
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

RUNTIME PERFORMANCE AND VIRTUAL NETWORK CONTROL ALTERNATIVES IN

VM-BASED HIGH-FIDELITY NETWORK SIMULATIONS

Srikanth B. Yoginath,
Kalyan S. Perumalla

Brian J. Henz

Computational Sciences and Engineering Division ATTN: RDRL-CIH-C

Oak Ridge National Laboratory Computing and Computational Sciences Division
Oak Ridge, TN 37831-6085, USA U.S. Army Research Laboratory

 APG, MD 21005, USA

ABSTRACT

In prior work (Yoginath and Perumalla, 2011; Yoginath, Perumalla and Henz, 2012), the motivation,
challenges and issues were articulated in favor of virtual time ordering of Virtual Machines (VMs) in
network simulations hosted on multi-core machines. Two major components in the overall virtualization
challenge are (1) virtual timeline establishment and scheduling of VMs, and (2) virtualization of inter-VM
communication. Here, we extend prior work by presenting scaling results for the first component, with
experimental results on up to 128 VMs scheduled in virtual time order on a single 12-core host. We also
explore the solution space of design alternatives for the second component, and present performance re-
sults from a multi-threaded, multi-queue implementation of inter-VM network control for synchronized
execution with VM scheduling, incorporated in our NetWarp simulation system.

1 INTRODUCTION

Lately, network simulators are being built by integrating virtualization technologies with discrete event
simulations of packet-level network models. In order to efficiently make use of virtual machines in such
network simulations/emulations, new mechanisms are needed in hypervisors to maintain a global simula-
tion time-line and also ensure a time ordered execution of events. The mechanisms must minimize or
eliminate event causality errors wherein the events of the future (in terms of virtual simulation time-line)
are prevented from affecting the events from the past on the simulation timeline. Unfortunately, almost
none of the existing VM-based network simulators/emulators that employ VMs account for this require-
ment. Recently, incorrectness of simulations was quantitatively demonstrated (Yoginath and Perumalla
2011) when VM-based network simulations are executed without explicit simulation-specific support in
conventional hypervisor schedulers. A solution was also proposed that maintains a separate simulation
time clock at the level of each virtual CPU core (VCPU), and evaluated by experiments on a small scale
(dual-core machine, three VMs). In follow-on work (Yoginath, Perumalla and Henz 2012) scaled results
were reported on up to 64 VMs on larger-sized hardware (12-core machine) with multiple benchmarks
exercising complex network behaviors. Here, two additional facets of VM-based network simulation are
evaluated: (1) execution time characteristics for virtual time advances among VMs, and (2) discrete
event-based network control for time-managed inter-VM communication. The runtime characteristics of
our VM-based network simulator, NetWarp, are presented with experiments on twice the number of VMs
than previously reported. Also discussed are the design, development and performance evaluation of vir-
tualized communication between VMs with user-chosen virtual latencies, integrated with virtual timelines
maintained at the VPCU-level.

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 2800978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Yoginath, Perumalla, and Henz
We use the Xen (Chisnall 2008) hypervisor in all our implementation and experimentation. Hence,

we use its terminologies through out our paper, although the concepts apply with more generality. Xen
refers to VMs as Guest Domains or DOMs. Each DOM is identified by its DOM-ID. The first DOM,
“DOM-0,” affords special hardware privileges. Each DOM has its own set of virtual devices, including
virtual multi-processors called virtual CPUs (VCPUs). The hypervisor scheduling mainly deals with
efficiently and dynamically mapping (multiplexing) all the VCPUs of multiple VMs onto the available
physical processor cores (PCPUs). We refer to the default scheduler of Xen as the Credit Scheduler of
Xen (CSX) and our simulation-specific scheduler as NetWarp Scheduler for Xen (NSX).
In section 2, we discuss our approach in virtual time management that reduces multiple VCPU time-lines
into a single simulation time-line, not including virtual inter-VM communication control, and also present
the results from the benchmark runs to compare the time-order error and run times using CSX and NSX
schedulers. In section 3, we introduce inter-VM communication control, and discuss its mechanisms, fea-
tures, design challenges and implementation as the NetWarp Network Control (NNC) subsystem, and
present the performance results. We summarize and conclude the paper with a brief of ongoing and fu-
ture work in the section 4.

1.1 Related Work

Time dilation, introduced by (Gupta et al. 2006) and adopted in subsequent works, demonstrated time vir-
tualization in network emulators, wherein a higher/lower bandwidth communication network behavior
could be emulated using the same underlying network just by manipulating the perceived rate of time
elapse of the end-nodes/operating systems. This is often referred to as time virtualization in subsequent
literature.

Using resource virtualization from conventional hypervisors, augmented with time virtualization from
time dilation, various network emulation systems have been proposed, such as V-eM (Apostolopoulos
and Hasapis 2006), DieCast (Gupta et al. 2008), VENICE (Liu, Raju, and Ming 2010), dONE (Bergstrom
et al. 2006), and Time-Jails (Grau et al. 2008), allowing some flexibility in configuring the emulation
setup. While these approaches were adequate in uni-processor hosts that multiplex the VMs, they are
inadequate in the context of multi-core hosts. While those systems may execute the scenarios on multi-
core hosts, the required ordering by simulation time is not accounted for within a (multi-core) host node.
Resource conservation from virtualization affects the simulation time ordered execution of the VMs.
Emulation environments hosting many VMs can no longer use wall-clock (unmodified real) time as the
simulation time. Rate adjustment of time using Time Dilation also is inadequate to integrate with a
discrete event simulator that is not constrained by real-time (e.g., executing in as-fast-as-possible mode).
Further, the user has limited or no control on the execution ordering of the VMs that is needed to avoid
causality errors. In contrast, a correct VM-based simulator must take the onus of defining and
maintaining the concept of a intra-node simulation timeline and also ensure the simulation time-order of
VM execution within each multi-core host node. Simulation time across nodes can be synchronized using
standard parallel discrete event simulation techniques, such as using lower bound on time stamp (LBTS)
or global virtual time (GVT) algorithms (Fujimoto 2000). None of the aforementioned simulation
systems provides necessary mechanisms to address these issues. Some newly emerging network
simulators such as PRIME (Liu, Yue, and Ying 2009) account for simulation virtual time across nodes
executing packet-level (discrete event) network models integrated with VM-based end-host models;
however, they do not yet explicitly address intra-host ordering needed across VMs within a host node.

2 VIRTUAL TIME MANAGEMENT WITHOUT NETWORK CONTROL

Virtual time-ordered execution of DOMs can be efficiently supported by replacing the hypervisor sched-
uler for simulation, as demonstrated by (Yoginath and Perumalla 2011), in which each VCPU maintains a
virtual clock that is advanced based on the number of physical CPU cycles the VCPU uses. This local
time maintained by the VCPU is referred to as VCPU-LVT. Each Physical CPU-core (PCPU) maintains

2801

Yoginath, Perumalla, and Henz
a queue of VCPUs. A VCPU is enqueued in a PCPU queue dynamically chosen during execution. Each
DOM, in addition the VCPU-LVT of its VCPUs also maintains a DOM-LVT variable, which is maxi-
mum value of all its VCPU-LVTs, is computed periodically.

To ensure time-ordered execution, the NSX scheduler employs a Least-LVT-first (LLF) policy,
according to which the VCPU with the least VCPU-LVT value (among all the VCPUs across all DOMs)
is scheduled for execution first on the availability of PCPU. Due to the presence of multiple PCPU
queues, the scheduling involves searching all PCPU queues for the least VCPU-LVT and subsequent
migration of the selected VCPU from its original queue to the currently active PCPU queue. Employing
LLF scheduling ensures virtual time-ordered progress of DOM-LVTs within the host node.

2.1 Virtual Timeline Evolution

Since the time accounting by every VCPU results in the staggering of the VCPU timelines, it affects the
DOM timelines as the simulation progresses. To demonstrate the staggering of unsynchronized DOM
timelines, we use a parallel program (testing algorithm) that is logically designed to introduce imbalanced
load on the parallel processes.

Figure 1: Algorithm to test staggering virtual timelines (left); Experiment results comparing simulation
time divergence in SFS and STS (right).

Staggering Timelines Test Algorithm

Figure 1 (left) gives the algorithm of our test program in which the execution involves hosting every indi-
vidual process involved in a parallel computing task on a separate DOM. As per the algorithm, the paral-
lel process with “rank” r sends a message to process with rank r-1 and waits to receive a new message
(originating from any source). The Lowest Ranked Process (LRP), i.e., r=0, does not send any messages
until it receives p-1 messages, where, p represents the number of processes involved in the parallel com-
puting task. Thus, the Highest-Ranked Process (HRP) i.e., r=p-1 sends a single message before blocking
on a receive call that is satisfied after it gets a message from LRP, while the process with r=1 receives (p-
2) messages and, sends (p-1) messages to LRP. Consequently, the load (both computation and communi-
cation) on the process ranks decreases with increasing rank. We refer to this test as Staggering Timelines
Test (STT).

A program to collect the DOM-LVT of a required DOM from the control-DOM or DOM-0 was
developed using libxcutil . Before launching the test, the shell-script that collects LVT by querying the

2802

Yoginath, Perumalla, and Henz
DOMs (sequentially) for the DOM-LVT is started on DOM-0. Via this script, the collection of the DOM-
LVT is periodical every 2 seconds.

Timeline Evolution Experiment Results

Two experiment cases, namely, Scheduling Free of Synchronization (SFS) and Scheduling with Time
Synchronization (STS) are evaluated to demonstrate the staggering of the DOM-LVTs in SFS and its ab-
sence in STS. The STS resets the LVTs of all the DOMs and their corresponding VCPUs to the maxi-
mum VCPU-LVT (max_lvt), periodically. The periodicity of the synchronization is equal to (NVCPUS �
tick_size), where NVCPUS is the total number VCPUs in the test environment (including DOM-0
VCPUs), and tick_size is the time-slice duration. For example: for a tick_size of 100�s, the periodic syn-
chronization time for a test scenario comprising 64 single-VCPU DOMs and a DOM-0 with 24 VCPUs
will be ((64+24) � 100�s)= 8.8ms . The test application run comprising 64 single VCPU user DOMs and
the DOM-0 supported 24 PCPUs (equivalent to number of cores supported by the machine) was consid-
ered. The minimum (MIN) and maximum (MAX) of sampled DOM-LVTs collected from all DOMs peri-
odically for both SFS and STS scenarios.

Except for the startup time, which is an artifact of parallel job launching, the DOM-LVT values are
observed to increase at uniform rate. At the end of the simulation run the simulation time remains
constant seen as almost vertical lines toward the end of test run, as shown in Figure 1 (right). While two
distinct curves representing MIN and MAX DOM-LVT values can be observed in SFS case, the same two
curves overlap in the STS, showing the need and the solution, respectively, for timeline synchronization.
After the completion of the test run the MIN and MAX simulation time values in SFS were 4052ms and
4939ms, respectively. Note that the 4334ms, which is both MIN and MAX simulation time value in STS
falls in between the MIN and MAX of SFS simulation time values, and closer to the MIN time-stamp
value. The sampling for the DOM-LVTs periodically in wall-clock time also reveals the runtime
behavior of the STS and SFS setups. The plot from the Figure 1 suggests that the runtime of the STS
method is better than that of the SFS method. We also ran experiments to compare the time-order
execution errors in the STS and SFS setups and found the errors in STS were far lesser than the SFS and
so was the runtime. Thus, all the experiments discussed in the following sections of this article use STS.

2.2 Performance Benchmarks

In this section we present the results from the Message Passing Interface (MPI)-based benchmarks and
cyber-security benchmarks, proposed and described in detail in (Yoginath, Perumalla and Henz 2012).
The MPI benchmarks comprise two scenarios, namely, Constant Network Delay (CND) and Varying
Network Delay (VND). With CND, we evaluate the performance of NSX and CSX scheduler support for
time-ordered event execution when the communication structure and dynamics across the DOMs is de-
terministic and only the observed message generation order differs. With VND, we test how well time-
ordered execution is supported/affected by NSX and CSX, when the generated messages vary both in
their generation order and the communication load experienced. The results presented for MPI bench-
marks here are obtained by averaging results from 50 independent runs for all scenarios except for the
128 DOM scenario which are from 30 independent runs. In the cyber-security benchmark we emulate the
behavior of worm-infection and its subsequent propagation across the service hosts in an interacting mul-
ti-server and multi-client scenario. The propagation in the system proceeds as a simple instance of the
well-known “SI” epidemic model. We refer the interested reader to (Yoginath, Perumalla and Henz
2012) for more details on these benchmarks.

The performance data presented here are from twice the number of DOMs (128) than previously
reported in (Yoginath, Perumalla and Henz 2012). In addition, we also present new results with CSX
enhanced to use smaller tick size during scheduling, for higher accuracy. The results for the CSX runs
previously presented used default tick-size (10ms) and time-slice (30ms), which are here reduced to 100�s
(at the cost of longer execution time) to match the tick-size settings of NSX.

2803

Yoginath, Perumalla, and Henz
Error Metric

We use the time-order error metric of (Yoginath, Perumalla and Henz 2012) called eunits calculated

asE =
1
n

Xij �Oij
j =1

m

�
i=1

n

� eunits, where, E is the error per simulation run, n is the number of replicated

runs, m is the number of parallel processes (ranks), Xij is the expected identifier of the jth message in ith
run, and Oij is the observed identifier of the jth message in the ith run.

CND Benchmark Performance

Figure 2: CND benchmark error plots (left); CND benchmark runtime plots (right).

As seen from the error graph in Figure 2 (left), the NSX scheduler for both 1 VCPU/DOM and 2
VCPU/DOM scenarios shows very low errors until the number of DOMs in the test scenario increases
from 64 to 128, at which point the 1VCPU/DOM time-order errors are almost same as its peer CSX run.
However, the runtime curves in Figure 2 (right) show that NSX provides significantly better runtime per-
formance and hence better scaling with increase in the number of DOMs in the experiments. CSX with
lower tick-size does not perform any better in controlling the time-order error or in terms of runtime per-
formance than its performance using the default setting in CND tests as presented in (Yoginath, Perumalla
and Henz 2012). The 2 VCPU/DOM case with CSX performs poorly both in terms of errors and runtime.

The DOM-0 VCPUs are maintained at the mininum of all VCPU-LVTs in between synchronizations
and this contributes significantly in the reduction of time-order errors in CND, where time-ordering only
depends on the sent-order. From the CND error plot its clear that except for the scenario with 128 VMs
sufficient PCPU time for all the VCPUs is provided (despite being continuously subjugated by the 24
VCPUs of DOM-0) before the VCPUs time-order priorities are flattened due to periodic synchronization.

VND Benchmark Performance

In the VND tests, the NSX scheduler for 2VCPU/DOM scenario perfectly keeps both the error rates and
the run times low, even as the number of DOMs in the test scenario increases as shown in Figure 3. On
the other hand, NSX for 1 VCPU/DOM varies quite a bit in controlling errors as the number of DOMs in
test scenario increases, worsening when the number of DOMs increases to 128. However, it has the best
run time performance among all the other runs. The CSX with smaller tick-size performs better than its
default setting performance (Yoginath, Perumalla and Henz 2012) in terms of controlling errors, however
the runtime suffers in both 1 VCPU/DOM and 2 VCPU/DOM scenario.

2804

Yoginath, Perumalla, and Henz

Figure 3: VND benchmark error plots (left); CND benchmark error plots (right)

Here too, the avalability of PCPU time for all VCPUs in between synchronization can be reasoned for
the relatively widely varying NSX time-order errors across the scenarios. The relatively consistent lower
time-order errors in NSX with 2VCPU/DOM wherein the interval between two synchronizations is
almost twice compared to 1VCPU/DOM for the same benchmark serves as a strong evidence.

Cyber Security Benchmark Performance

Figure 4: Infection propagation curve for 64-DOM (left) and runtime curves for 16, 32, 48 and 64 DOM
scenarios (right) for cyber security benchmarks involving both CSX setups and, NSX without network
control setup

The plots in Figure 4 (left) show the infection propagation curve using the cyber security benchmark in a
64-DOM scenario. The CSX_DFLT and CSX_LTS refers to CSX with default setup and, CSX with low-
er tick size, respectively. The NSX_NONW refers to NSX using STS synchronization without network
control. Note that CSX with different tick-sizes provides different infection profiles, because CSX uses
the wall-clock time as the simulation time, and hence varies based on the run-time of the simulation. In
the runtime plots shown in Figure 4 (right), for 64-DOM scenario, the run time of CSX_LTS is greater
than that of CSX_DFLT and hence the infection curve is laterally shifted in the log plot shown in Figure 4
(left).

This comparison reinforces the finding that the wall-clock time is not reliable, especially when large
number of DOMs are multiplexed on limited physical resource, and hence, emulation methods fail at
scale. Even if virtual time is tracked using an alternative method as opposed to the NetWarp method of

2805

Yoginath, Perumalla, and Henz
maintaining a virtual clock per VCPU, the emulation/simulation methodologies using CSX_DFLT or
CSX_LTS suffer in run time as seen in Figure 4 (right), especially in with large number of VMs.

3 VIRTUAL TIME MANAGEMENT WITH NETWORK CONTROL

In discrete-event network simulation, the arrival and departure of communication packets from and to the
network at the end-hosts are modeled as events, since they determine the state-changes in the interacting
nodes. Additionally, in contrast with network emulation, discrete-event simulation takes leaps in simula-
tion time as it processes the events, thereby potentially achieving faster-than-real-time execution. With
VMs, however, to realize the simulation method of capturing communication activity as events, inter-VM
communication must be virtualized by capturing the data, time-stamping it with virtual time, and deliver-
ing to the destination VM at the correct virtual time. Here, we describe our virtual network control (i.e.,
controlling inter-VM network traffic) methodology, design and implementation in conjunction with the
virtual timelines established in prior sections.

The hypervisors provide a variety of means to setup a virtual network to support the interaction across
the hosted VMs. We use a private bridge that isolates the VMs involved in the simulation from the
privileged VM (DOM-0). By controlling the network, we would have the capability to introduce any
simulated delay on any in-transit packet based on its source and destination addresses as required, and we
directly dictate when a packet should arrive at its destination in virtual time order. Since, we are aware of
the time of arrival of all the in-transit packets, by processing them in their emit-time order, we can induce
a leap in simulation time. To achieve this, we provide the synchronization ability (as previously achieved
by STS) to the network control subsystem. In this section, we discuss the NetWarp Network Control
(NNC) subsystem design issues and the synchronization mechanism that it provides to the NetWarp,
allowing it to leap in simulation time. The virtual network control is intended to provide the following:
a. Introduce a virtual delay without explicitly making a (byte-)copy of the packet buffer, or moving the

transiting packets from kernel to user space
b. Support the ability to introduce virtual time delays that may be varied on a per packet basis; the delay

specification may be static (e.g., for wireline networks) or dynamic (e.g., for mobie ad-hoc networks)
c. Minimal overhead while processing the trapped in-transit packets

3.1 Network Control Approach

To establish a control on an in-transit communication packet we should first trap the packets in transit.
This can be achieved in the control domain as all communication packets traverse through it. One way of
achieving this is by utilizing netfilter (Netfilter 2012), which is the packet filtering framework inside
Linux® kernel services. The iptables rules can be used to redirect the in-transit packets to a specific net-
filter queue (NFQ) maintained by the kernel packet filter, while the libnetfilter_queue function-APIs can
be used to control the queued packets from the userspace.

The libnetfilter_queue function APIs allow copying the packet from the NFQs in the kernel space to a
servicing process in the user space. The process in user space ultimately decides the fate of the trapped
packet by setting a verdict. The relevant verdicts that could be used for our purpose are: NF_ACCEPT –
releases the packet to continue its journey toward its destination, NF_DROP – drops the packet,
NF_QUEUE – inserts the packet back into the same or other similar NFQs. Using netfilter for the
purpose of network contorl in network simulations, we need to be aware of (a) the NFQs are FIFOs and
are unaware of any virtual time (b) the service thread processing packets from a NFQ must set a verdict
on current packet before acquiring the next in NFQ.

3.2 Network Control Design Alternatives

In this section, we discuss our experience in exploring the range of strategies for network control, from
which the infeasible or inefficient approaches are discounted before arriving at the specific control mech-
anism we finally adopted.

2806

Yoginath, Perumalla, and Henz
Let ST, SQ, MT and MQ stand for Single-Thread, Single-Queue, Multiple-Threads and Multiple-

Queues, respectively. The combination of single- vs. multi-threaded processing and single- vs. multiple
queues provides four options. In single-threaded operation, only one thread of control in DOM-0 handles
all tasks in ordering tasks of all emitted packets from all VMs. In the multi-threaded scheme, multiple
threads share the task of introducing virtual delay on the incoming packets, and emitting them to the
destination when the destination reaches virtual time equal to reception time of the packet. The number
of queues, similarly, can be varied to temporarily hold packets while the packets’ destinations have not
reached the appropriate virtual times. We do not discuss Multi-Thread processing using Single Queue
(MT-SQ) approach, as it would not be a feasible given the limitations in processing an NFQ in
consideration with our requirements, as discussed previously. While as many as 64K queues can be put
to work at once using the iptables and libnetfilter_queue library, one can think of the following possible
options based on the queues and service threads used.

Single Thread processing using Single Queue (ST-SQ)

In this mode, all the VM-generated traffic is passed through a single NFQ and a single service thread pro-
cesses the packets in the order they are enqueued. By processing, we mean that the service thread would
determine the emit time of the packet based its source and destination, then sets an NF_ACCEPT verdict
when the simulation time catches up with the emit time.

Considering that the arrival sequence of the packets would be virtual time-ordered, if the delay to be
enforced varies on every packet, the approach becomes infeasible, due to the limitation that the currently
processed packet must be emitted before processing the next. Further, even if we were to assume that the
user just wants to enforce a constant delay, this method suffers from queuing delay issues, wherein the
packets that arrive almost during same period of time due to the queuing nature of processing incur
significantly large additional delays based on its position in the queue and the required magnitude of the
delay. These delays increase with the increase in the number of DOMs involved in the simulation.

An alternative to avoid queuing delay is to postpone the processing of the first packet. Since, we must
avoid packet copying to minimize runtime and memory overheads, we can use an NF_QUEUE verdict,
which reinserts it back into the NFQ. However, by this approach we lose the arrival order of the packet
and hence this scheme is not correct for virtual network control purposes.

Single Thread processing using Multiple Queues (ST-MQ)

Since netfilter allows usage of multiple NFQs, several different strategies of enqueuing and processing
can be designed. For example: packets can be enqueued, based on their source or destination, into a spec-
ified NFQ, and processed as they arrive in their respective NFQs. The libnetfilter_queue API based ser-
vice thread servicing multiple NFQs tries to handle all of them equally regardless of their queue size.

This method of processing is attractive because the order in which the packets are processed can be
adequately controlled. We can realize arrival time-ordered processing, if NFQs are packet source based,
i.e. enqueuing the trapped packet into a NFQ based to its source. Similarly, the departure time-ordered
processing can be realized with the NFQs based on packet-destination. But, due to the presence of single
service thread, we need to deal with the queuing delay problem similar to ST-SQ, if our processing
involves waiting to release the packet till the simulation time catches up with the emit time of the packet.
Additionally, due to the presence of multiple queues, there will also be lapses in the time-ordered
processing of events as the service thread processing multiple NFQs does not follow any time-order in
processing. Hence, this also is not a feasible approach.

Alternatively, one can realize service thread processing the packets from the multiple NFQs in an
almost time-ordered fashion and also accommodate variable delays on to the individual packets, if the
strategy of enqueuing in multiple NFQs is altered. In this approach, there is not a fixed NFQ on which a
packet arrives as in the former approach; instead, each arriving packet sequentially moves from one NFQ
to the other in increasing order of the NFQ identifier (could also be decreasing order). The service thread

2807

Yoginath, Perumalla, and Henz
looks into the packet arriving at the NFQ for its emit time and if it is greater than or equal to the
simulation time, the packet is released by setting an NF_ACCEPT verdict; otherwise NF_QUEUE verdict
is used to enqueue the packet into a NFQ with next higher identifier and by doing so the queuing delay is
minimized. However, even though the processing ensures that a packet is released when the emit time
catches up with simulation time, we cannot be sure of maintainance of the virtual time-order as a single
thread services multiple queues. Additionally, in this approach, we do not know the number of NFQs to
create for a specific simulation and the means of handling the packet in the last NFQ whose emit time is
still ahead of simulation time.

Multithread processing using Multiple Queues (MT-MQ)

The MT-MQ approach utilizes multiple threads for processing packets from equal number of queues.
One relatively straight forward approach is allotting a queue for packets based either on the source or des-
tination of the packet. A service thread corresponding to each queue processes the incoming packets in
parallel. However, with this approach, we will not be able to overcome the queuing delay problem simi-
lar to ST-SQ and ST-MQ, but it would definitely be better in comparison to the latter because of dedicat-
ed service threads per queue. Even if we were to ignore the queuing delay issues, the introduction of var-
iable delays can also be problematic. For example, the emit time of the processed packet can be greater
than the emit time of the next packet, and hence, a service thread cannot wait for the simulation time to
catch up with emit time for the release of the packet being serviced. Such scenarios can occur regardless
of whether the queues are source-specific or destination-specific. Additionally, MT-MQ also introduces a
large performance overhead because every thread will be making hypercalls to obtain simulation time in
regular intervals. With a scenario involving 128 DOMs, 128 threads will be continuously burdening the
hypervisor in regular intervals for virtual time progress information.

3.3 NetWarp Network Control (NNC) Architecture

Consider a method in which multiple queues are serviced by multiple threads regardless of incoming
packet’s source and destination (as discussed in ST-MQ). In such an operation, the queuing delay can be
minimized and, the varying delays on transiting packets can also be realized. However, to ensure emit
time-order and minimize the performance overhead, the operation of multiple service-threads needs to be
well orchestrated. This strategy is used in the design of NNC.

Multiple NFQs along with their corresponding service-threads, equaling the number of DOMs
(specific to the simulation scenario) are used in NNC. The iptables rules in the control domain (DOM-0)
are set such that all the in-transit packets are routed to a single NFQ, with 0 queue identifier (qid). In
Figure 5, this functionality is schematically presented using directional pointers suggesting the path of
packet movement from a DOM-U application to the front-end network device and, then to its back-end
counterpart before being enqueued in the NFQ with qid=0. The service-thread (service-thread0)
corresponding to this NFQ determines and marks the packet with the emit time before setting a
NF_QUEUE verdict on the packet that results the enqueuing of the packet into a NFQ, with qid=1 (the
next higher queue identifier). The first service-thread performs only this operation, and hence, it
continuously processes the arriving packets without introducing any additional delay other than the
processing itself.

Apart from service-thread0, all the other service-threads (corresponding to the other NFQs) on
receiving the packet query for the simulation time and checks if it is greater than (emit time –
INT_DELAY) value. If it is equal or greater then the packet is released from the NNC subsystem by
issuing NF_ACCEPT verdict, as shown by the third service thread. If the desitnation DOM’s virtual time
has not advanced to the emit time yet, then the corresponding service-thread generates an event with an
event time of (simulation time + INT_DELAY), inserts the event to the eventlist and, then blocks itself
waiting on a signal from the scheduler-thread. This interaction is schematically presented in Figure 5, in

2808

Yoginath, Perumalla, and Henz
which the solid-line represents the service-thread receiving and subsequently processing of the transiting
packet, while, the thin dotted-line represents service-thread waiting for a signal from its peer.

Figure 5: Functional schematics of NNC operation

The INT_DELAY mentioned previously refers to intermediate-delay and is computed as

INT_DELAY = MIN_DELAY +ceil
MAX _DELAY
NUM _DOMs�1

�
�
�

�
�
÷

where, MIN_DELAY is a constant (usually 1) and MAX_DELAY is the maximum of the range of
delays to be enforced by NNC on an in-transit packet. With segmented intermediate delays we ensure
that an in-transit packet is released from NNC before it reaches the last NFQ and, it also ensures that the
specified delay is introduced in its transit. Also, note that all delays are enforced in terms of virtual time
or simulation time. As mentioned earlier, the simulation time is kept track in terms of the ticks and, in our
implementation, each tick corresponds to 100�s. For example, if we wish to enforce a MAX_DELAY of
10ms that correspond to100 ticks in virtual time on every transiting packet and, if our simulation scenario
were to use 128 DOMs, then (1+ceil(100/128))=2 ticks (200�s) will be the INT_DELAY.

The scheduler-thread continuously processes the events in event time-order and, signals the
respective thread when the simulation time advances to the event time and waits for the signal from the
signalled service-thread before processing with next event. On receiving the signal from the scheduler
thread the service-thread enqueues the packet into a NFQ with next higher qid, using the NF_QUEUE
verdict. Thus, at every NFQ, the service thread either releases the packet or introduces a virtual time
delay of INT_DELAY. With this method, we can greatly minimize queuing delays, efficiently process
packets with varying delays, and release the packet from NNC in perfect emit time-order.

3.4 NNC Virtual Time Management and Implementation

The virtual time on every DOM advances when its corresponding VCPUs use of CPU cycles of the
physical core and further the simualtion time advances as the DOM timelines advance. However, when a
DOM is waiting (for a packet) or waiting for a signal from the scheduler (as in our NNC), the virtual time
advance is very minimal as there is no physical CPU usage. Since, the scheduler-thread does not signal

2809

Yoginath, Perumalla, and Henz
the relevant service-thread until the simulation time has advanced to the event time, during the
enforcement of large delays virtual time advancement almost creeps, resulting in communication time-
outs. This issue is resolved by leaping in simulation time in steps of event time. This technique is
desirable because it not only addresses the virtual time-advancement issue in simulation experiments but
also yields better performance.

Iptables rules in the DOM-0 ensure that the packets on the virtual network are routed to the NFQ with
identifier 0, which is serviced by service-thread0. Each service-thread is a posix thread developed using
libpthread, lib_netfilterqueue and, libxcutil library functions and they spawn off from the main process,
which itself becomes the scheduler-thread. A globally accessible singleton object comprising an eventlist
(priority-queue) and thread synchronization related data-structures like, mutex-locks and, conditional
variables, is maintained. Each service-thread (except for thread-0) maintains a state-variable, which
could be one of the following: processing, wait_on_scheduler and wait_on_packet. The processing state
suggests the thread is busy processing a newly arrived packet, the wait_on_scheduler state means that the
service thread is busy waiting for a signal from scheduler and the wait_on_packet means that the service
thread is busy waiting for an arrival of new packet. The scheduler thread pulls out a new event for
processing only when the service threads (except thread-0) are not in processing state. This ensures that
all the to be handled events are in the eventlist and are thus time-ordered and, the event that is removed
from the eventlist is the one with minimum event time. We use libxcutil library function interfaces to
retrieve the simulation time from the Xen hypervisor from DOM-0.

With a few modifications to the NSX source code and the usage of libxcutil library functions, we
developed a feature using which a user program can reset the simulation time to a higher value. This is
achieved by pulling forward the virtual time of all the VCPUs (hence, their DOMs) whose current virtual
time value is lesser than the specified virtual time value. The scheduler thread in NNC uses this feature to
advance the simulation time during event processing. With this capability in place, periodic time
synchronization is unnecessary for maintaining a single time line, and hence, not used with NNC.

3.5 NNC Performance Benchmarks

Figure 6: NNC verification and run time performance results with cyber-security application benchmark

To exercise the virtual network control and evaluate its performance, we use the cyber security (worm
propagation) benchmark of (Yoginath, Perumalla and Henz 2012). The curves in Figure 6 (left) show the
spread of infection across the connected nodes. In the NNC_1ms_DELAY/PKT, NNC_10ms_DELAY/PKT
and NNC_100ms_DELAY/Pkt scenarios, the NNC subsystem introduces a delay of 1ms, 10ms and 100ms,
respectively, on every in-transit packet in the virtual network. The lateral shift of the curves to the right
with the increase in enforced delay demonstrates that the NNC subsystem is appropriately enforcing the
specified delays. In Figure 6 (right), we plot the simulation time and the runtime and, these plots compare
the wall-clock time required to simulate a distributed computing cyber security application scenario in-

2810

Yoginath, Perumalla, and Henz
volving 64 DOMs on a 12-core machine, whose runtime on 64 independent nodes (ignoring the simula-
tion overhead) would at least be equal to simulation time.

In Figure 7, we compare the rate at which the run time and the simulation time increase with respect
to their minimum values. In this case, their minimum values correspond to 1ms of virtual delay/packet
enforced by NNC. The proportion by which the runtime increases is seen to be lesser than that by which
the simulation time increases. This is not possible in time-stepped simulation or emulation approaches, in
which the simulation time advances (due to VCPU accounting) in regular time steps. The reduction in the
runtime increase rate can thus be attributed to the discrete-event nature of operation of NNC.

Figure 7: Rate of increase in the runtime and the simulation time with the increase in virtual packet delay

4 SUMMARY AND FUTURE WORK

Here, we presented performance results from scaled execution of benchmark scenarios containing 128
VMs hosted on a machine with 12 physical cores (24 cores with hyper threading enabled). The virtual
time-ordered scheduler is observed to provide closely-evolving virtual timelines among all the VMs, ap-
proximating a single global virtual timeline among all VMs on the host machine, for use as simulation
time in the larger network simulation framework. The issues and challenges in the design of a network
communication controller for virtualization of inter-VM communication was presented. The implementa-
tion alternatives were explored, accounting for the concerns of scalability with the number of VMs and
the timeliness of packet delivery in close match with virtual times of destination VMs. A multi-threaded,
multi-queue scheme is identified as the best match that scales well with the number VMs. Results from
an implementation of the scheme are presented, in which virtual time-ordered scheduling is executed in
combination with virtualized communication, exercised and tested with a range of virtual latencies.

ACKNOWLEDGMENTS

This paper has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S.
Department of Energy. Accordingly, the United States Government retains and the publisher, by accept-
ing the article for publication, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.

REFERENCES

Apostolopoulos, G. and C. Hasapis. 2006. “V-eM: A Cluster of Virtual Machines for Robust, Detailed
and High-performance Network Emulation”. In Proceedings of the 2006 14th IEEE International
Symposium on Modeling, Analysis and Simulation of Computing and Telecommunication Systems.

2811

Yoginath, Perumalla, and Henz
Bergstrom, C., et al., 2006. “The Distributed Open Network Emulator: Using Relativistic Time for Dis-

tributed Scalable Simulation.” In the Proceedings of the 2006 20th Workshop on Principles of Ad-
vanced and Distributed Simulation, Singapore.

D. Chisnall. 2008. The Definitive Guide to the Xen Hypervisor, Prentice Hall.
Gupta, D., et al. 2006. “To Infinity and Beyond: Time- Warped Network Emulation.” In Proceedings of

the 2006 3rd Symposium on Networked Systems Design and Implementation (NSDI’06), San Jose,
CA, USA.

Gupta, D., et al. 2008. “DieCast: Testing Distributed Systems with an Accurate Scale Model.” In Pro-
ceedings of 5th ACM/USENIX Symposium on Networked Systems Design and Implementation
(NSDI), San Francisco, CA, USA.

Grau, A., et al., 2008. “Time Jails: A Hybrid Approach to Scalable Network Emulation.” In Proceedings
of the 2008 22nd Workshop on Principles of Advanced and Distributed Simulation, Rome, Italy.

Liu, J., R. Raju, and Z. Ming. 2010. “Model-Driven Network Emulation with Virtual Time Machine.” In
Proceedings of the 2010 Winter Simulation Conference (WSC) 2010, Baltimore, MD, USA. Edited
by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan and E. Yucesan.

Liu, J., L. Yue, and H. Ying. 2009. “A Large Scale Real-time Network Simulation Study using PRIME.”
In Proceedings of the 2009 Winter Simulation Conference (WSC), Austin, TX, USA. Edited by M. D.
Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls.

Netfilter. 2012. “Netfilter - Firewalling, NAT and Packet Mangling for LINUX.” http://www.netfilter.org
R. M. Fujimoto. 2000. Parallel and Distributed Simulation Systems, Wiley Interscience.
Yoginath, S.B., and K.S. Perumalla. 2011. “Efficiently Scheduling Multi-core Guest Virtual Machines on

Multi-core Hosts in Network Simulation.” In Proceedings of the 2011 Principles of Advanced and
Distributed Simulation, Nice, France.

Yoginath, S.B., K.S. Perumalla, and B.J. Henz. 2012. “Taming Wild Horses: The Need for Virtual Time-
based Scheduling of VMs in Network Simulations.” In Proceedings of the 2012 20th International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
Washington D.C, USA.

AUTHOR BIOGRAPHIES

SRIKANTH B. YOGINATH is a Research Staff Member at the Computational Sciences and
Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN. He is also a PhD candidate at the
School of Computaional Sciences and Engineering, Georgia Institute of Technology, Atlanta, GA. His
email address is yoginathsb@ornl.gov.

KALYAN S. PERUMALLA founded and leads the High Performance Discrete Computing Systems
team at the Oak Ridge National Laboratory. He is a Senior R&D Manager in the Computational Sciences
and Engineering Division at the Oak Ridge National Laboratory, and an Adjunct Professor at the Georgia
Institute of Technology. He holds a PhD in Computer Science (1999, Georgia Institute of Technology).
His email address is perumallaks@ornl.gov.

BRIAN J. HENZ is a Research Staff Member in the Computational and Informational Sciences Direc-
torate at the U.S. Army Research Laboratory, Aberdeen Proving Ground, MD. He holds a PhD in Me-
chanical Engineering (2009, University of Maryland, College Park). His email address is bri-
an.j.henz@us.army.mil.

2812

