
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

APPLICATION OF NON-MARKOVIAN STOCHASTIC PETRI NETS TO THE MODELING OF
RAIL SYSTEM MAINTENANCE AND AVAILABILITY

Pierre Dersin

ALSTOM Transport
48 Rue Albert Dhalenne

93482 St-Ouen, FRANCE

René C. Valenzuela

School of Aerospace Engineering
Georgia Institute of Technology

270 Ferst Dr., Atlanta, GA 30332, USA

ABSTRACT

With the increasingly stringent contractual requirements placed on system availability in urban and intercity
passenger rail systems, and the emergence of public-private partnerships with maintenance contracts over
periods of 25 years or more, rail system suppliers such as ALSTOM Transport now adopt an integrated
logistic support (ILS) vision, where the entire support system (maintenance policy, crew scheduling, spare
parts, tools, etc.) is modeled at the same time as the main system. The need to overcome the restrictive
assumptions imposed by Markov models has led us to the use of non-Markovian stochastic Petri Nets,
which in addition lend themselves to building decentralized, hierarchical models. The challenges that are
addressed in this paper are how to deal with: deferred maintenance, aging, and different time scales (not
all units in the rail system have the same mission profile). Comparisons are made with results obtained
with Markov models.

1 INTRODUCTION

To succeed in the competitive market of urban passenger rail systems, suppliers must minimize the cost of
the offered solution while still satisfying stringent performance and dependability requirements. Current
contracts have evolved to include maintenance provision during the life cycle of the system thus shifting
the operating and maintenance costs (and associated risks) to the equipment manufacturer or integrator. In
these so called Performance Based Contracts one of the most appropriate measures on which to base the
purchasing decision is the solution’s life cycle cost (LCC). In its most coarse description LCC can be split
into the sum of the cost of acquisition, the cost of operation and maintenance, and the cost of disposal (IEC
2005). In passenger rail systems the cost of operation and maintenance can be several times the acquisition
cost. To offer competitive solutions it is fundamental to obtain an accurate and timely estimation of a set
of feasible configurations and their associated cost of operation and maintenance.

Passenger rail systems are large scale systems made up of heterogeneous very reliable components.
Components with both constant and increasing failure rate are part of the system. The system is spatially
decentralized. To satisfy the reliability requirements redundancy at different hierarchical levels is used.
Their maintenance policy includes corrective and preventive maintenance actions. Corrective maintenance
actions are chosen based on the effect of the failure on the system. In an an urban train passenger system
we have that for some of the subsystems only a portion of the operating time will produces revenue to the
operator. We call this portion of time the revenue service time. To achieve high levels of availability the
maintenance policy defines an immediate replacement action for components whose failure affects revenue
service time. On the other hand, for components whose failure does not affect revenue service time but its
immediate restoration does the maintenance policy defines a deferred replacement action. Depending on
the component and on the failure mode some of the replaced components are repaired (at a workshop) or
discarded and replaced by a new one. Periodical inspections (scheduled by groups of components) are used
to detect failures of redundant components that have not been detected by their built-in test equipment.

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 3447978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Dersin, and Valenzuela

Dependability measures of interest include steady state availability, interval availability and completed
number of trips in a given period of time. To carry out the maintenance actions the necessary workers and
spares need to be available. The benefits that can be obtained by including logistic considerations have
been recently considered by some researchers. Volovoi and Peterson (2011) combine the results from a
maintenance model and a logistics optimization model to iteratively calculate an optimal set of spares and
availability. Tu, Ghoshal, Luo, Biswas, S., Jaw, and Navarra (2007) combine prognostic techniques with a
higher-level reasoning engine to generate actionable tasks for the inventory and maintenance management
decision support systems. It can assess different sparing allocation schemes and maximize availability
within budget constraints.

Since the early work summarized in (Barlow and Proschan 1965) stochastic-process techniques have
been used extensively to study the optimality of different maintenance policies. A review of the current
state of such approach can be found in (Kobbacy and Murthy 2008). Due to the large scale and the
complexity of the maintenance policy the analytical approach cannot be used as a modeling tool in this
case. Discrete event simulation models based on different modeling frameworks have been used to model
these systems. Shaikh and Mettas (2010) estimate availability, production and maintenance costs of a natural
gas processing plant. Chang, Chang, and Zio (2010) study the effect of different maintenance strategies on
the production availability of an off-shore facility. Both use an approach based on reliability block diagrams
and Monte Carlo simulation. As an alternative to RBD and CTMC models, non-Markovian stochastic Petri
nets have also been used to model maintenance processes of complex systems. Volovoi (2007) compared
opportunistic and conditioned based policies with optimal age-based replacement policies. Zille, Brenguer,
Grall, and Despujols (2010) used a hierarchical approach to model and study the performance of a turbo
lubricating system. When using a simulation approach to estimate the dependability metrics of large scale
very dependable systems a crude Monte Carlo (Asmussen and Glynn 2010) simulation approach becomes
impractical (Nicola, Shahabuddin, and Nakayama 2001). Techniques such as importance sampling and
splitting have been used to reduce the number of replications needed to achieve the desired confidence
level of the estimator. More information on the use of importance sampling in context of calculation of
dependability measures can be found in (Nicola, Shahabuddin, and Nakayama 2001).

In this paper, we discuss a modeling methodology based on non-Markovian stochastic Petri nets that
can be used to systematically create a model of the failure and maintenance process of a large scale complex
system including maintenance operators and spares inventory. We describe in particular, how non-Markovian
stochastic Petri nets can be used to model deferred maintenance actions and aging. Furthermore, we include
a discussion of how they are used to model the different time scales of the failure and restoration process.

The paper is structured as follows. In Section 2 we formalize the specific stochastic Petri net framework
used in this work. In Section 3 we present the modeling methodology and describe how aging and deferred
maintenance policies are handled.

2 STOCHASTIC PETRI NETS

Following (Bobbio, Puliafito, Telek, and Trivedi 1998), a marked Petri net PN is a tuple PN = (P,T, I,O,M),
where: P is the set of places (drawn as circles), T is the set of transitions (drawn as thin bars if immediate
or thick bars otherwise), I,O are the input (output) functions and M is the marking of the PN. A transition
is enabled in a marking if each of its input places contains at least as many tokens as the multiplicity of the
input function I. An enabled transition fires by removing as many tokens as the multiplicity of the input
function I from each input place, and adding as many tokens as the multiplicity of the output function O
to each output place.

Stochastic Petri nets are PN in which the timing is stochastic. In this work, the firing time of any
given transition can be either: immediate, deterministic or random (modeled with a continuous cdf with
infinite support). Furthermore, inhibitor arcs, transition priorities and guards are the structural extensions
with which the Petri net framework used in this work is enriched. An inhibitor arc disables the transition
to which is connected if the number of tokens on the place on the other end of the arc is greater than zero.

3448

Dersin, and Valenzuela

Transition priorities allow the breaking of ties between the firing of transitions. If two or more transitions
are scheduled to fire at the same time then the transition with the higher priority will fire first. Furthermore,
if two or more transitions with the same priority are scheduled to fire at the time then the transition with
the lower index will fire first. Guards are boolean conditions that may be associated with a transition. The
transition will be enabled if and only if the appropriate number of tokens are on in its input places and the
guards associated with it evaluate to true.

In the Petri nets framework the enabling of a transition is interpreted to be the starting of an activity.
The firing of a transition corresponds to the completion of an activity. When the firing of a transition causes
a previously enabled transition to become disabled it means that the corresponding activity was interrupted
before being completed.

3 MODELING METHODOLOGY

The driving principles when designing the modeling methodology are ease of implementation and reusability.
The inputs required to create the model are the system structure, FMECA (Failure Modes, Effects and
Criticality Analysis), proposed maintenance policy including logistic support (structure) and the customer
RAM (i.e. Reliability, Availability and Maintainability) requirements. As an output of this process a SPN
model of the system will be created.

The SPN model will receive as inputs the reliability data of the components comprising the system and
the parameters of the maintenance policy and will produce as outputs the estimation of the performance
parameters and cost of the proposed maintenance policy. A scheme of this process is depicted in Figure 1

Figure 1: Modeling creation and usage flowchart.

The proposed modeling methodology is based on the modularization and data encapsulation of the
code. Modularization will ease the implementation by allowing the reuse of previously defined PN subnets.
With data encapsulation we ensure consistency between a specific level of the model hierarchy and the
abstraction level of data available to it. The first step in this direction involves establishing a taxonomy of
the process. To do that a description of the process under consideration follows.

3.1 System Description

Urban train signaling systems offered by Alstom share a common backbone which is then customized to
ensure compliance with the customer needs and requirements. The system has a well defined hierarchical
structure with redundant elements at different hierarchy levels. Its elements are spatially distributed on both
fixed (servers in control rooms, point machines along the track) and moving locations (on-board equipment
on rolling stock). Some of them base their operation on electronic principles and others on mechanical
principles.

The system implements graceful degradation by allowing different operation types depending on the
availability of some of its subsystems. Some of the components (servers) operate continuously while others
only during revenue service (on-board products). Revenue service hours (period of time during which the

3449

Dersin, and Valenzuela

operation of the system is generating revenue) vary from customer to customer. Furthermore, there can be
a difference between the number of products operating depending on the time of the day/week.

At the lowest hierarchical level a specific function is achieved either by a single component, two
identical components in a 1oo2 (one-out-of-two) architecture or three identical components in a 2oo3
(two-out-of-three) architecture. At the component level there are two processes of interest: the failure
process and the restoration process.

The failure process is intrinsic to the component and describes the paths which the component can
follow to go from the operating “UP” state to the non-operating “DWN” state. In the components being
considered a distinction must be made between detected and undetected failures. A detected failure is
a failure which the self-test equipment of the component is able to identify. After a failure is detected
the failed component can signal its own state to the higher levels of the system. The fault coverage of
a component is an important design parameter and has an impact on the future maintenance operations.
Consider, for instance, a product made up of N components arranged in series. In this setting, failure of
one of the components will result in loss of the function of the product. If the component has suffered
an undetected failure then to restore the product to an operational state a fault localization procedure has
to be performed first. If, on the other hand, the failure of the component has been detected then the fault
localization procedure is not required. In the case of a function being performed by a set of components
in a redundant architecture detected failures are combined with deferred maintenance actions to minimize
the possibility of service interruption.

The restoration process describes the set of actions that are available to a maintainer to analyze and
restore a component to the operational state. To make it intrinsic to the component it is considered that this
process consist of the actions that have to be taken only after the logistic prerequisites have been satisfied.

To maintain the high levels of the dependability required of the system there are two types of corrective
maintenance actions implemented in the maintenance policy: immediate and deferred. Both of them will
replace the failed element by a spare from the pool of available spares (new or repaired off-line previously).
We refer to this process as an on-line replacement. The difference between the immediate and deferred
maintenance action is the time at which it will be performed. An immediate corrective maintenance action
is triggered immediately after failure and a deferred corrective maintenance action is triggered at the first
(previously defined, fixed) planned scheduled maintenance after the failure has occurred. The selection on
which one of the corrective maintenance actions is implemented depends on the effect of the failure on
the performance of the system.

As a result of the restoration process, a failed spare is now part of the system. The process describing
the procedure that brings the failed part to a state of an available spare part is dubbed the off-line restoration
process. In the most general setting the failed spare is then taken to a workshop where it is fixed or replaced
by a new part and then returned to the pool of available spares.

3.2 Lower Level Model Taxonomy

Based on the previous description of the system the following taxonomy (modularization) is proposed at
the component hierarchical level (the idea being to split the net in atomic modules (subnets) each of which
handles a specific set of actions). Six subnets are defined: the failure subnet, the logistics subnet, the
on-line restoration subnet, the off-line restoration subnet, the system state subnet and the messaging subnet.

The logistics subnet describes the preconditions required for the restoration process to begin. It is
derived from applying the system maintenance policy to the component. It is not intrinsic to the component
because the same component can be subject to a different maintenance policy depending on the system on
which is embedded.

The messaging subnet encapsulates the data and transmits it at the appropriate abstraction level. For
instance, consider three consecutive hierarchical levels. Suppose, that an undetected failure occurs at the
lowest level (component) which in turns results in the product (at the intermediate hierarchical level) to also

3450

Dersin, and Valenzuela

failing (due to loss of function). Although in the model it is known at the product level which component
has failed, at the subsystem level (higher hierarchical level) it is only known that the product is failed.

The relationship between the state of the component and these subnets is shown in Figure 2. In the
figure there are five states depicted. “UP” and “DWN” denote the corresponding states of the component.
“Wrk” denotes the number of available workers. “SprF” and “SprA” denote the spares that are failed and
the available spares.

Figure 2: Component state and process subnets.

An example of the implementation of the on-line restoration subnet for a pair of identical components
in a 1oo2 architecture is shown in Figure 3.

Figure 3: Restoration subnet for a 1oo2 architecture.

In this example the restoration subnet is composed of two subnets. One of the subnets models
the replacement of a failed component (its entry point is the StartRepl place) and the other models the
failure localization procedure (its entry point is the StartDet place). The exit point of both subnets is

3451

Dersin, and Valenzuela

the ActionCompleted place. At that point control of the simulation returns to the appropriate point in the
logistics subnet. The algorithm for the replacement of failed part is as follows. The first step is to select
the part to be replaced (this subnet assumes that there is a part that needs to be replaced. Checking of this
assumption occurs on the corresponding logistics subnet). At this point there could be one or two parts
that need to be replaced. To select only one part in the case that two of them are failed transition priorities
are used. Once the selection is performed (note that the selection will remove the token representing the
component from the failure subnet) the replacement action takes place. This is modeled by the transition
labeled MACMT (Mean Active Corrective Maintenance Time). When using a Markov model this time is
modeled as following an exponential distribution. Since this limitation is not imposed by the non-Markovian
SPN model a different probabilistic model can be chosen here (uniform or lognormal are two possibilities).
Finally, with the appropriate use of guards a token is returned to the UP state of appropriate failure subnet.

The use of lognormal distributions is justified for instance, when modeling the MACMT of a unit
which we know is failed but it has several failure modes that need to be diagnosed before the restoration
can occur. Most of the times the particular failure mode which has occurred is easy to diagnose leading to
short restoration times. Other times, however, a failure which cannot be easily recognized occurs. In that
case the maintenance operator will follow the standard diagnostic procedures which will fail to recognize
the failure. Once that happens the restoration time can easily become very long (an expert might have to
brought in to study the problem, the restoration is deferred to the next shift where a more experienced
maintenance operator is at hand, etc.)

3.3 Immediate and Deferred Maintenance Policy Implementation

Figure 4 shows a simple implementation of the logistics subnet of a component. The entry point of the
net is a request for a maintenance action (MA) coming from the failure subnet (through the DWN state).
After the request is placed the MA is only triggered when the resources (workers and spares) are available.
Once the resources become available and after the firing delay (specified in transition T1) a MA is triggered
in the restoration subnet (after the resources become available at the location of the component that has
failed).

Figure 4: Integrated logistics support net i.

To specify whether an immediate or deferred MA is desired one only needs to set the firing delay of
transition T1 accordingly. For an immediate MA an instantaneous type must be used (as shown in Figure 4).
For a deferred MA a periodic type (which only fires if its enabled at predefined time intervals) must be
selected.

3452

Dersin, and Valenzuela

3.4 Operation Profiles

The discontinuous nature of the revenue service time interval and the fact that most of the performance
metrics are based on operations during revenue service time imply that great care must be taken to ensure
that at any given time (but in practice at any given failure time) the model can decide whether it is in a
revenue service period or not. To illustrate consider a system which has a revenue service time interval of
18 hours a day (on weekdays) and a server that operates continuously (24 hours a day). Figure 5 shows a
typical operating profile of an element of the system. Failure of the server induces a service interruption
but only if the system is in a revenue service period. The probability of a server failure during non-revenue
service time is non-negligible and must be considered when estimating the performance parameters. There
are two issues involved in this example. First, the failure distributions of the elements in the system
correspond to failures in operating time, which for elements operating non-continuously is different from
calendar time. Second, a way for the model to decide whether a given time corresponds to a revenue
service time needs to be implemented. We deal with the first issue in this section and leave the latter for
the following section.

Figure 5: Operating profile of component i.

A naive implementation of the different operation profiles within the system calls for using local clocks
with an extra state for each system element. The extra state would denote an element which is not failed,
cannot fail (while in the state), and is not operating. The element would then move according to its operation
profile from the operating state (during revenue service) to this OFF state. A new failure time is sampled
anytime the element enters the UP state. The problem with such naive implementation is that it triggers
an event twice a day for each element that does not operate continuously. On a replication reaching a final
time of 30 years (typical life cycle length of a signaling system) triggering events twice a day considerably
lengthens the run time of a single replication.

To overcome this issue a scaling function is introduced for the elements that do not operate continuously.
During the simulation the pseudo-random number generator provides a variate which corresponds to the
next event time. This event time is then scaled up according to the element’s operating profile.

To define the scaling function consider a component/product/subsystem that operates for kT units every
T units (with k ∈ (0,1)) and that its first operation cycle starts at time s (see Figure 5). Then, the relationship
between the calendar time t and the element’s operation time ti is given by

f (ti;s,k,T) = t = s+ ti +T (1− k)
⌊ ti

kT

⌋
. (1)

Note that (1) associates the points ti = nkT , n ∈ N with the beginning of the operation period which for
our purposes is a conservative assumption.

3453

Dersin, and Valenzuela

3.5 Replication Run Time Optimization

In the previous section we noted that to properly calculate the performance measures of the scenario under
consideration it is imperative to keep note of whether a given instant of time belongs to a revenue service
interval. It is equally relevant to keep track of the time remaining to enter/leave one such interval. The
naive approach to do that would be to implement a subnet that acts as a local clock with two states denoting
”revenue/not revenue”. Including this clock increases the number of events that are triggered throughout
the run of a replication significantly. For the signaling system under consideration a reasonable value for
the expected number of functional failures is on the order of 10 [events per year]. On the other hand, the
clock keeping track of the revenue service time would trigger twice a day which amounts to approximately
17520 [events per year]. Clearly any strategy that reduces the number of events triggered during the run
of a replication will have an impact on the run time of the replication.

The approach we take follows the ideas on which the fault injection simulation method described in
(Van Moorsel, Haverkort, and Niemegeers 1991) is based upon. In our case, we are interested in knowing
where we are with respect to revenue service only on the restoration period which follows a failure. This
is because during the periods of time where the system is operating and no failure has occurred we already
know how to calculate the performance measures. Figure 6 shows this idea schematically.

Figure 6: Selective Event Simulation. x denotes a failure event, bars and circles are inspections or preventive
maintenance events for each component type.

Expanding on this idea we can use information that is known in the model (but unknown in reality)
to further reduce the number of events triggered during the simulation of a replication. Inspections allow
the detection of failures that were not detected by the on-board equipment. This can be for instance due
to redundancy of the particular subsystem/component that has failed. In the simulation environment we
always know when an undetected (by the system) failure has occurred. Hence, we can set up the model
such that inspection transitions are only triggered if an undetected failure has occurred and the system has
not been restored yet.

Both of the previous changes will reduce the number of events triggered during the lifespan of a
replication, reducing the run-time it at the cost of increasing the complexity of output analysis. A simple
example of the possible savings is shown next. Consider the SPN model shown in Figure 7. The model
consists of three subnets. The two bottom subnets represent a simplified failure and restoration process of two
independent components. The top subnet represents a clock that switches between revenue service interval
and not revenue service daily (representing the system’s operation profile). In an actual implementation
another state for each component subnet would be added representing the component being in an off-service
state (following the clock). Two cases are run. The first one (denoted “naive”) corresponds to the one
shown in Figure 7. The second one (denoted “selective event disabling”) disables the clock (top subnet)
while both components are operational. This can be done using either inhibitor arcs or a combination of
guards and predicates. A Monte Carlo terminating simulation of the two cases was run. Each experiment
ran 100000 replications and the terminating time was 30 years. The results are shown in Table 1.

3454

Dersin, and Valenzuela

Table 1: Selective event disabling run time comparisons.

Case Run time [s]
Naive 179
Sel. event disabling 14

A 12.8X speed-up is obtained in this case. This provides more than enough incentive to further explore
this modeling technique for the case of reliability measures in noncontinuous operating systems.

Figure 7: Selective Event Simulation Example.

4 CASE STUDY

In this section a case study is presented. It highlight the insight that can be obtained from including
logistic support considerations in the modeling of maintenance process and at the same time show how the
non-Markovian SPN framework allows capturing such activities and their effects with little extra effort.
The analysis focuses on the effect of the logistic support elements (spare parts and workers) on the interval
availability of the system.

4.1 System Description

The system is composed by five identical products (P1) located along the track (see Figure 8). The product
is composed by two submodules in a 1oo2 architecture. Each submodule is composed by 12 elements in
a series configuration. Of these elements one of them corresponds to two identical components in a 2oo3
architecture (see Figure 9). To perform the restoration operations both maintainers and spare parts need to
be available. There is one warehouse in the system where both resources (workers and spares) are located.

Figure 8: System Layout.

3455

Dersin, and Valenzuela

Figure 9: Product breakdown structure of P1.

4.2 Number of Workers Needed to Maintain a Given System

In this case we consider the top configuration shown in Figure 8 to be the system configuration (with respect
to its logistic support). The question that needs to be answered is what is the number of workers needed
to maintain the given system. The solution procedure is to perform a simulation experiment with different
numbers of workers. The result from the simulation will be the interval availability of the system during
the life cycle. A number of maintenance operators will be considered sufficient if it is the least among all
the numbers such that the availability target is satisfied with a 95% probability. Three experiments using
one, two and three maintenance operators are run.

The simulation experiment was performed three times with different seed values for the pseudo random
number generator. An experiment consists of 1E5 replications of the life cycle of the system (terminating
simulation at 30 years). The output from each experiment was the a point estimate and 95% confidence
interval for the expected time spent by the system in the up state. The interval availability is calculated as
the ratio of this value and the life cycle of the system. The failure data for each component is exponential,
the travel times and the restoration times follow a uniform distribution. For demonstration purposes, the
failure rates of each component are scaled up up with respect to their real values in order to increase
the number of observed failures during the experiment. The travel times are proportional to the distance
between the warehouse and the location of the equipment being restored.

The final model consists of approximately 2200 places, 2200 transitions and 100 tokens. The machine
used to run the experiments has a dual core Pentium processor. The average run time for each experiment
was 25 [min].

The results of the experiment are summarized in Table 2. For this case it seems that one maintenance
operator is enough to satisfy an interval availability target of 0.98. Since the point estimator of the interval
availability does not exhibit a significant difference between the three possible number of maintenance
operators it can be concluded that for this system the number of maintenance operators does not have a
major influence on the interval availability of the system. This was somewhat expected because the number
of failures throughout the life of the system is still sparse enough.

5 CONCLUSION

Including logistics considerations into the model of the maintenance process allows the maintenance policy
planner to answer questions related to the effect of shared resources on the dependability targets of the
system.

3456

Dersin, and Valenzuela

Table 2: Simulation experiment results.

Number of Operators Estimated Interval Availability One-sided 95%CI
1 0.9805 (0.9800,1)
2 0.9809 (0.9804,1)
3 0.9809 (0.9805,1)

In this work it has been shown how the non-Markovian stochastic Petri net framework is appropriate
to handle in a straightforward way all of the relevant items present in the process being modeled.

Questions of simulation optimization, model reusability, . . . , etc. have not been discussed but are clearly
issues that will require adequate consideration when the model of the full-scale system is created. From the
example case it was seen that although the modeling methodology allows for a simple implementation of
different maintenance policies of a given system the size of the resulting models could make its simulation
impractical (a real signaling system is composed by hundreds of products like the ones modeled in the
example case). Furthermore, the run time for the experiment, the width of the obtained confidence intervals
and the typical interval reliability targets of the applications make the exploration of variance reduction
techniques (such as importance sampling) a necessity.

REFERENCES

Asmussen, S., and P. W. Glynn. 2010. Stochastic Simulation: Algorithms and Analysis. Stochastic Modelling
and Applied Probability. Springer.

Barlow, R. E., and F. Proschan. 1965. Mathematical theory of reliability. John Wiley, New York.
Bobbio, A., A. Puliafito, M. Telek, and K. Trivedi. 1998. “Recent developments in non-Markovian stochastic

Petri nets”. Journal of Circuits Systems and Computers 8 (1): 119–158.
Chang, K. P., D. Chang, and E. Zio. 2010. “Application of Monte Carlo Simulation for the Estimation of

Production Availability in Offshore Installations”. In Simulation Methods for Reliability and Availability
of Complex Systems, Chapter 8, 233 – 252. Springer.

IEC 2005. “IEC 60300-3-3:2005 Dependability Management, Part 3-3: Application guide - Life cycle
costing”.

Kobbacy, K. A., and D. P. Murthy. (Eds.) 2008. Complex System Maintenance Handbook. Springer Series
in Reliability Engineering. Springer.

Nicola, V. F., P. Shahabuddin, and M. K. Nakayama. 2001, September. “Techniques for Fast Simulation of
Models of Highly Dependable Systems”. IEEE Transactions on Reliability 50 (3): 246–264.

Shaikh, A., and A. Mettas. 2010. “Application of Reliability, Availability, and Maintainability Simulation
to Process Industries: a Case Study”. In Simulation Methods for Reliability and Availability of Complex
Systems, Chapter 8, 173 – 197. Springer.

Tu, F., S. Ghoshal, J. Luo, G. Biswas, M. S., L. Jaw, and K. Navarra. 2007, March. “PHM Integration with
Maintenance and Inventory Maagement Systems”. In Aerospace Conference, 2007 IEEE.

Van Moorsel, A., B. Haverkort, and I. Niemegeers. 1991. “Fault Injection Simulation: A variance reduction
technique for systems with rare events”. In First International Workshop on Performability modeling
of Computer and Communication Systems.

Volovoi, V. 2007. “System-Level Maintenance Policies via Stochastic Petri nets with Aging Tokens”. In
Annual Reliability and Maintainability Symposium 2007, RAMS ’07.

Volovoi, V., and D. K. Peterson. 2011, December. “Coupling Reliability and Logistical Considerations for
Complex System of Systems using Stochastic Petri Nets”. In Proceedings of the 2011 Winter Simulation
Conference, edited by S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, 1751 – 1762.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

3457

Dersin, and Valenzuela

Zille, V., C. Brenguer, A. Grall, and A. Despujols. 2010. “Simulation of Maintained Multicomponent
Systems for Dependability Assessment”. In Simulation Methods for Reliability and Availability of
Complex Systems, Chapter 12, 253 – 272. Springer.

AUTHOR BIOGRAPHIES

PIERRE DERSIN, born in Belgium in 1953, graduated from the Massachusetts Institute of Technology
(MIT) in 1980 with a Ph.D. in Electrical Engineering after receiving a Master’s degree in O.R. in 1976, also
from MIT. He worked in the late seventies and early eighties on reliability of large electric power networks, as
part of the Large Scale System Effectiveness Analysis Program sponsored by the US Department of Energy,
from MIT and Systems Control,Inc. After some time with FABRICOM (Belgium and U.S), involved with
fault diagnostic systems for factory automation, he joined ALSTOM Transport in 1990. With ALSTOM
Transport, he has occupied several positions, mainly involved with RAMS and Maintenance, including R&D
Manager of the Service business, and is now RAM Director in ALSTOM Transport’s Information Solutions
(i.e. railway signaling and communication) product line .He has contributed a number of communications
and publications in conferences and journals (including IEEE, ESREL ’92, the 1995 RAMS Symposium
and French Lambda-Mu conferences),in the fields of RAMS, automatic control and electric power systems.
His email address is pierre.dersin@transport.alstom.com.

RENÉ C. VALENZUELA is a Ph.D. candidate in the School of Aerospace Engineering at Georgia Institute
of Technology. He holds Masters and Bachelors degrees in Mechanical Engineering from Universidad de
Concepción, Chile. His research interests include simulation modeling and analysis of maintenance process
and probabilistic risk assessment of aerospace systems. His email address is rene.valenzuela@gatech.edu

3458

