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ABSTRACT

In this paper, we consider the rare-event simulation of integrals of exponential functions of smooth Gaussian
random processes. In particular, we design importance sampling estimators that are asymptotically efficient.
The efficiency analysis consists of the bias control and the variance control relative to the interesting tail
probabilities.

1 INTRODUCTION

Consider a mean zero Gaussian random field { f (t) : t ∈ T} with unit variance living on a d-dimensional
domain T ⊂ Rd , that is, for every finite subset of {t1, ..., tn} ⊂ T , ( f (t1), ..., f (tn)) is a mean zero multivariate
Gaussian random vector. Let µ(t) be a (deterministic) function and σ ∈ (0,∞) be a positive scalar. Define

I(T ),
∫

T
eσ f (t)+µ(t)dt. (1)

In this paper, we are interested in efficient simulation for the tail probabilities

w(b) = P
(

I(T )> eb
)
= P

(∫
T

eσ f (t)+µ(t)dt > eb
)
. (2)

The current study has its applications in finance, spatial analysis, and many other disciplines (Liu 2012;
Liu and Xu 2012b).

The extremes of Gaussian random fields have been intensively studied in literature, with its focus mostly
on the development of approximations and bounds for the suprema (Borell 1975; Tsirelson, Ibragimov,
and Sudakov 1976; Piterbarg 1996; Sun 1993; Azais and Wschebor 2008; Adler and Taylor 2007). The
distribution of the random variable I(T ) is studied in the literature when f (t) is a Brownian motion (Yor
1992; Duffie 2001). For general Gaussian random fields, Liu (2012) recently derives the asymptotic
approximations of P(

∫
T eσ f (t)dt > b) as b→ ∞ for three times differentiable and homogeneous Gaussian

random fields. Liu and Xu (2012b) further extends the results to the case when the process f has a varying
mean function.

Numerical methods for rare-event analysis of the suprema are studied in Adler, Blanchet, and Liu
(2008) and more thoroughly in Adler, Blanchet, and Liu (2012). Simulation study for the integral I(T ),
on the other hand, is a relatively less developed area. In this paper, we construct an efficient estimator for
w(b). As we shall explain in Section 2.2, our approach is based on an importance sampling procedure that
mimics the conditional distribution of f , given that {I(T )> eb}.

The remainder of the paper is organized as follows. In Section 2.1 we introduce some notions of
efficiency and computational complexity under the setting of rare-event simulation. Sections 2.2 and
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2.3 provide the construction of our importance sampling estimator and show the main properties of our
algorithm. Some numerical simulations are conducted in Section 3 and detailed proofs of our main theorems
are given in Section 4.

2 MAIN RESULTS

2.1 On the Rare-event Simulation

We first introduce some general notions of rare-event simulations. Given that w(b) converges to zero, for
a Monte Carlo estimator Lb, it is more meaningful to consider the error of Lb relative to w(b). This is
because a trivial estimator L∗b ≡ 0 has an error |L∗b−w(b)|= w(b)→ 0. One usually employs the concept
of weak efficiency or asymptotic optimality as an efficiency criterion, which is defined as follows.
Definition 1 An estimator Lb is said to be weakly efficient or asymptotically optimal in estimating w(b)
if ELb = w(b) and

limsup
b→∞

Var(Lb)

w2−ε(b)
= 0, (3)

for all ε > 0.
Asymptotic optimality is a popular efficiency criterion in the rare-event simulation (Asmussen and

Glynn 2007). Suppose that one wants to estimate w(b) with certain relative accuracy, that is, to compute
an estimator Zb such that for some prescribed ε,δ > 0

P(|Zb/w(b)−1|> ε)< δ . (4)

Suppose that a weakly efficient estimator of w(b) has been obtained, denoted by Lb. Let {L( j)
b : j = 1, ...,n}

be n i.i.d. copies of Lb. The averaged estimator

Zb =
1
n

n

∑
j=1

L( j)
b

has a relative mean squared error equal to Var1/2(Lb)/n1/2w(b). A simple application of Chebyshev’s
inequality yields

P(|Zb/w(b)−1| ≥ ε)≤ Var(Lb)

nε2w2(b)
.

Thus, if Lb is an asymptotically optimal (weakly efficient) estimator, it suffices to simulate n =
o(ε−2δ−1w(b)−ε ′) (for ε ′ > 0) i.i.d. replicates of Lb to achieve the accuracy in (4). Compared with
the crude Monte Carlo simulation, which requires n = O(ε−2δ−1w(b)−1), weakly efficient estimators
substantially reduce the computational cost.

In addition to the variance control, another issue is that the random fields considered in this paper are
continuous objects while computer can only perform discrete simulations. Thus, we must use a discrete
object to approximate the continuous fields for the implementation. The bias caused by the discretization
must also be well controlled relative to w(b). This will be discussed in Section 2.3.

2.2 The Change of Measure

Throughout the discussion, we consider a Gaussian random field { f (t) : t ∈ T} living on a domain T , which
is a d-dimensional Borel measurable compact set of Rd with piecewise smooth boundary. For s, t ∈ T , we
write the covariance function of f as

C(s− t) =Cov( f (s), f (t)).

We shall need the following assumptions:
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C1 f is homogeneous with E f (t) = 0 and E f 2(t) = 1 and almost surely at least three times differentiable
with respect to t.

C2 The Hessian matrix of C(t) at the origin is −I, where I is the d×d identity matrix.
C3 For each t ∈ Rd , the function C(λ t) is a non-increasing function of λ ∈ R+.
C4 The mean function µ(t) is three-time differentiable. In addition, If µ(t) is not a constant, the

maximum of µ(t) is not attained at the boundary of T .

Condition C1 is rather a strong assumption. It implies that C(t) is at least 6 times differentiable and
the first, third, and fifth derivatives at the origin are all zero. Differentiability is a crucial assumption in this
analysis. Condition C2 is introduced to simplify notations. For any Gaussian process g(t) with covariance
function Cg(t) and ∆Cg(0) =−Σ and det(Σ)> 0, C2 can be obtained by an affine transformation by letting
g(t) = f (Σ1/2t) and ∫

T
eµ(t)+σg(t)dt = det(Σ−1/2)

∫
{s:Σ−1/2s∈T}

eµ(Σ−1/2s)+σ f (s)ds,

where for each positive semi-definite matrix Σ we let Σ1/2 be a symmetric matrix such that Σ1/2Σ1/2 = Σ.
Conditions C3 and C4 are imposed for technical reasons.

Our algorithm is established using an importance sampling procedure. In this subsection, we propose
a change of measure Q on the continuous sample path space and later discretize it for the implementation.
This measure is central to our analysis. Let P be the original measure. We describe Q in two ways. First,
we specify the simulations of f from Q and then provide its Radon-Nikodym derivative with respect to P.
Under the measure Q, f (t) is generated according to the following three steps:

1. Simulate a random variable τ uniformly over T with respect to the Lebesgue measure.
2. Given the realized τ , simulate f (τ)∼ N(u−µ(τ)/σ ,1), where, for each b, u satisfies the identity(

2π

σ

) d
2

u−
d
2 eσu = eb. (5)

3. Given (τ, f (τ)), simulate the Gaussian process { f (t) : t 6= τ} from the original distribution under
P.

Remark 1 Note that when b is large, equation (5) generally has two solutions. One is on the order of
b/σ ; the other one is close to zero. We choose u to be the larger one.

For the measure Q defined above, it is not hard to verify that P and Q are mutually absolutely continuous
with the Radon-Nikodym derivative being

dQ
dP

=
∫

T

1
mes(T )

·
exp
{
−1

2( f (t)−ut)
2
}

exp
{
−1

2 f (t)2
} dt, (6)

where mes(·) denotes the Lebesgue measure,

µt = u−µσ (t), µσ (t) = µ(t)/σ .

The measure Q is constructed such that the behavior of f under Q mimics the behavior of f given the
rare event {I(T )> eb} under P. In particular, a random variable τ is first sampled uniformly over T , then
f (τ) is simulated with a large mean at level u− µσ (τ). This suggests that the high level of the integral∫
T eµ(t)+σ f (t)dt is mostly caused by the fact that the field reaches a high level at one location t∗ that is very

close to τ . Therefore, τ is a random index localizing the maximum of the field.
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Under the above change of measure, we have the corresponding importance sampling estimator taking
the form

Lb =
dP
dQ

1(I(T )>eb).

The second moment of the estimator equals

EQ

[(
dP
dQ

)2

; I(T )> eb

]
= EQ

(∫
T

1
mes(T )

·
exp
{
−1

2( f (t)−ut)
2
}

exp
{
−1

2 f (t)2
} dt

)−2

; I(T )> eb

 ,
where we use EQ to denote the expectation under Q and E to denote that under P.

2.3 The Algorithm

Direct simulation of a continuous random field is typically not a feasible task. Therefore the change of
measure proposed in the previous subsection is not directly applicable. To overcome this difficulty, we
concentrate on a suitable discretization scheme, still having in mind the change of measure (6).

We create a regular lattice covering T in the following way. Let GN,d be a countable subset of Rd

GN,d =

{(
i1
N
,

i2
N
, ...,

id
N

)
: i1, ..., id ∈ Z

}
.

That is, GN,d is a regular lattice on Rd . For each t = (t1, · · · , td) ∈ GN,d , define

TN(t) =
{
(s1, · · · ,sd) ∈ T : s j ∈ (t j−1/N, t j] for j = 1, · · · ,d

}
that is the 1

N -cube intersected with T and cornered at t. Furthermore, let

TN = {t ∈ GN,d : TN(t) 6= /0}, (7)

which is the sub-lattice intersecting with T . Since T is compact, TN is a finite set. We enumerate the
elements in TN = {t1, · · · , tM}, where M = O(Nd). We use

wM(b) = P(IM(T )> b)

as an approximation of w(b) where

IM(T ) =
M

∑
i=1

mes(TN(ti))× eσ f (ti)+µ(ti). (8)

We estimate wM(b) by importance sampling, which is based on the change of measure proposed in
(6). In particular we define QM and PM as the discrete versions (on TN) of Q and P respectively. Then
dQM/dPM takes the form:

dQM

dPM
=

M

∑
i=1

1
M

e−
1
2 ( f (ti)−uti )

2

e−
1
2 f (ti)2

=
M

∑
i=1

1
M

euti f (ti)− 1
2 u2

ti . (9)

Based on the above change of measure, our algorithm is given as follows:
Algorithm 2 For a given N and the set TN = {t1, · · · , tM}, the algorithm is as follows:

1. Generate ι uniformly from {1, ...,M}.
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2. Generate f (tι)∼ N(utι ,1).
3. Given (tι , f (tι)), simulate the field ( f (t1), · · · , f (tι−1), f (tι−1), · · · , f (tM)) from the original condi-

tional distribution under P.
4. Output

L̃b =
1{IM(T )>eb}

∑
M
i=1

1
M euti f (ti)− 1

2 u2
ti

. (10)

It is not hard to verify that L̃b = 1{IM(T )>eb}
dPM
dQM

is an unbiased estimator of wM(b). We have the next
theorem to control the bias of the estimator L̃b.
Theorem 3 Suppose f is a Gaussian random field satisfying Conditions C1-C4. For any ε0 > 0, there
exists constant κ0 such that for any ε ∈ (0,1), if N > κ0ε−1−ε0u2+ε0 , then for b > 1,

|wM(b)−w(b)|
w(b)

< ε.

The next theorem controls the variance of the estimator L̃b.
Theorem 4 Suppose f is a Gaussian random field satisfying Conditions C1-C4. If N is chosen as in
Theorem 3, then for any ε ′ > 0, we have

limsup
b→∞

EQM L̃2
b

w2−ε ′(b)
= 0.

We simulate n i.i.d. copies of L̃b via Algorithm 2, {L̃( j)
b : j = 1, ...,n}, and the averaged estimator is

Zb =
1
n

n

∑
j=1

L̃( j)
b .

From the discussion in Section 2.1 and Theorems 3 and 4, in order to achieve an ε relative error with
probability at least 1−δ , we need to have n = O(ε−2δ−1w−ε ′(b)) for any ε ′ > 0. Notice that generating
a multivariate Gaussian random vector of dimension M is at the most O(M3) that is caused by computing
eigenvectors of the covariance matrix. Thus, the overall computational complexity is O(M3 +M2n).
Remark 5 The algorithms are developed for differentiable fields. It is conceivable that efficient simulation
algorithms can be developed for nondifferentiable fields following similar ideas. However, the complexity
analysis could be very different mostly due to the size of the discretization. In addition, the asymptotic
approximations of w(b) has not yet been developed and it further adds to the difficulty. In this paper, we
do not pursue along this generalization.

3 SIMULATION

In this section we apply the proposed algorithm to a homogeneous Gaussian random field { f (t), t ∈ [0,1]}
with mean zero and covariance function

C(t) = e−t2
.

We set µ(t) = 0 and σ = 1. Then the quantity of interest is

w(b) = P
(∫ 1

0
e f (t)dt > eb

)
.

To implement the algorithm we need to discretize T . Here we choose N = 100 and the detailed simulation
is as follows.
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1. Generate a random variable ι ∼ Uniform {1,2, · · · ,100}.
2. Simulate f

(
ι

100

)
∼ N(u,1), where u is calculated from equation (5).

3. Given ι and f
(

ι

100

)
, simulate { f

( i
100

)
, i = 1, · · · , ι−1, ι +1, · · · ,100}.

The estimated tail probabilities w(b) along with the estimated standard deviations sdQ(L̃b) =
√

VarQ(L̃b)
are shown in Table 1. All the results are based on 104 independent simulations.

Table 1: Estimates of w(b), sdQ(L̃b), and sdQ(L̃b)/w(b). All results are based on 104 independent simulations
and thus the standard errors of the estimates are sdQ(L̃b)/100.

Est. sdQ(L̃b) sdQ(L̃b)/Est.
b = 3 8.62e-04 2.10e-03 2.43
b = 5 7.23e-08 2.32e-07 3.20
b = 7 8.56e-14 3.51e-13 4.10
b = 9 1.42e-21 7.69e-21 5.40

4 PROOF OF THEOREMS 3 AND 4

Before proceeding to the proofs of Theorems 3 and 4, we first introduce a few useful lemmas. The first
one is known as the Borel-TIS inequality, which was proved independently by Borell (1975), Tsirelson,
Ibragimov, and Sudakov (1976).
Lemma 6 (Borel-TIS) Let f (t), t ∈U , U is a parameter set, be mean zero Gaussian random field. f is
almost surely bounded on U . Then,

E(sup
U

f (t))< ∞,

and

P(max
t∈U

f (t)−E[max
t∈U

f (t)]≥ b)≤ e
− b2

2σ2
U ,

where
σ

2
U = max

t∈U
Var[ f (t)].

The following lemma provides an asymptotic approximation for tail probability w(b) (see Theorem
3.4 in Liu and Xu (2012b)).
Lemma 7 Consider a Gaussian random field { f (t) : t ∈ T} living on a domain T satisfying conditions
C1-C4. Then,

w(b) = (1+o(1))
∫

T
G(t) ·ud−1 exp

{
−(u−µσ (t))2

2

}
dt,

where u is as defined in (5), µσ (t) = µ(t)/σ , G(t) is defined as

G0 · exp
{

d ·µ(t)+2|∂ µ(t)|2 +∑
d
i=1 ∂ 2

ii µ(t)
2σ2

}
,

and G0 is some constant only depending on σ and the covariance function of f .
The next lemma provides an asymptotic approximation of the density function of log I(T ) (Liu and

Xu 2012a).
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Lemma 8 Suppose that conditions C1-C4 are satisfied. Let F ′(x) be the probability density function of
log I(T ) = log

∫
T eσ f (t)+µ(t)dt. Then the following approximation holds as x→ ∞

F ′(x) = (1+o(1))σ−2x ·w(x).

With the above preparations, we are ready to prove Theorems 3 and 4.

4.1 Proof of Theorem 3

For some A > 0, let

L =

{
sup
t∈T
|∂ f (t)| ≤ A(1−u−2 logε)u

}
. (11)

Then by Lemma 6, we can choose A sufficiently large (independent of u and ε) and have that

P(L c) = P
(

sup
t∈T
|∂ f (t)|> A(1−u−2 logε)u

)
= o(1)εw(b).

Therefore,

|wM(b)−w(b)| =

∣∣∣∣P(IM(T )> eb,L
)
−P

(
I(T )> eb,L

)∣∣∣∣+o(1)εw(b)

=

∣∣∣∣P(IM(T )> eb, I(T )< eb,L
)
+P

(
IM(T )< eb, I(T )> eb,L

)∣∣∣∣+o(1)εw(b).

(12)

On the set L , we have that there exists a positive constant c1 such that

|IM(T )− I(T )| =

∣∣∣∣∣ M

∑
i=1

mes(TN(ti))× eσ f (ti)+µ(ti)−
M

∑
i=1

∫
TN(ti)

eσ f (t)+µ(t)dt

∣∣∣∣∣
≤ c1 min{I(T ), IM(T )} · sup

t∈T
|∂ f (t)|/N,

which implies that

(12) ≤ P
(

eb
(

1− c1
A(1−u−2 logε)u

N

)
< I(T )< eb

(
1+ c1

A(1−u−2 logε)u
N

))
+o(1)εw(b)

≤ O(1)
(1−u−2 logε)u

N
×b×w(b)+o(1)εw(b).

The last step of the above equation is due to the results of Lemma 8. Note that σu/b→ 1. Thus it is
sufficient to choose N = O(ε−1−ε0u2+ε0) so that

(12) ≤ ε ·w(b),

which completes our proof.
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4.2 Proof of Theorem 4

Consider the change of measure in (9),

dQM

dPM
=

M

∑
i=1

1
M

e−
1
2 ( f (ti)−uti )

2

e−
1
2 f (ti)2

=
M

∑
i=1

1
M

e−
1
2 u2

ti
+ f (ti)uti .

For the ti’s in the interior of T , we have that mes(TN(ti)) ∼ mes(T )/M; for those that are close to the
boundary, we have that mes(TN(ti))< mes(T )/M. Thus, we have

EQM
[
L̃2

b
]

= EQM

 1(
∑

M
i=1

1
M e−

1
2 u2

ti
+ f (ti)uti

)2 ;
M

∑
i=1

mes(TN(ti))× eσ f (ti)+µ(ti) > eb


≤ EQM

 1(
∑

M
i=1

1
M e−

1
2 u2

ti
+ f (ti)uti

)2 ; 2× mes(T )
M

M

∑
i=1

eσ f (ti)+µ(ti) > eb


≤ e(u−mint µσ (t))2 ·EQM

 1(
1
M ∑

M
i=1 euti f (ti)

)2 ;2× mes(T )
M

M

∑
i=1

eσ f (ti)+µ(ti) > eb

 . (13)

Note that for b large enough

1
M

M

∑
i=1

euti f (ti) =
1
M

M

∑
i=1

euti ( f (ti)+µσ (ti))−uti µσ (ti).

There are two types of ti’s: f (ti)+µσ (ti)> 0 and f (ti)+µσ (ti)< 0. Furthermore, notice that

uti µσ (ti)≤ umax
t∈T

µσ (t)−min
t∈T

µ
2
σ (t)

we have that

1
M

M

∑
i=1

euti f (ti) ≥ e−umaxt∈T µσ (t)+mint∈T µ2
σ (t)× 1

M

M

∑
i=1

euti ( f (ti)+µσ (ti))

≥ e−umaxt∈T µσ (t)+mint∈T µ2
σ (t)

× 1
M

[
∑

{ f (ti)+µσ (ti)≥0}
e(u−maxt∈T µσ (ti))( f (ti)+µσ (ti))

+ ∑
{ f (ti)+µσ (ti)<0}

e(u−mint∈T µσ (ti))( f (ti)+µσ (ti))
]

≥ δ0e−umaxt∈T µσ (t)×

[
1
M

M

∑
i=1

e(u−maxt∈T µσ (t))( f (ti)+µσ (ti))

]
,

where δ0 ∈ (0,1) is some positive constant chosen to be small. Then by Jensen’s inequality, on the set

2× mes(T )
M

M

∑
i=1

eσ f (ti)+µ(ti) > eb
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we have that (
1
M

M

∑
i=1

euti f (ti)

)2

≥ δ
2
0 e−2umaxt∈T µσ (t) ·

(
eb

2×mes(T )

)2(u−maxt∈T µσ (t))/σ

.

Therefore, there exists a constant c1 such that

(13) ≤ e(u−mint µσ (t))2 ·δ−2
0 e2umaxt∈T µσ (t) ·

(
eb

2×mes(T )

)−2(u−maxt∈T µσ (t))/σ

≤ e−u2+c1u logu.

The last step is due to the fact that b/u→ σ . Now combining the above result with the approximation of
w(b) in Lemma 7, we have that −2log(w(b))/u2→ 1 and thus for any ε ′ > 0

limsup
b→∞

EQL̃2
b

w(b)2−ε ′
= 0,

which completes our proof.
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