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ABSTRACT

For estimating P(Sn > x) by simulation where Sk =Y1+ · · ·+Yk with Y1, . . . ,Yn are non-negative and heavy-
tailed with distribution F , (Asmussen and Kroese 2006) suggested the estimator nF

(
Mn−1∨ (x−Sn−1)

)
where Mk = max(Y1, . . . ,Yk). The estimator has shown to perform excellently in practice and has also nice
theoretical properties. In particular, (Hartinger and Kortschak 2009) showed that the relative error goes to
0 as x→∞. We identify here the exact rate of decay and propose some related estimators with even faster
rates.

1 INTRODUCTION

This paper is concerned with the efficient simulation of

z = z(x) = P(Sn > x) ,

where Y1, . . . ,Yn are i.i.d. with a common subexponential distribution F , Sn = Y1 + · · ·+Yn and x is large
so that z is small (for background on subexponential distributions, see, e.g., (Embrechts, Klüppelberg, and
Mikosch 1997), (Asmussen and Albrecher 2010, X.1), or (Foss, Korshunov, and Zachary 2011)). Recall
from the outset the standard fact (or definition of subexponentiality!) that z ∼ nF(x) as n→ ∞ where
F(x) = 1−F(x) is the tail. In this paper we will consider a subclass of subexponential distributions the
regularly varying distributions. Regularly varying distributions have a tail that approximately behaves like
a power, i.e. F(x) = x−αL(x) where α > 0 and L(x) is slowly varying (limx→∞ L(ux)/L(x) = 1 for all
u > 0). If the density of the distribution is also regularly varying then it fulfills f (x) ∼ αx−α−1L(x) as
x→ ∞ (c.f. (Bingham, Goldie, and Teugels 1989, Proposition 1.5.10)) .

This problem has a long history. As is traditional in the literature, we denote by a simulation estimator a
r.v. Z = Z(x) that can be generated by simulation and is unbiased, EZ = z. The usual performance measure
is the relative error e(x) = (VarZ)1/2/z. The relative error is bounded if limsupx→∞ e(x) < ∞, and the
estimator Z is logarithmically efficient if limsupx→∞ z(x)εe(x)< ∞ for all ε > 0.

Efficient estimators have long been known with light tails (see e.g. (Asmussen and Glynn 2007, VI.2),
(Bucklew 1990), (Heidelberger 1995), (Juneja and Shahabuddin 2006) for surveys), and are typically based
on ideas from large deviations theory implemented via exponential change of measure. The heavy tailed
case is more recent. In (Asmussen, Binswanger, and Højgaard 2000), some of the difficulties in a literal
translation of the light-tailed ideas are explained. However, (Asmussen and Binswanger 1997) gave the
first logarithmically efficient estimator for P(S > x) using a conditional Monte Carlo idea. The idea was
further improved in (Asmussen and Kroese 2006), which as of today stands as a model of an efficient
and at the same time easily implementable algorithm, and is also at the core of this paper. The idea is to
combine an exchangeability argument with the conditional Monte Carlo idea. More precisely (assuming
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existence of densities to exclude multiple maxima) one has

z = nP(S > x, Mn = Yn) .

where Mk = max
(
Y1, . . . ,Yk

)
. An unbiased simulation estimator of z based on simulated values Y1, . . . ,Yn

is therefore the conditional expectation

ZAK = nF
(
Mn−1∨ (x−Sn−1)

)
of this expression given Y1, . . . ,Yn−1, where Sn−1 =Y1 + · · ·+Yn−1.This estimator, baptized the Asmussen-
Kroese estimator by the simulation community, is shown in (Asmussen and Kroese 2006) to have bounded
relative error and in (Hartinger and Kortschak 2009) to have vanishing relative error (e(x)→ 0), though
the argument for this is rather implicit and no quantitative rates are given.

The contribution of this note is two-fold: to compute the exact error rate of ZAK in the regularly
varying case; and to produce another estimator with a better rate in some cases. Both aspects combine with
ideas of higher order subexponential methodology (cf. Remark 1). For subexponential distributions with a
lighter tail than regular variation like the Weibull, a corresponding theory is developed in (Asmussen and
Kortschak 2012) and summarized in part in Section 5.

For the regularly varying case, our main result is the following:
Theorem 1 Assume f (x) = αL(x)/xα+1 where L(x) is slowly varying. If α > 2 or, more generally,
E[Y 2]< ∞ then

VarZAK ∼ n2Var[Sn−1] f (x)2 = n2(n−1)Var[Y1] f (x)2.

If α = 2 and E[Y 2] = ∞ then

VarZAK ∼ 2n2(n−1) f (x)2
∫ x

0
yF(y)dy.

If α < 2 then VarZAK ∼ n2(n−1)kαF(x)3 where

kα =

(
2α +

1
3

23α −22α +α

∫ 1/2

0

(
(1− y)−α −1

)2 y−α−1dy

)
= α

∫
∞

0

[
((1− y)∨ y)−α −1

]2y−α−1 dy .

Remark 1 A main idea of higher order subexponential methodology is the Taylor expansion

F(x−Sn−1) = F(x)+ f (x)Sn−1 + · · · (1)

which easily leads to the refinement

P(Sn > x) = nF(x)+n f (x)ESn−1 + · · ·

at least in the regularly varying case, cf. (Omey and Willekens 1987), (Baltrūnas and Omey 1998) and (Barbe
and McCormick 2009). Technically, the Taylor expansion is only useful for moderate Sn−1, and large values
have to be shown to be negligible by a separate argument; this also is the case in the present paper. One may
note that (1) is only useful for heavy-tailed distributions where typically F(x)>> f (x)>> f ′(x)>> · · ·
— for light-tailed distributions like the exponential typically F(x), f (x), f ′(x), . . . have the same magnitude.

2
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Remark 2 The rates for VarZAK in Theorem 1 have to be compared with the bounded relative error rate
L(x)2/x2α . For α > 2, one sees an improvement to L(x)2/x2α+2, for α < 2 to L(x)3/x3α . In Section 3, we
exhibit an estimator improving this rate for α > 2 and in Section 4 one for 1 < α < 2.

The feature of vanishing relative error is quite unusual. The few further examples we know of are
(Blanchet and Glynn 2008) and (Dupuis, Leder, and Wang 2007) in the setting of dynamic importance
sampling, though it should be remarked that the algorithms there are much more complicated than those
of this paper and that the rate results are not very explicit. 2

Remark 3 In applications to ruin theory and the M/G/1 queue, the number n of terms in Sn is an independent
r.v. With some effort, our theory can be refined to this case, but we will not give the details here. 2

2 PROOF OF THEOREM 1

Proof of Theorem 1. We will use the notation S(n−2) = Sn−1−Mn−1 and An,x =
{

Mn−1 ≤ x/2(n−1)
}

. Then
the the Asmussen-Kroese estimator can be written as ZAK = n(X1 +X2) where

X1 = I(Ac
n,x)F

(
Mn−1∨ (x−Sn−1)

)
, X2 = I(An,x)F

(
Mn−1∨ (x−Sn−1)

)
.

Recall that the density of Mn−1 is (n−1) f (y)F(y)n−2 and hence the tail is ∼ (n−1)F(y). We have

E[Xk
1 ] = E

[
F(Mn−1∨ x−Sn−1)

k; S(n−2) >
√

x, Ac
n,x
]

+E
[
F(Mn−1∨ x−Sn−1)

k; S(n−2) ≤
√

x, Ac
n,x
]
.

The first term is a O
(
F(x)k+1F(

√
x)
)
, since we can bound F(·) by O

(
F(x)

)
and the event S(n−2) >

√
x, An,x

has probability O
(
F(x)F(

√
x)
)

since it occurs only if at least one in the i.i.d. sample Y1, . . . ,Yn−1 that is
not the maximum exceeds

√
x/(n−2) and another exceeds x/2.

For the second term, note that here Mn−1 ≤ Sn−1 ≤Mn−1 +
√

x. Hence by repeated use of the regular
variation property we get the upper bound

E
[
F
(
Mn−1∨ (x−Mn−1−

√
x)
)k; Ac

n,x
]

=
∫ (x−

√
x)/2

x/(2(n−1))
F(x−

√
x− y)k(n−1) f (y)F(y)n−2 dy

+
∫

∞

(x−
√

x)/2
F(y)k(n−1) f (y)F(y)n−2 dy

∼ (n−1)
(

α

∫ 1/2

1/(2(n−1))
y−α−1(1− y)−kα dy+

1
k+1

2α(k+1)
)

F(x)k+1

where we used∫ (x−
√

x)/2

x/(2(n−1))
F(x−

√
x− y)k f (y)F(y)n−2 dy∼

∫ (x−
√

x)/2

x/(2(n−1))
F(x−

√
x− y)k f (y)dy

=
∫ (1−1/

√
x)/2

1/(2(n−1))
F(x−

√
x− xz)k f (xz)xdz

∼ xF(x)k f (x)
∫ (1−1/

√
x)/2

1/(2(n−1))
(1−1/

√
x− z)−αkz−α−1 dz

∼ αF(x)k+1
∫ 1/2

1/(2(n−1))
(1− z)−αkz−α−1 dz.
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Omitting
√

x gives the same lower bound, so

E[Xk
1 ]∼ (n−1)

(
α

∫ 1/2

1/(2(n−1))
y−α−1(1− y)−kα dy+

1
k+1

2α(k+1)
)

F(x)k+1.

Next consider X2. If Mn−1 ≤ x/2(n−1), then Sn−1 ≤ x/2 and so

X2 = I(An,x)F(x−Sn−1) = F(x)− I(Ac
n,x)F(x) + I(An,x)Sn−1 f (Ξ) = F(x)−X2,1 +X2,2 (2)

where x−Sn−1 ≤ Ξ≤ x. Now

E[Xk
2,1] = F(x)kP(Ac

n,x) ∼ (n−1)2α(n−1)αF(x)k+1.

To evaluate E[Xk
2,2], we split the expectation into Sn−1 ≤ εx and Sn−1 ≥ εx, for some 1/(2(n−1))> ε > 0.

When Sn−1 ≤ εx, then since f (x)∼ supy>x f (y) (c.f. (Bingham, Goldie, and Teugels 1989, Theorem 1.5.3))
we have f (x). f (Ξ). f

(
(1− ε)x

)
. This and monotone convergence gives

lim
ε→0

lim
x→∞

E
[
Sk

n−1 f (Ξ)k; Sn−1 ≤ εx
]

f (x)kE
[
Sk

n−1; Sn−1 ≤ εx
] = 1 .

Further by (Bingham, Goldie, and Teugels 1989, Proposition 1.5.8 and 1.5.9a) and partial integration

E
[
Sk

n−1; Sn−1 ≤ εx
]
= k

∫
εx

0
yk−1FSn−1(y)dy− (εx)kFSn−1(εx)

∼


ESk

n−1 EY k
1 < ∞,

k
∫ x

0 yk−1FSn−1(y)dy α = k,
εk−α α

k−α
xkFSn−1(x) α < k.

If εx≤ Sn−1 ≤ x/2 then it holds uniformly in Sn−1 that

lim
x→∞

Sn−1 f (Ξ)
F(x)

= lim
x→∞

F(x−Sn−1)−F(x)
F(x)

= (1−Sn−1/x)−α −1 ,

and hence

E
[
Sk

n−1 f (Ξ)k; Sn−1 > εx, Mn−1 ≤ x/(2(n−1))
]

∼ F(x)kE
[((

1−Sn−1/x)−α −1
)k; Sn−1 > εx, Mn−1 ≤ x/(2(n−1))

]
.

As above we can split the expectation into S(n−2) ≤
√

x and S(n−2) >
√

x, such that we can prove that for
x→ ∞

E[
(
(1−Sn−1/x)−α −1

)k; Sn−1 > εx, Mn−1 ≤ x/(2(n−1))
]

∼ E[
(
(1−Mn−1/x)−α −1

)k; εx < Mn−1 ≤ x/(2(n−1))
]

∼ (n−1)
∫ x/(2(n−1))

εx

(
(1− y/x)−α −1

)k f (y)dy

∼ (n−1)x
∫ 1/(2(n−1))

ε

(
(1− y)−α −1

)k f (yx)dy

∼ (n−1)x f (x)
∫ 1/(2(n−1))

ε

(
(1− y)−α −1

)k y−α−1 dy

∼ α(n−1)F(x)
∫ 1/(2(n−1))

ε

(
(1− y)−α −1

)k y−α−1 dy .
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Here ( ·)k is of order yk at y = 0. Since ε was arbitrary, it follows that if E[Y 2]< ∞

E[X2
2,2]∼ f (x)2E[S2

n−1] .

If α = 2 and E[Y 2] = ∞, (Bingham, Goldie, and Teugels 1989, Proposition 1.5.9a) yields

E[X2
2,2]∼ 2 f (x)2(n−1)

∫ x

0
yF(y)dy .

If α < 2,

E[X2
2,2]∼ α(n−1)F(x)3

∫ 1/(2(n−1))

0

(
(1− y)−α −1

)2 y−α−1 dy.

Further if E[Y1]< ∞, then E[X2,2]∼ f (x)E[Sn−1]. If α = 1 and E[Y1] = ∞, then

E[X2,2]∼ (n−1) f (x)
∫ x

0
F(y)dy .

If α < 1, then

E[X2,2]∼ α(n−1)
∫ 1/(2(n−1))

0

(
(1− y)−α −1

)
y−α−1 dyF(x)2.

Now recall the formula
Var[X +Y ] = Var[X ]+Var[Y ]+2Cov[X ,Y ] .

Using
E[X1X2] = E[X2,1X2,2] = 0 , E[X2]∼ F(x) , E[X2,1]E[X2,2] = o(E[X2

2,2]) ,

we get
1
n2Var[ZAK] = Var[X1]+Var[X2,1]+Var[X2,2]−2F(x)E[X1].

Collecting all terms we get that for α ≥ 2 Var[X2,2] dominates the other terms asymptotically and for α < 2
we get

1
n2VarZAK ∼ (n−1)

(
α

∫ 1/2

1/(2(n−1))
y−α−1(1− y)−2αdy+

1
3

23α +(2(n−1))α

−2α

∫ 1/2

1/(2(n−1))
y−α−1(1− y)−αdy−22α

+α

∫ 1/(2(n−1))

0

(
(1− y)−α −1

)2 y−α−1dy

)
F(x)3

= (n−1)

(
α

∫ 1/2

1/(2(n−1))
y−α−1 ((1− y)−2α −2(1− y)−α

)
dy+

1
3

23α

+(2(n−1))α −22α +α

∫ 1/(2(n−1))

0

(
(1− y)−α −1

)2 y−α−1dy

)
F(x)3

= (n−1)

(
−α

∫ 1/2

1/(2(n−1))
y−α−1dy+

1
3

23α +(2(n−1))α −22α

+α

∫ 1/2

0

(
(1− y)−α −1

)2 y−α−1dy

)
F(x)3
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= (n−1)

(
2α +

1
3

23α −22α +α

∫ 1/2

0

(
(1− y)−α −1

)2 y−α−1dy

)
F(x)3.

2

Remark 4 In the case α = 2, E[Y 2] = ∞, the above discussion leads to asking for more explicit growth
rates of

I(x) =
∫ x

0
yF(y)dy =

∫ x

0

L(y)
y

dy .

An obvious conjecture is that the order is L(x) logx. But this turns out not be true for all L(x). For a more
detailed analysis, assume that L(x)∼ cexp{

∫ x
a e(t)/t dt} where e(t) is differentiable and a,c > 0. Further

we assume that I(x)→ ∞. If there exists a κ 6=−1 with

lim
t→∞

e′(t)t
e(t)2 →−κ

then a partial integration argument yields I(x) ∼ L(x)/(κ +1)e(x). For example, if L(x)∼ (logx)β we can
choose e(x) = β/ logx and κ = 1/β , so that hence I(x) ∼ L(x) log(x)/β +1. Another example is L(x)∼
exp
{
(log logx)γ

}
where γ > 0. Then e(x)= γ(log logx)γ−1/ logx, κ = 0 and I(x)∼ L(x logx/γ(log logx)γ−1.

On the other hand if e(x) logx→ τ and τ 6= −1, it can be shown that I(x) ∼ L(x) log(x)/τ +1.
Again for L(x) ∼ (logx)β we can choose e(x) = β/ logx and τ = β and find as above that I(x) ∼
L(x logx/γ(log logx)γ−1. 2

3 AN IMPROVED ESTIMATOR FOR α > 2

In the case of finite second moment we get that the error is basically given by the variance of the term
X2,2 in (2). Since for large values of x X2,2 is close to Sn−1 f (x) a natural idea is to use this approximation
as a control variate which results in the estimator

Z = ZAK +n(ESn−1−Sn−1) f (x). (3)

The next theorem shows that this estimator is indeed an improvement over ZAK.
Theorem 2 Assume f ′(x) =−α(α−1)L(x)/xα+2. If α > 4 or, more generally, E[Y 4]< ∞ then

VarZ ∼ 1
4

n2Var[S2
n−1] f

′(x)2.

If α = 4 and E[Y 4] = ∞ then

VarZ ∼ n2(n−1) f ′(x)2
∫ x

0
y3F(y)dy.

If 2 < α < 4 then VarZ ∼ n2(n−1)kαF(x)3 where

kα = α

∫
∞

0

(
((1− z)∨ z)−α −1−αz

)2z−α−1dz .

Proof. The proof is a variation of the proof of Theorem 1. Define An,x =
{

Mn−1 ≤ x/2(n−1)
}

. At first
note that VarZ = n2VarZ1 where Z1 = F(x−Sn−1∨Mn−1)−Sn−1 f (x). We will use

Z1 = Z1I
(
Ac

n,x
)
+Z1I (An,x) = X1 +X2.
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Similar to the proof of Theorem 1 we get that

EXk
1 = E

[(
F(x−Sn−1∨Mn−1)−Sn−1 f (x)

)k;Ac
n,x
]

∼ E
[(

F(x−Mn−1∨Mn−1)−Mn−1 f (x)
)k;Ac

n,x
]

= x(n−1)
∫

∞

1
2(n−1)

[
F((x− xz)∨ xz)− xz f (x)

]k f (xz)F(xz)n−2dz

∼ α(n−1)F(x)k+1
∫

∞

1
2(n−1)

[
((1− z)∨ z)−α −αz

]kz−α−1dz.

If Mn−1 ≤ x/2(n−1), then Sn−1 ≤ x/2 and so

X2 = F(x)−F(x)I
(
Ac

n,x
)
+
(
F(x−Sn−1)−F(x)−Sn−1 f (x)

)
I (An,x)

= F(x)− I(Ac
n,x)F(x) − 1

2
I(An,x)S2

n−1 f ′(Ξ) = F(x)−X2,1 +X2,2.

where x−Sn−1 ≤ Ξ≤ x.
Proceeding as in the proof of Theorem 1 we get that

E[Xk
2,1] = F(x)kP(Ac

n,x) ∼ (n−1)2α(n−1)αF(x)k+1.

To evaluate E[Xk
2,2], we split the expectation into Sn−1 ≤ εx and Sn−1 ≥ εx, for some 1/(2(n−1))> ε > 0.

When Sn−1 ≤ εx, we have − f ′(x)≤− f ′(Ξ)≤− f ′
(
(1− ε)x

)
. This and monotone convergence gives

lim
ε→0

lim
x→∞

E
[
S2k

n−1 f ′(Ξ)k; Sn−1 ≤ εx
]

f ′(x)kE
[
S2k

n−1; Sn−1 ≤ εx
] = 1 .

Further by (Bingham, Goldie, and Teugels 1989, Proposition 1.5.8 and 1.5.9a) and partial integration

E
[
S2k

n−1; Sn−1 ≤ εx
]
= 2k

∫
εx

0
y2k−1FSn−1(y)dy− (εx)2kFSn−1(εx)

∼


ES2k

n−1 EY 2k
1 < ∞,

2k
∫ x

0 y2k−1FSn−1(y)dy α = 2k,
ε2k−α α

2k−α
x2kFSn−1(x) α < 2k.

If εx≤ Sn−1 ≤ x/2 then it holds uniformly in Sn−1 that

−S2
n−1 f ′(Ξ)
2F(x)

∼ F(x−Sn−1)−F(x)−Sn−1 f (x)
F(x)

∼ (1−Sn−1/x)−α −1−α
Sn−1

x
,

and hence

1
2
E
[
S2k

n−1(− f (Ξ))k; Sn−1 > εx, Mn−1 ≤ x/(2(n−1))
]

∼ F(x)kE
[(

1−Sn−1/x)−α −1−αSn−1/x
)k; Sn−1 > εx, Mn−1 ≤ x/(2(n−1))

]
∼ F(x)kE[

(
(1−Mn−1/x)−α −1−αMn−1/x

)k; εx < Mn−1 ≤ x/(2(n−1))
]

∼ α(n−1)F(x)k+1
∫ 1/(2(n−1))

ε

(
(1− y)−α −1−αy

)k y−α−1 dy .
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Here ( ·)k is of order y2k at y = 0. Since ε was arbitrary, it follows that if E[Y 4]< ∞

E[Xk
2,2]∼

1
2k (− f ′(x))kE[S2k

n−1] .

If α = 4 and E[Y 4] = ∞, (Bingham, Goldie, and Teugels 1989, Proposition 1.5.9a) yields

E[X2
2,2]∼ (n−1) f ′(x)2

∫ x

0
y3F(y)dy .

If α < 4,

E[X2
2,2]∼ α(n−1)F(x)3

∫ 1/(2(n−1))

0

(
(1− y)−α −1−αy

)2 y−α−1 dy.

Further since E[Y 2
1 ] < ∞, E[X2,2] ∼ −1

2 f ′(x)E[S2
n−1]. Finally with the same collecting of terms as in the

proof of Theorem 1 the Theorem follows. 2

4 AN IMPROVED ESTIMATOR FOR 1 < α < 2

IfEY 2
1 =∞ then the estimator (3) hasVar(Z) =∞ so this estimator is no improvement for α < 2. Nevertheless

it is an interesting question if we can improve on ZAK also in this case. In this section we will consider
the case of 1 < α < 2 where we have a finite mean but an infinite second moment. We will denote with
Y(1) ≤ ·· · ≤ Y(n) the order statistic of Y1, . . . ,Yn, with Mk = max1≤i≤k Yi and with Sk = ∑

k
i=1Yi. At first note

that

P(Sn > x) = P
(

Sn > x,Y(n−1) ≤
x

2(n−1)

)
(4)

+P
(

Sn > x,Y(n−1) >
x

2(n−1)

)
. (5)

We will use separate estimators for (4) and (5). By conditioning on the two largest elements and using
symmetry

P
(

Sn > x,Y(n−1) >
x

2(n−1)

)
= n(n−1)P

(
Y1 >

x
2(n−1)

)2

pn.x

where
pn,x = P

(
Sn > x, min

i∈{n−1,n}
Yi ≥Mn−2

∣∣ min
i∈{n−1,n}

Yi >
x

2(n−1)

)
.

Denote with Zc(x) the crude Monte Carlo estimator of pn,x, i.e. we first simulate Yn−1,Yn conditioned to
exceed x/2(n−1) then the rest normal and use the estimator

Zc(x) = I (Sn > x) I (min(Yn−1,Yn)≥Mn−2)

[note that conditioned r.v. generation is easy whenever inversion is available, cf. (Asmussen and Glynn
2007, p. 39)]. The estimator

Zb(x) = n(n−1)F(x/(2(n−1)))2Zc(x)

is an unbiased estimator for (5) and as x→ ∞

VarZb(x) = Var
[
Zs(x)

]
(n(n−1))2F(x/2(n−1))4

. 24αn2(n−1)4α+2F(x)4.
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So we have to find an estimator for (4). By conditioning on the largest element and using symmetry
we get that

P
(

Sn > x,X(n−1) ≤
x

2(n−1)

)
= nP

(
Sn > x,Mn−1 ≤

x
2(n−1)

)
.

Let f̃ be an importance sampling density of the form L̃(x)/xα̃ with α̃ < 2α−2 and P̃, Ẽ the corresponding
probability- and expectation operators. We will assume that f̃ is bonded away from zero on finite intervals.
We now combine the estimator which conditions on Sn−1 with importance sampling and a control variate
to get the estimator

Zs(x) =
(
F(x−Sn−1)−F(x)

)
LIn,x + F(x)P(In,x)

where L = ∏
n−1
i=1 f (Yi)/ f̃ (Yi) is the likelihood ratio and In,x is the indicator of the event Mn−1 ≤ x/2(n−1).

Since f (x) ∼ supz≥x f (z) (e.g. (Bingham, Goldie, and Teugels 1989, Theorem 1.5.3)), we get by Taylor
expansion

Ẽ
[(

F(x−Sn−1)−F(x)
)
LIn,x

]
. f (x/2)Ẽ[Sn−1LIn,x] ≤ f (x/2)ESn−1

and with the same arguments

Ẽ
[(

F(x−Sn−1)−F(x)
)
LIn,x

]2
. f (x/2)2Ẽ[S2

n−1L2] .

We have that

Ẽ[S2
n−1L2] = (n−1)Ẽ

[
Y 2

1
f (Y1)

2

f̃ (Y1)2

n

∏
i=2

f (Yi)
2

f̃ (Yi)2

]
+(n−1)(n−2)Ẽ

[
Y1

f (Y1)
2

f̃ (Y1)2
Y2

f (Y2)
2

f̃ (Y2)2

n

∏
i=3

f (Yi)
2

f̃ (Yi)2

]
.

Since for k = 0,1,2

Ẽ
[
Y k f (Yi)

2

f̃ (Yi)2

]
=
∫

yk f (y)2

f̃ (y)
dy < ∞

(the integrand is regularly varying with index k−2α−2+ α̃ +1 <−1), it follows by independence that
Ẽ[S2

n−1L2]< ∞ and hence Ṽar(Zs(x)) = O
(

f (x)2
)
. Thus we have shown

Theorem 3 Assume f (x) = αL(x)/xα+1. If 1 < α < 2 then the estimator Z(x) = Zb(x)+ nZs(x) is an
unbiased estimator for P(Sn > x) with

Var(Z(x)) = O
(

f (x)2)
Remark 5 Note that for a fixed number of simulations the confidence interval (of fixed level) for the
estimator Z(x) has a length of order f (x). This is the same order as the error of the asymptotic approximation
P(Sn > x)−nF(x).

5 THE WEIBULL CASE

We finally give a brief survey of our results for the Weibull case F(x) = e−xβ

with 0 < β < 1 (related
distributions, say modified by a power, are easily included, but for simplicity, we refrain from this). We
refer to (Asmussen and Kortschak 2012) for a more complete treatment. The density is f (x) = βxβ−1e−xβ

and f ′(x) =−p(x)F(x) where p(x) = β 2x2(β−1)+β (1−β )xβ−2.
Theorem 4 If 0 < β < log(3/2)/ log(2), then the Asmussen-Kroese estimator’s variance is asymptotically
given by

Var(ZAK)∼ n2Var(Sn−1) f (x)2
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Note that log(3/2)/ log(2) ≈ 0.585 is also found to be critical in (Asmussen and Kroese 2006) as the
threshold for logarithmic efficiency to hold.

As in Section 3 we can use the estimator defined in (3) to improve on ZAK.
Theorem 5 Assume that 0 < β < log(3/2)/ log(2) ≈ 0.585. Then the estimator Z in (3) has vanishing
relative error. More precisely,

Var(Z(x))∼ n2

4
Var(S2

n−1) f ′(x)2.

The estimator Z in (3) has the form ZAK +α(Sn−1−ESn−1), so it is a control variate estimator, using
Sn−1 as control for ZAK. It is natural to ask whether the α = −n f (x) at least asymptotically coincides
with the optimal α∗ =−Cov(ZAK,Sn−1)/Var(Sn−1) (cf. (Asmussen and Glynn 2007, V.2)). The following
lemma shows that this is the case:
Lemma 6 Cov(ZAK,Sn−1) = nVar(Sn−1) f (x)+o

(
f (x)

)
.
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