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ABSTRACT

Scenario tree reductions of multi-period stochastic processes have been used as an important technique in
obtaining good approximate solutions of multi-period convex stochastic programs. The scenario reduction
step is aimed often at optimal approximation of the underlying stochastic process. We provide a new fast
computationally cheap scenario tree reduction procedure and describe its approximation capabilities. Our
context is the stochastic Unit Commitment Problem, the stochastic version of a problem that is at the heart
of many modern energy markets. Its solution determines wholesale contracts between energy producers
and energy consumers a day before actual transactions. We show that the new technique performs better
than earlier prescriptions in obtaining approximations to the original program. However, these techniques
of approximating only the underlying distributions without attention to the cost functions may produce
weaker approximations of the optimal solution value; we provide a couple of illustrations to this point.

1 INTRODUCTION

Optimization under uncertainty has been a key focus of the operations research community in the last
few decades (Sahinidis 2004). Many real-world applications require decisions to be made under uncertain
information about the future. The canonical form of such a stochastic programming problem is given by

min
x∈X

F(x)
4
= min

x∈X
EP f (ω,x)

4
= min

x∈X

∫
Ω

f (ω,x)P(dω), (1)

where X ⊂ Rn is a given nonempty convex closed set, Ω a closed subset of Rs and B the Borel σ -field
relative to Ω, the function f from Ω×Rn to the extended reals R is measurable with respect to ω and lower
semi-continuous and convex with respect to x, and P is a fixed probability measure on (Ω,B). Amongst
the various stochastic optimization models that fit into this formulation, the two-stage and the more general
multi-stage stochastic programming problems with recourse are the most well-known; in these models,
the X is the feasible set of first-stage decisions and f (ω,x) evaluates the optimized decisions under the
realization ω of all the multi-stage uncertainties.

This article is concerned mainly with multi-stage stochastic optimization programs. Multi-stage programs
of the form (1) are usually large-scale problems where P may not be known precisely, and where f is
given implicitly as an iterated optimal value that depends on the decisions made in the earlier stages as
each stage’s uncertainty resolves itself. The most practical approaches to solving these problems assume
some form of finiteness of the underlying distribution P.

Our interest lies in applications of this program in the scheduling of large-scale energy production
at regional- and national-grid levels. In these applications (refer Section 4), the stochastic process of
uncertainty inherent in the problem is modeled by a form that has continuous marginal distributions in
each decision epoch. Thus, the central focus of our work is in approximating the solution to (1) when P
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is modeled with continuous distributions. The approximation typically requires that the problem (1) under
the original distribution P be approximated by a computationally tractable problem by replacing P with a
distribution P̃ with finite, manageable number of probability atoms.

Finite sets of sample paths of multi-stage stochastic programs can be compactly represented by a
temporal network structure called a scenario tree. These tree-networks are derived by combining sample
paths that share sub-paths starting with the root node (first-stage), and the sample paths then are set as
branches of the same common sub-path trunk. The associated problem (1) thus eliminates variables that were
common between paths that shared a common ancestral sub-path, which not only makes the formulation
more compact but also automatically incorporates non-anticipativity. The latter is a key requirement for
multi-stage stochastic programs that all decisions made up to any stage under a sample path cannot depend
on the remaining sample path stages, i.e. anticipate the future.

The approximating distribution P̃ is to be chosen such that the identified approximate optimal solution
of (1) for P̃ forms a good approximation of the solution under P. Moreover the approximation should
be stable, in that the optimality gap is continuous with respect to the underlying probability distribution
P. How can this be ensured? The approaches studied in the literature use the following bound on the
approximation error (let F̃(x) be defined analogous to F(x) in (1) for the approximation P̃):

F(argmin
x

F̃(x))−F(argmin
x

F(x)) ≤ 2sup
x
|F(x)− F̃(x)|

≤ 2 L̄1 d(P, P̃), (2)

where L̄1 is a uniform Lipschitz bound on the cost functions f (·,x) on X , and d(·, ·) is a distributional
metric. (Refer Pflug (2001) for a generalization of (2) to functions that are uniformly Lipschitz only under a
transformation.) The scenario-tree reduction can be optimized by identifying an approximation distribution
P̃ that minimizes the Kantorovich or Wasserstein metric d(P, P̃) on the set of distributions:

d(P, P̃) = inf { E(|X− X̃ |) : where joint distribution of (X , X̃)

is arbitrary, but with marginals X ∼ P, X̃ ∼ P̃}. (3)

Thus, model (1) remains stable to perturbations to its underlying probability distribution as long as the
Kantorovich distance between the original distribution and the perturbed distribution is kept under control.

Various scenario-tree approximation approaches have been prescribed in the literature, amongst which
the approach taken by Dupačová, Gröve-Kuska, and Römisch (2003) and Heitsch and Römisch (2003) (see
also Gröve-Kuska and Römisch 2005, Chpt. 30) seems popular. They start by describing approximations
for finite distributions with large support by an optimally chosen (in a certain precise sense) distribution
over a small subset of the support. For this case, the infimization problem (3) can be written down as
a transportation problem whose unit transportation costs are defined by a metric on the sets of support
points. (These distributional metrics are thus also termed transportation metrics.) Moreover, the problem of
finding the optimal approximation P̃∗ that minimizes the distance d(P, P̃) can be simplified to a set-covering
problem when the support of P̃ is restricted to be a (small) fixed subset of the support of P itself. Dupačová,
Gröve-Kuska, and Römisch (2003) use this insight to construct a recursive procedure to choose the best
subset of a preset size for P̃ from the support of P. The recursion solves a large set-covering problem at
each stage.

Dupačová, Gröve-Kuska, and Römisch (2003) suggest that for processes P with continuous marginals
the approximation determination pre-processing step would first generate a large set of sample-paths
and then the optimal scenario-tree reduction from that set be chosen as the representative finite-support
approximation. Pflug (2001) suggest an alternative where the sample-generation step is skipped and the
continuous stochastic process is directly approximated by a discrete process with appropriately chosen
parameters.

Section 2 provides a detailed formulation of a generic T−stage stochastic program and describes the
scenario-tree reduction approach to solving these problems. In Section 2.1, we provide an alternative
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approach to this task of identifying a good approximation P̃ of P. Our primary motivation arises from
a practical consideration. Observe that the computational complexity of the multi-stage program (1) is
driven not by the size of the support of P̃ (i.e. the number of distinct sample paths in the support) but
by the number of nodes in the scenario tree implied by P̃. Thus, the optimal approximation question is
better posed by imposing a constraint on the number of unique support points the scenario-tree can have in
each stage, as opposed to constraining the total number of unique scenarios in the approximation P̃. Our
approach decouples the various stages and solves small individual-stage combinatorial problems to obtain
each stage’s approximations, and thus does not require the computationally intensive multi-dimensional
set-cover based recursion of Dupačová, Gröve-Kuska, and Römisch (2003). Given a fixed computational
budget that implies a certain overall number of nodes in the scenario tree, one could in a straightforward
manner search for the best approximation possible by imposing a combination of individual stage node
limits that satisfies this overall bound. This approach holds the potential of being a much faster and better
pre-processing procedure for the main program (1).

Section 4 describes the stochastic unit commitment problem, a multi-stage formulation that is of high
interest in Energy applications. The problem is solved to determine the schedule of generators for the
production of power to meet demand over a typical period of a whole day. A deterministic version of this
problem is central to the proper functioning of many current regional and national electricity-grids. The
uncertainty in the stochastic formulation arises from the incorporation of intermittent renewable generators
in the planning cycle. The numerical experiments described and results observed in Section 5 illustrate the
advantages of our scenario tree approximation approach for the stochastic unit commitment problem.

Note that the application of the upper bound (2) in determining a good approximation of P by P̃
detaches the distribution approximation problem from the underlying cost functions f (ω,x) and allows
the user to concentrate solely on the approximation procedure. In Section 3, we provide two examples
that illustrate why depending on (2) to ignore the underlying cost functions will provide only sub-optimal
approximations. Incorporating the cost functions directly into the distribution approximation scheme can
thus gain better approximations; exactly how this is to be done remains an interesting, open and active
area of interest.

To summarize, our contributions are:

• We provide a new approach to scenario-tree generation for cases where P has continuous marginals
in each decision stage. This works by optimally (in a certain precise sense) reducing a large scenario-
tree that is sampled from P. This scenario-tree pre-processing method for the main program (1)
needs to solve only a set of small combinatorial problems for each stage, and thus can free up more
of the computational budget for solving the main program as compared to existing pre-processing
procedures. (Section 2.1).

• Numerical experiments with realistic instances of the stochastic unit commitment problem that
arises in energy grid management illustrate the efficacy of this approach (Sections 4 and 5).

• Additionally, we provide examples where reducing the problem of approximating the optimal value
of the stochastic multi-stage program to that of approximating the underlying distribution P may
limit the power of the approximation (Section 3).

2 SCENARIO TREES AND MULTI-STAGE STOCHASTIC OPTIMIZATION

The approximation algorithm presented in this article reduces a large yet finite scenario-tree to a small
manageable tree, and hence the rest of this section deals in distributions P with a finite albeit large support.
Let Ξ = {pi,ξi}S

i=1 be a T -dimensional random vector with a discrete probability distribution P with finite
support, where ξi ∈RT , P(Ξ = ξi) = pi, pi ≥ 0, i = 1, . . . ,S, ∑

S
i=1 pi = 1. Let Ξ̃ = {q j, ξ̃ j}S̃

j=1 be a random

vector with the reduced distribution P̃, where P̃(Ξ̃ = ξ̃ j) = q j, q j ≥ 0, j = 1, . . . , S̃, ∑
S̃
j=1 q j = 1. Let Ξt
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(Ξ̃t) denote the tth marginal distribution of Ξ (Ξ̃), i.e.,

Pr(Ξt = ξit ) =
S

∑
i=1

Pr(Ξ = ξi,ξ
t
i = ξit ) = ρit , it ∈ It , t = 1, . . . ,T,

and similarly for Ξ̃t . The set It (Ĩt) is the support of Ξt (Ξ̃t) with cardinality mt (m̃t).

2.1 Lower Bound on the Minimum Kantorovich Distance

The Kantorovich distance between Ξ and Ξ̃ reduces to the optimal value of a linear transportation problem
(Dupačová, Gröve-Kuska, and Römisch 2003) (we use the stochastic processes Ξ, Ξ̃ and their distributions
P, P̃ interchangeably in the sequel):

d(P, P̃) = inf
{ S

∑
i=1

S̃

∑
j=1

ηi jc(ξi, ξ̃ j) : ηi j ≥ 0,
S

∑
i=1

ηi j = q j,
S̃

∑
j=1

ηi j = pi,∀i, ∀ j
}
, (4)

where c(ξi, ξ̃ j) = ∑
T
t=1 |ξ t

i − ξ̃ t
j |. (Dupačová, Gröve-Kuska, and Römisch 2003) show that the optimal

solution to the minimal-distance problem

min
P̃ | |support(Ξ̃)|=S̃

d(P, P̃)

over the set of all reduced scenario trees P̃ with support cardinality of S̃ is given by the distribution P̃∗

that assigns the probability weights q∗j = ∑
i∈I( j)

pi, where

I( j) =

{
i = 1, . . . ,S

∣∣ j ∈ argminn
k=1,...,S̃

T

∑
t=1
|ξ t

i − ξ̃
t
k|

}
.

(The singleton subset argminn of the set argmin is obtained by, without loss of generality, picking the
smallest element in lexicographic order.) We develop a lower bound on the minimum Kantorovich distance
between Ξt and an arbitrary distribution Ξ̃t with a restriction on the number of distinct realizations at each
decision epoch to be at most m̃t , t = 1, . . . ,T . Note that this is distinct from the restriction placed by the
existing scenario-tree reduction methods on the number of total scenarios S̃ in the reduction Ξ̃.
Proposition 1 The Kantorovich distance d(P, P̃) obeys the lower bound

min
P̃ | |Ĩt |=m̃t

d(P, P̃) ≥
T

∑
t=1

Mt(m̃t),

where the Mt(m̃t) are the optimal solutions to the m̃t-weighed-median clustering of the (finite) support It

of the tth marginal Ξt weighed by the pi, i.e.

Mt(m̃t)
4
= min

ξ̃ t
1,...,ξ̃

t
m̃t

S

∑
i=1

min
j=1,...,m̃t

pi|ξ t
i − ξ̃

t
j |.

Proof. The dual of the transportation problem embedded in the definition of d(P, P̃) can be used to
establish, via weak duality, the first of the bounds (refer Thm 2 in Dupačová, Gröve-Kuska, and Römisch
(2003) for details):

d(P, P̃) ≥
S

∑
i=1

pi min
j=1,...,S̃

T

∑
t=1
|ξ t

i − ξ̃
t
j | (5)

≥
S

∑
i=1

pi

T

∑
t=1

min
j=1,...,S̃

|ξ t
i − ξ̃

t
j | =

T

∑
t=1

S

∑
i=1

min
j=1,...,S̃

pi|ξ t
i − ξ̃

t
j |.
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The second inequality is obtained by changing the order of summation and minimization, and the bound
on the cardinality (S̃ ≤ ∏

T
t=1 m̃t). For the minimum Kantorovich distance distribution, we use arbitrary

realizations ξ̃ j for the reduced distribution Ξ̃, with the restriction that the cardinality of the support Ĩt of
Ξ̃t is m̃t , t = 1, . . . ,T :

min
P̃ | |Ĩt |=m̃t

d(P, P̃) ≥ min
ξ̃ 1

1 ,...,ξ̃
T
1,...,

ξ̃ 1
S̃ ,...,ξ̃

T
S̃

T

∑
t=1

S

∑
i=1

min
j=1,...,S̃

pi|ξ t
i − ξ̃

t
j | (6)

≥
T

∑
t=1

min
ξ̃ t

1,...,ξ̃
t
m̃t

S

∑
i=1

min
j=1,...,mt

pi|ξ t
i − ξ̃

t
j |

=
T

∑
t=1

Mt(m̃t).

where the m̃t−medians Mt are as defined in the statement of the proposition.

Proposition 1 applies to minimizing approximation discrepancy between the original scenario set Ξ

and all scenario-trees Ξ̃ that have marginal supports of each stage Ĩt restricted to a specified set of values
m̃t . If we allow Ξ̃ to have as many realizations as Ξ, then the reduced distribution closest to Ξ trivially
becomes Ξ itself. In this case, m̃t becomes equal to mt for t = 1, . . . ,T , and thus Mt(m̃t) becomes equal to
zero. Thus, m̃t is a control parameter on the flexibility of choosing the reduced distribution with as many
realizations as possible.

A scenario-tree Ξ̃∗ can be constructed to match the lower bound given by Proposition 1. Algorithm 1
provides a simple construction procedure. The summation in Step 7 involves many scenarios (ξi1 , . . . ,ξiT )
that do not exist in the original scenario tree P; the probability associated with them is zero. This also
implies that some scenarios ( j1, . . . , jT ) constructed by the convolution in the “for all” step may be assigned
a probability of zero. The support set Ξ̃ can be pruned to eliminate these if computationally convenient.
Proposition 2 The scenario-tree constructed by the Algorithm 1 matches the lower bound on approximation
discrepancy given by Proposition 1.

Proof. We will show in particular that the lower bound form of (6) is achieved by the construction.
The distance between the original Ξ and the Ξ̃ constructed by Algorithm 1. Given i ∈ {1, . . . ,S}, and
t ∈ {1, . . . ,T}, we let jt(i) ∈ Ĩ∗t denote the smallest index such that |ξ t

i − ξ t
jt(i)| ≤ |ξ

t
i − ξ t

jt |, ∀ jt ∈ Ĩ∗t .

Let j(i) ∈ {i, . . . , S̃} such that ξ̃ j(i) = (ξ̃ j1(i), . . . , ξ̃ jT (i)). By construction of the Ξ̃, such j(i) exists. Then,

min
j=1,...,S̃

T

∑
t=1

pi|ξ t
i − ξ̃

t
j |=

T

∑
t=1

pi|ξ t
i − ξ̃

t
j(i)|=

T

∑
t=1

pi|ξ t
i − ξ̃ jt(i)|. Thus,

d(P, P̃) =
S

∑
i=1

min
j=1,...,S̃

T

∑
t=1

pi|ξ t
i − ξ̃

t
j | =

S

∑
i=1

T

∑
t=1

pi|ξ t
i − ξ̃ jt(i)| =

T

∑
t=1

Mt(m̃t).

The scenario-tree constructed by Algorithm 1 thus is the optimal solution to the minimization problem
stated in Proposition 1. The constraint placed on the approximation scenario-trees is different from that
placed by the methods studied by Dupačová, Gröve-Kuska, and Römisch (2003), that of limiting the
maximum number of scenarios in the approximation. However, note that Algorithm 1 decouples the
T stages of the problem into individual m̃t−median optimization problems. This procedure thus solves
combinatorial optimization problems that are potentially smaller than those required by the recursive

124



Koc and Ghosh

Algorithm 1 Construct Ξ̃ from Ξ

Input: Ξ = {ξ}S
i=1, ξi ∈ RT , with marginal distributions Ξt = {ξit}it∈It , t = 1, . . . ,T .

m̃t ∈ N, t = 1 . . . ,T.
Output: Ξ̃ = {ξ̃}S̃

j=1, ξ̃ j ∈ RT , with marginal distributions Ξ̃t = {ξ̃ jt} jt∈Ĩt , |Ĩt |= m̃t , t = 1, . . . ,T .
STEPS:

1. Ĩ∗t ← argminn
(ξ̃ t

1,...,ξ̃
t
m̃t )∈Rm̃t

S

∑
i=1

min
k=1,...,m̃t

pi|ξ t
i − ξ̃

t
k|, t = 1, . . . ,T . (i.e., Ĩ∗t is the set of m̃t-medians of Ξt .)

2. It( jt)←
{

it ∈ It
∣∣ jt ∈ argminn

kt∈J∗t

T

∑
t=1
|ξit − ξ̃kt |

}
, jt ∈ Ĩ∗t , t = 1, . . . ,T . (i.e., It( jt) is the set of points

in It that are closest to point jt of the tth stage of reduced tree Ξ̃.)
3. k← 0,
for all ( j1, . . . , jT ) ∈ Ĩ∗1×·· ·× Ĩ∗T do

4. j← j+1,
5. ξ̃ j = (ξ̃ j1 , . . . , ξ̃ jT ),
6. support(Ξ̃) ← support(Ξ̃) ∪{ξ̃ j},
7. Pr(Ξ̃ = ξ̃ j) = q j = ∑

i1∈I1( j1)

· · · ∑
iT∈IT ( jT )

Pr(Ξ = (ξi1 , . . . ,ξiT )),

end for
8. S̃← j.

procedures of Dupačová, Gröve-Kuska, and Römisch (2003). This is true if the support of the marginals
It has a significantly lower cardinality than the overall scenario tree’s cardinality S. In this case, our
procedure stands to gain significant performance improvements over the recursive methods where the outer
recursions require one to consider set-cover or k−median clustering problems with the full cardinality S
of the original scenario-set of P. For scenario trees where the support of the marginals grow with the
stage index t, one can define the cardinality of m̃t to grow in a similar fashion, thus hopefully keeping the
performance improvements intact. So, the procedure given here can be expected to quickly obtain a good
scenario reduction without potentially requiring a significant fraction of the computation budget just for
this pre-processing step to the original multi-stage program (1).

2.2 Further Improvements in Scenario-Tree Reduction

Algorithm 1 produces scenario reductions P̃ that match the lower bound in the inequality established by
Proposition 1. Algorithm 1 allows us to generate a scenario tree such that the reduced tree has m̃t number of
realizations at each time period. We now impose an additional constraint on top of the per-marginal support
restrictions studied in the previous section. This constraint can take the form of an upper bound on either
the the total scenarios generated by the scheme, or the sum of the support points over all marginals. The
former is the setup used in current methods ( Dupačová, Gröve-Kuska, and Römisch 2003) where the size of
the reduction desired is typically given by specifying only the total number of scenarios S̃(≤∏

T
t=1 m̃t ), not

by the number of realizations at each time period. The latter constraint on the sum of all marginal support
points arises naturally from the practical consideration of multi-stage problems that are being solved using
methods such as Bender’s decomposition or the L-shaped method, which scale exactly with this total of all
marginal support points. Thus, under the first constraint, one matches the popular methods in the literature
to produce approximations that minimize the Kantorovich distance d(P, P̃) amongst all distributions P̃ that
have a maximum support size S̃, and under the second constraint one obtains the best approximation for a
given computational budget to solve the resulting approximation problem (1).

The search for the best breakdown of S̃ into {m̃t} under either constraint can be accomplished by a
secondary pre-processing step that is formulated as the following optimization problem. Let the binary
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decision variable zt
η take value 1 if the scenario tree has η scenarios at time period t, and 0 otherwise.

Consider the following minimization problem:

min
z

T

∑
t=1

n

∑
η=1

Mt(η)zt
η

s.t.
T

∑
t=1

n

∑
η=1

log(η)zt
η ≤ log(S̃), or (7a)

T

∑
t=1

n

∑
η=1

η zt
η ≤ N, (7b)

n

∑
η=1

zt
η = 1, t = 1, . . . ,T,

zt
η ∈ {0,1}, t = 1, . . . ,T, η = 1, . . . , S̃.

This optimization problem gives the parameters (m̃t) of the closest scenario tree when at most N marginal
support points are desired overall when form (7b) is used. When constraint form (7a) is active, the optimal
set {m̃t} chosen has at most S̃ scenarios in the reduced tree P̃. To see this, note that this is the linearized
form of the following constraint under a transformation by the increasing function log:

T

∏
t=1

( n

∑
η=1

ηzt
η

)
≤ S̃ ⇔

T

∑
t=1

log
( n

∑
η=1

ηzt
η

)
≤ log(S̃) ⇔

T

∑
t=1

n

∑
η=1

log(η)zt
η ≤ log(S̃).

The binary nature of the z variables and the constraint ∑
n
η=1 zt

η = 1, t = 1, . . . ,T is used.
The straightforward method to solving the integer program (7a) or (7b) would pre-compute the various

m̃t−median problems for m̃t = 1, . . . , S̃, t = 1, . . . ,T and then solve the program itself. Though this seems a
task as daunting as the combinatorial optimization problems arising out of the existing scenario-tree reduction
procedures, our observations from the experiments show that in practice these problems solve quickly. We
note in closing that the function Mt(η) represents the residual deviation in an η−median problem, and
hence is non-increasing in η . This property can be exploited by either knapsack-like formulation, especially
by (7b) which is exactly a knapsack problem, to construct speedy heuristics for quick approximations.

3 LIMITATIONS OF SCENARIO-TREE REDUCTION APPROACHES

The procedures described in this article approximate the optimal solution of original multi-stage stochastic
program (1) by solving the same problem for an approximate distribution P̃ in place of the original continuous
distribution P and appeals to the upper bound in (3) to control the quality of the approximation. The
following two examples show that this can lead to approximation inaccuracies that can be easily improved
upon.
Example 1 (Newsvendor) Consider the single-stage stochastic newsvendor problem as described in Pflug
(2001). The newsvendor has to decide the number x of newspapers to order for a price of α that she can
sell for a profit of β . If the demand realized is ω , then the scenario-dependent payoff can be written down
as f (ω,x) = α[x−ω]++β [ω− x]+. The optimal solution to this problem can be computed explicitly as
x∗ = P−1 (β/(α +β )). Pflug (2001) choose a symmetrical 3−point discrete approximation P̃ for P when P
is a Gaussian distribution, and show that the Kantorovich distribution metric minimization procedure yields
an optimal reduction P̃∗ that has a tiny but positive approximation error which can be computed exactly.
However, a 3−point symmetric approximation for the Gaussian distribution P can be easily constructed
such that it has zero error: if β < α then let the left-most point of the approximation coincide with the
(β/(α +β ))th quantile of the Gaussian distribution and place a mass of (β/(α +β )) or higher on it. This
approximation will then yield results that are exactly optimal.

126



Koc and Ghosh

In this first example, the underlying distribution is continuous and the objective functions is well-
behaved; indeed the newsvendor problem is one of the foundational problems of stochastic optimization.
Yet, obtaining scenario reductions by minimizing distributional distance measures alone without heed to
the actual objective function leads to (slightly) poorer estimation of the actual optimal solution.
Example 2 (Facility Location) Consider a simple facility-location problem within a hypercube in Rd .

Suppose that the uncertain demand can be realized in any one of the 2d corners. Let D
4
=2d . Each

realization of demand can be coded as a dyadic sequence (s1s2 . . .sD) where sk = 1 if the kth corner has
one unit of demand and zero otherwise. Further, let the original distribution P consist of four realizations
with equal probability: {ω1 = (010101 . . .01),ω2 = (101010 . . .10),ω3 = (0101 . . .010000 . . .00) and ω4 =
(1010 . . .100000 . . .00)} where last two scenarios have zeros in the last D/2 = 2d−1 entries. The scenario
pairs have the following distances ci j as calculated by the Kantorovich metric: c12 = D, c13 = c24 = D/4,
c14 = c23 = 3D/4 and c23 = D/2. The optimal 2−scenario reduction P̃∗ under the Kantorovich metric of
the 4−scenario P would then consist of {ω1,ω2}.

Consider the optimization objective function f (ω,x) = ∑D si |x−Ci|2, i.e. the optimal median location
problem, where the Ci are the corners (D in number). Then, under both scenarios chosen in the 2−scenario
reduction P̃∗ the optimal solution will be the center of the hypercube. However, under each of the two
scenarios omitted, the optimal facility placement will be in a face of the hypercube. Thus the “optimal”
reduction obtained by minimizing the distribution distance metric will be significantly poorer than a P̃
choice of say {s1,s3}.

The objective function is well-behaved in this case too. This second example illustrates the additional
complexity introduced by the combinatorial nature of the multi-stage programs. We do not give a constructive
method to consider objective function structure in creating scenario reductions and obtaining the alternate
approximations; indeed, this is an area of active interest and investigation.

4 THE STOCHASTIC UNIT COMMITMENT PROBLEM

Unit commitment is the problem of finding an optimal schedule and corresponding generation amounts
for a set of generators over a twenty-four-hour horizon so that total cost of generation and transmission is
minimized, and a set of constraints, such as demand requirement, upper and lower limits of generation,
minimum up/down time limits, ramp up/down constraints, transmission constraints are satisfied. Unit
commitment (UC) adequately covers all the major aspects at the core of planning and operational decisions
faced by independent system operators (ISOs), regional transmission organizations (RTOs), and utility
companies. Hence it has received a good deal of attention in the industry.

The academic literature on the unit commitment problem dates back to the 1960s. An integer program-
ming approach proposed by Dillon, Edwin, Kochs, and Taud (1978) was one of the earliest optimization-based
approaches to the unit commitment problem. The authors address the unit commitment problem of hydro-
thermal systems with reserve requirements. It was one of the earliest papers that can solve real life
problems with 20 units. The authors developed two sets of valid inequalities that were globally valid to
the problem and used these inequalities in the branch-and-bound algorithm. The dynamic programming
approach developed by Jr., H. D. Powell, and Rayburn (1987) was one of the earliest successful dynamic
programming algorithms. The algorithm featured a classification of units so as to reduce the number of
states. The authors addressed the problem at San Diego Gas & Electric System with 30 generators. Expert
systems, fuzzy logic, meta-heuristic algorithms, and ant colony systems are among the other approaches
that have been applied to the unit commitment problem. Surveys by Sheble and Fahd (1994) and by
Padhy (2004) review the academic literature on the unit commitment problem, and the book by Wood and
Wollenburg (1996) addresses several operational and planning problems in the energy industry, including
the unit commitment problem.
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First a synopsis of the notation and the decision variables involved:

Indices and sets:
i ∈ I generators
t ∈ {1, . . . ,T} time periods
Data:
Si(·) startup cost function of unit i
Hi(·) shutdown cost function of unit i
fi(·) generation cost function of unit i
(Qi, qi) maximum and minimum amounts for units i’s offer
(Ri, ri) ramp-up and ramp-down amounts for unit i
(Li, li) minimum up and down times for unit i
dt load at time period t
Decision variables:
git generation provided by unit i at time period t
sit binary variable indicating if unit i started at time period t
uit binary variable indicating if unit i is on at time period t

uit
vector of uit variables. uit ≡ (uiτ), τ = t− li +1, . . . , t. For τ < 0, uiτ is set to the on/off
state of unit i at time period τ .

uit
vector of uit variables. uit ≡ (uiτ), τ = t−Li +1, . . . , t. For τ < 0, uiτ is set to the on/off
state of unit i at time period τ .

We use the multi-stage stochastic programming approach to address the uncertainty and intermittency of
the wind power generators. We assume that the uncertainty evolves as a discrete time continuous stochastic
process, which is represented within the unit-commitment formulation with a finite probability distribution
approximation. The original stochastic process model may often be derived from statistical models of wind
predictions, which typically involve various stat-based prediction models such as time-series models etc.

The finite space stochastic approximation is represented as a scenario tree. The information structure
is presented as a rooted scenario tree where the nodes n (n ∈ N) in level t (t ∈ T ) of the scenario tree
constitute the states of the world that can be distinguished by the information available up to time period
t (Singh, Philpott, and Wood 2009). The set of leaf nodes, NL (NL ⊂ N), contains the nodes without any
successor. The root node is the node without any predecessor. In general, n(τ) ∈ N represents the τ th

predecessor of node n. The level of the root node is zero, and in general the level of a node, tn, is defined
such that n(tn) is the root node. The tree has a depth of T , and all leaf nodes have a level of T . By
convention, n(0) is the node n itself, and n(τ), τ > tn, is an empty set.

The root node occurs with probability one, and the state of the world corresponding to node n ∈ N
occurs with probability πn, given that its predecessor, n(1), has occurred; and pn denotes the associated
unconditional probability, i.e., pn = ∏

tn−1
τ=0 πn(τ). There is a one-to-one matching between the leaf nodes

of the scenario tree and the scenarios. Given a leaf node, n ∈ NL, a T -tuple [n(T ),n(T − 1), . . . ,n(1),n]
represents a scenario with probability of occurrence equal to pn. Two scenarios sharing the same state of
the world at time periods 1, . . . ,τ , for some τ < T , have to observe the same set of decision variables in
the optimization model, in order to make sure that the model does not cheat by foreseeing (anticipating)
the future.

The full stochastic unit commitment formulation is given below in (8):
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Formulation:

min
g,u,s ∑

n∈N
pn ∑

i∈I
Si(uin)+Hi(uin)+ fi(gin) (8a)

s.t. ∑
i∈I

gin ≥ dn, n ∈ N, (8b)

qiuin ≤ gin ≤ Qiuin, i ∈ I, n ∈ N (8c)

sin ≥ uin−ui,n(1), i ∈ I, n ∈ N (8d)

gin−gi,n(1) ≤ Ri, i ∈ I, n ∈ N (8e)

gi,n(1)−gin ≤ ri, i ∈ I, n ∈ N (8f)
Li−1

∑
τ=0

si,n(τ) ≤ uin, i ∈ I, n ∈ N (8g)

li−1

∑
τ=1

si,n(τ) ≤ 1−ui,n(li), i ∈ I, n : n(li) ∈ N (8h)

li−1−p

∑
τ=1

si,n(τ) ≤ 1−ui,n(li−p), i ∈ I, n ∈ NL, p ∈ {1, . . . , li−1} (8i)

uin ∈ {0,1}, sin ∈ {0,1}, gin ≥ 0 (8j)

Objective function (8a) is the total cost of generation summed over all nodes and is equivalent to
the expected cost of generation over all time periods. Cost of generation includes startup cost, shutdown
cost, and fuel cost. Startup (shutdown) cost can be a step function that takes its highest step value when
the unit has been down (up) for a certain number of time periods, or it can be a piecewise function that
increases with the number of time periods the unit has been down (up). Fuel cost may be a nonlinear
function of generation level, which may not be convex. Constraint (8b) requires total generation be grater
than the load. Constraint (8c) has two functions: If the unit is down, it forces the generation to be zero;
and, if the unit is up, it arranges the generation level to be between the upper and lower limits of the
generator. Constraint (8d) links the start-up variables to up/down variables. Constraints (8e) and (8f) handle
ramp-up and ramp-down limits. Constraint (8g) is for minimum up time and constraints (8h) and (8i) are
for minimum down time requirement. Finally constraint (8j) puts binary and non-negativity requirements.

5 EXPERIMENTS

We consider a simple wind model with four time periods. Wind speed at each time period follows a
Gaussian random variable with a mean of 10 miles per hour and a standard deviation of 2.5 miles per hour.
The distribution of wind at each stage is assumed to be independent of previous stages; this is a significant
departure from reality, but will be sufficient to illustrate our point. We compare three approaches to generate
a scenario tree, the results of which are presented in Figure 5. The first approach samples three values from
the Gaussian random variable for each stage and constructs a scenario tree with all the combinations of
these, i.e. with 81 scenarios (data marked “3-sample” in Figure 5). The second approach does similarly by
sampling five scenarios per time period with a total of 625 scenarios (data marked “5-sample” in Figure 5).
And the third approach uses the scenario tree reduction technique developed in this article. It first generates
hundred samples from the Gaussian random variable at each stage, and then reduces it to a scenario-tree
that has three points per stage. It generates a scenario tree for four time periods using these three points
with a total of 81 scenarios ( data marked “3-s-r” in Figure 5).

For each method of scenario tree generation, we solve the stochastic unit commitment problem using
the corresponding tree. We repeatedly solve fifty of these problems for each scenario-generation method.
The figure provides a box-plot of the observed optimal objective function approximation values for the
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Figure 1: Comparison of the optimal value approximations for three scenario tree generation methods from
50 runs. The standard deviation of the three samples sets are: “3-sample” at 691.6032, “5-sample” at
513.4892, and “3-s-r” at 316.5449. The boxes are of one standard-deviation’s length, centered around the
mean of the approximation values.

three methods. The boxes are of length equal to the observed standard deviation (these values are given
in the caption), centered around the observed mean approximation objective value from the 50 runs. The
lines extend to the min and max observed approximation value. The key take-away from the plots in
Figure 5 is the variability of the approximation for the optimal solution under the various scenario-tree
selection procedures. The “5-sample” method has better variance than the “3-sample” solutions, as can
be expected because of the additional scenarios used. The plot, along with the variance values also show
significantly better convergence of the approach outlined in this paper. The “3-s-r” method has a standard
deviation that is almost half the standard deviation as the plain sampling of “3-sample” and also outstrips
the performance of the “5-sample” method by almost as much. Recall that the “3-s-r” method is actually
reducing a scenario tree with 1003 = 1000000 scenarios to 33 = 81 scenarios, whereas the first approach
uses only 81 of the first scenarios and the second approach uses 625 scenarios.

We note that generating samples and performing scenario reduction takes negligible amount of time (in
the order of seconds). The main time-consuming step is solving the stochastic unit commitment problem.
Thus, the results are biased towards “5-sample” since we spent much more time to solve the problem with
five samples at each epoch than we do for the problems with three samples as in the cases of “3-sample”
and “3-s-r.” However, the main conclusion here is to show the effectiveness of “3-s-r”; thus, we do not
worry about this bias since the experiments of “3-s-r” takes the least amount of time and performs the best.
These results clearly illustrate the importance of a scenario-reduction step in determining a probability
approximation with a small support set that works well and is more robust to perturbations.
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