameters to the real-world problem. The objective of the problem is to find the shortest route be-
tween a number of points, while only going through each point once, and then returning to the starting
point. The distance between the points are measured through Euclidean distance. Results from applying
Cuckoo Search and NSGA-II on the problem is presented in Table 4. As shown in the table, NSGA-II
clearly outperforms the Cuckoo Search algorithm on the combinatorial TSP problem.

2907

Syberfeldt and Lidberg

Table 4. Results from combinatorial TSP problem (average of 1000 replications)

Distance

(minimize)
Cuckoo Search 21716

NSGA-II 10961

 Although a more extensive evaluation including a larger number of optimization problems are needed
for a general statement, the results obtained in this study indicates that Cuckoo Search in its current form
is suited for continuous problems rather than combinatorial ones. A probable reason for the weak perfor-
mance on combinatorial problems is that the Lévy flight pattern is not suited to be used as a basis for
swap mutation. As previously described, the algorithm uses a swap operator utilizing the Lévy flights to
determine the indices to swap.

5.2 User Perspective

 The simulation-optimization has also been analyzed by a test group at Volvo Aero. This test group in-
cluded eight employees who represented all three user groups supported by the platform (operator, shift
leader, and manager), as well as logistics engineers at the company. University representatives first
demonstrated the simulation-optimization on site at the company, after which it was made available to the
test group. They tried the system out for a couple of weeks, during which their feedback was collected
and compiled.
 After the test period, the evaluation feedback was discussed and analyzed. The feedback highlighted
the great potential the simulation-optimization demonstrated with regard to improving processing sched-
ules, especially during periods of heavy workloads. Besides improving the processing schedules, using
the platform was also considered a way of significantly reducing the human effort currently associated
with creating the schedules. A further advantage raised by the test group was the possibility of easily shar-
ing optimized production schedules in real-time among stakeholders. Since the platform is web-based, it
allows all users to easily view results simultaneously, which stands in contrast to traditional desktop ap-
plications where results must be printed or e-mailed.
 A negative aspect of the platform raised, more or less, by everyone in the test group was the need to
manually specify the current status and configuration of the manufacturing cell before each simulation-
optimization. The required data includes shift period, status of components currently under process, list of
components entering, availability of fixtures, availability of operators, and scheduled maintenance. The
simulation model needs all this data to be able to mimic the operations of the cell as close to reality as
possible. Collecting and specifying the data can be time-consuming and should preferably be eliminated
so that the optimization can be fully automatic and run frequently, or even constantly. To realize this, the
platform can be integrated with the computerized control system of the manufacturing cell. It is essential
to strive for such integration, which would probably not be too difficult considering the manufacturing
cell has modern, built-in control systems that process the data needed.

6 CONCLUSIONS

This paper describes a case study of applying Cuckoo Search, a recently proposed metaheuristic algo-
rithm, in simulation-based optimization of a real-world manufacturing line. The manufacturing line is
highly automated and produces engine components of eleven different types. The Cuckoo Search algo-
rithm has previously shown promising results in various problem domains, which motives to evaluate it
also on the optimization problem under study in this paper. The optimization problem is a combinatorial
problem of setting 56 unique decision variables in a way that maximizes utilization of machines and at the
same time minimizes tied-up capital. As in most real-world problems, these two objectives are conflicting
and improving performance on one of them deteriorates performance of the other. To handle the conflict-
ing objectives, the original Cuckoo Search algorithm is extended based on the concepts of multi-objective

2908

Syberfeldt and Lidberg

Pareto-optimization. We argue that a multi-objective version of Cuckoo Search is needed not only for this
specific study, but for Cuckoo Search to be truly useful in general as most real-world problems involve
the optimization of more than one objective.

Optimization of the manufacturing line is performed based on a discrete-event simulation model con-
structed using the SIMUL8 software. Results from the simulation-based optimization show that the ex-
tended Cuckoo Search algorithm is inefficient in comparison with the multi-objective benchmark algo-
rithm NSGA-II. A possible reason might be that the Cuckoo Search algorithm is not suited for
combinatorial optimization problems due to that the Lévy flight pattern is not suited to be used as a basis
for swap mutation. To investigate this further, the algorithm is applied on five continuous test problems
and also one combinatorial test problem. Results from these test problems shows that the Cuckoo Search
algorithm outperforms NSGA-II on a majority of the continuous test problems. However, the Cuckoo
Search algorithm performs considerable worse than the NSGA-II algorithm on the combinatorial test
problem. An explanation for the weak results on this problem, as well as the real-world problem, might be
that the Lévy flight pattern is not suited to be used as a basis for swap mutation. Further evaluations are
needed, however, to investigate this circumstance further. It is also recommended to study other possible
ways to adapt Cuckoo Search to combinatorial optimization problems possibly suggest an improved ver-
sion that is able to handle this type of problem effectively.

Another interesting improvement of the Cuckoo Search algorithm would be to consider simulation
randomness. To capture the stochastic behavior of most real-world complex systems, simulations contain
randomness. Instead of modeling only a deterministic path of how the system evolves in the process of
time, a stochastic simulation deals with several possible paths based on random variables in the model. To
tackle the problem of randomness of output samples is crucial because the normal path of the algorithm
would be severely disturbed if estimates of the objective function come from only one simulation replica-
tion. The common technique to handle randomness is to send the algorithm with the average values of
output samples obtained from a large number of replications. Although this technique is easy to imple-
ment, the large number of replications needed to obtain statistically confident estimates from simulation
of a complex system that requires long computation time can easily render the approach to be totally im-
practical. There are methods that guarantee to choose the “best” among a set of solutions with a certain
statistically significance level, which require fewer replications in comparison to the others (e.g. Kim-
Nelson ranking and selection method found in Gosavi 2003). However, combining statistically-
meaningful procedures that require relatively light computational burden with metheuristics is still an im-
portant topic for further research (Jin and Branke 2005).

Besides technical issues, it is also important to carefully considering user aspects for a successful real-
ization of the optimization. During the Volvo case study, it was clear that the graphical design and layout
of the user interface was an important factor in gaining user acceptance of the simulation-optimization. In
general, software development more easily focuses on algorithms and technical details, but putting at least
as great an effort into the graphical design is recommended. It is especially important to keep usability in
mind when developing systems for industrial adoption, since the success of a system is dependent on its
acceptance by its users (Rogers et al. 2007).

ACKNOWLEDGMENTS

This work is done within the SOL project which is partially financed by the Knowledge Foundation,
Sweden (KKS). The authors gratefully acknowledge KKS for the provision of research funding.

REFERENCES

April, J., M. Better, F. Glover, and J. Kelly. 2004. “New advances for marrying simulation and optimiza-
tion.” In Proceedings of the 2004 Winter Simulation Conference, Washington, DC, 80–86.

2909

Syberfeldt and Lidberg

Boesel, J., R. Bowden, F. Glover, J. Kelly, and E. Westwig. 2001 “Future of simulation optimization.” In
Proceedings of the 2001 Winter Simulation Conference, Arlington, VA, 1466–1470.

Bäck, T., D. Fogel, and Z. Michalewicz. 1997. Handbook of Evolutionary Computation, Oxford Universi-
ty Press.

Coello Coello, C.A., G.B. Lamon, and D.A. Van Veldhuizen. 2007. Evolutionary Algorithms for Solving
Multi-Objective Problems, 2nd edition, Springer Science Business Media LLC.

Dawkins, R. 1989. The Selfish Gene, 30th edition, New York: Oxford University Press Inc.
Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2000. “A fast and elitist multi-objective genetic algo-

rithm NSGA-II.” KanGAL Report 2000001, Indian Institute of Technology Kanpur, India.
Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. “A Fast and Elitist Multi-Objective Genetic Al-

gorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation VI(2): 182-197.
Deb, K. (2004) Multi-Objective Optimization using Evolutionary Algorithms, second edn, JohnWiley &

Sons Ltd.
Dhivya, M., M. Sundarambal, L. N. Anand. 2011. “Energy Efficient Computation of Data Fusion in

Wireless Sensor Networks Using Cuckoo Based Particle Approach (CBPA).”. International Journal
of Communications, Network and System Sciences 4(4): 249-255.

Gosavi, A. Simulation-based optimization: parametric optimization techniques and reinforcement learn-
ing. Boston, Mass., Kluwer Academic, 2003.

Gutowski, M. 2001. “Lévy flights as an underlying mechanism for global optimization algorithms.” Op-
timization, 8.

Jin, Y. and J. Branke. 2005. “Evolutionary optimization in uncertain environments – a survey,” IEEE
Transactions on Evolutionary Computation 9(3): 303-317.

Laguna, M. and R. Marti. 2003. Optimization Software Class Libraries. Kluwer Academic Publishers,
Boston.

Leccardi, M. 2005 “Comparison of Three Algorithms for Lèvy Noise Generation.” In Proceedings of
Fifth EUROMECH Nonlinear Dynamics Conference, Mini Symposium on Fractional Derivatives and
Their Applications.

Mantegna, R.N. 1994. “Fast, accurate algorithm for numerical simulation of Levy stable stochastic pro-
cesses.” Physical Review E 49:4677-4683.

Tein L. H. and R. Ramli. “Recent advancements of nurse scheduling models and a potential path.” In
Proceedings of 6th IMT-GT Conference on Mathematics, Statistics and its Applications, 395-409.

Viswanathan, G.M., S.V. Buldyrev, S. Havlin, M.G.E. da Luz, E.P. Raposo, and H. Eugene Stanley.
1999. “Optimizing the success of random searches.” Letters to Nature 401:911-914.

Yang, X.-S. and S. Deb. 2009. “Cuckoo Search via Levy Flights.” In Proceedings of World Congress on
Nature & Biologically Inspired Computing, India, 210-214.

Yang, X.-S. 2010. Nature-Inspired Metaheuristic Algorithms, 2nd edition, Cambridge: Leniver Press.
Yang, X.-S. and S. Deb 2010. “Engineering Optimisation by Cuckoo Search.” In International Journal of

Mathematical Modelling and Numerical Optimisation 1(4):330-343.
Zitzler, E., K. Deb, and L. Thiele. 2000. Comparison of multiobjective evolutionary algorithms: Empiri-

cal results. Evolutionary Computation 8(2):173-195.

AUTHOR BIOGRAPHIES

ANNA SYBERFELDT is a senior researcher at the University of Skövde, Sweden. She holds a PhD in
Computer Science from the De Montfort University, UK and a Master’s degree in Computer Science
from the University of Skövde, Sweden. Her research interests include soft computing techniques and
simulation-based optimization. Her email address is anna.syberfeldt@his.se.

SIMON LIDBERG is a production engineer at Volvo Cars Engine in Sweden. He received his MSc from
the University of Skövde in Sweden. His email address is SLIDBER1@volvocars.com.

2910

