Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds

DISCRETE EVENT FORMALISM TO CALCULATE ACCEPTABLE SAFETY DISTANCE

Paul-Antoine Bisgambiglia
Romain Franceschini
Frangois-Joseph Chatelon
Jean-Louis Rossi
Paul Antoine Bisgambiglia

University of Corsica UCPP, CNRS UMR SPE 6134
Campus Grimaldi, bat. D. Alfonsi
Haute Corse, 20250 CORTE, FRANCE

ABSTRACT

The aim of this paper is to present a dimensioning tool for fuelbreaks. It focuses on the overall approach
and specifically mapping a physical model to a DEVS model, mapping a DEVS model to a DEVS ser-
vice, and the client that communicates with the server. In order to assist the firefighters, we focus on a
Web Service based on different software tools that can be used by firefighters to forecast fuelbreak safety
zone sizes. This Web Service uses a simulation framework based on DEVS formalism, a theoretical fire
spreading model developed at the University of Corsica and to display the results on a Google Map SDK.
The SDK is embedded in a mobile application for touchscreen tablet. The application sends a request to
our DEVS Web Service, with its geolocation, and in response receives data sets that allow to draw the
safety distance.

1 INTRODUCTION

Mediterranean territories are at high risk of forest fire. During the 2003 and 2004 summers, very large
fires have developed in five countries of the Mediterranean coast of Europe (France, Italy, Spain, Portu-
gal, Greece). They caused major damage and many human victims. The management of forests through
fuelbreaks (firewall) is a preventive means used to limit the development of large fires.

Implanted in a strategic zone, the fuelbreak ensures the compartmentalization of forests, to limit the
spread of fire and decrease the intensity. The purpose of these fuelbreaks is to reduce the risk of fire out-
break, provide a bearing zone to the fight (to secure the interventions), and reduce the power of the fire
front. Born of collaboration between physicists, chemists and computer scientists, the tool that we present
aims to help firefighters for the fuelbreaks dimensioning. This tool is based on several physical models,
and an online computational framework based on the DEVS formalism.

DEVS for Discrete EVent system Specification (Zeigler, Prachofer, and Kim 2000) is a formalism
based on the development of time according to events. It allows the composition of models from compo-
nents stored in libraries, thus avoiding the redevelopment of existing models. It is an open, flexible for-
malism with a great capacity for extension. Recent works (Quesnel, Duboz, and Ramat 2009; Zeigler
2003; Vangheluwe 2001; Wainer, Madhoun, and Al-Zoubi 2008) have shown that DEVS formalism may
be called multi-formalism because, due to its open nature, it allows the encapsulation of other modeling
formalisms. This capacity for opening and extension is very interesting, as the representation of the vari-
ous entities which constitute a complex system can be accomplished by using the most appropriate for-
malism.

978-1-4799-2076-1/13/$31.00 ©2013 IEEE 217

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

A Heat transfer by radiation is the main thermal impact on the people who fight against fires, or on
the structures, such as fire truck. The estimated radiation is therefore of paramount importance. To calcu-
late the radiation, we use several physical models. These models will allow us to estimate a safety dis-
tance or ASD for Acceptable Safety Distance (Rossi et al. 2011; Morandini, Santoni, and Balbi 2001).

The proposed tool must be used in the field. To calculate the ASD, we propose to host the application
on a web server accessible from the thin clients as a touchscreen tablet (tablet). A Web Service is a com-
puter program accepting the communication and data exchange between heterogeneous applications and
systems in distributed environments. To achieve this goal we use a forest fire spread model fast enough to
meet to client requests. The model must then be described using a modeling approach and simulated in an
open environment to allow the data exchange on the network.

The paper is organized as follows. The next section provides information about the related work. In
the first part, we present the physical model the basis of our work. This model allows to obtain a safety
distance depends on many parameters. Then, we detail the DEVS formalism and some works aimed at
transforming a DEVS model in Web Services. This works are based on architectures like Web Services.
Section 3 provides basic information about the Web Service architecture with both server and client de-
signs. We present our architecture and our DEVS models. We begin by describing the transformation of
the physical model into DEVS model. We also present results, results that are identical to those obtained
from a scientific computing platform. These results allow us to draw some conclusions: as to identify the
most influential parameters on the ASD calculation, and also noted that the DEVS formalism can be used
as a very efficient scientific computing tool. Finally, we describe the technological choices that we have
made to transform our DEVS models into Web Service. Before concluding, in Section 4, we present the
GUI and results displaying in our mobile application.

2 RELATED WORKS

Fire evolution is a complex phenomenon that requires a mathematical and physical analysis. Simulation
software has highly enhanced the understanding of the phenomenon, as facing simulation results to exper-
imental data improves the model definition and helps understanding the fire behavior (Harzallah et al.
2008). Simulation software are often used to study complex systems, such as to model fire evolution. For
example, the DEVS formalism has been used to model physical equations describing fire evolution; we
can quote (Harzallah et al. 2008; Muzy et al. 2002; Bisgambiglia, Filippi, and Gentili 2006; Nader, Filip-
pi, and Bisgambiglia 2011). This work focuses on the spreading aspect; our application aims to provide a
safety distance.

2.1 Physical Models

Fire model of interest in this paper is described in Rossi et al. (2011). It is an analytical model based on
University of Corsica’s forest-fire propagation rules (Balbi et al. 2010).

In Rossi et al. (2011) a model to calculate a safety distance is presented, it is called ASD for Accepta-
ble Safety Distance. This system has been validated as an operational model. It is used to place the fire-
fighters on the ground and assess the radiation rate to which they are exposed. The role of this system is
twofold: (1) it calculates a safe distance for the prevention of forest fires. This distance is used to realize
a fuelbreaks by vegetation clearing; (2) it can also calculate a safety distance during the struggle. This dis-
tance informs the firefighters on the degree of heat in the vicinity of the fire front. This is an analytical
model based on radiative heating, and a whole set of parameters, such as vegetation, meteorology, topog-
raphy, and a combustion model (Balbi et al. 2010). The flame model adopted is based on the radiant sur-
face approach (Zarate, Arnaldos, and Casal 2008), it is generalized to take into account the effect of the
fire front width (Figure 1). So far this model prediction has been compared against measured flame length
of several experimental fires conduced at the field scale through a variety of natural vegetation in Corsi-
can mountain region. We used simplified surface fire spread model developed until 2007 at the University
of Corsica (Rossi et al. 2011). This model solves several coupled algebraic equations using the fixed-

218

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

point method. This method requires setting up an iterative scheme that induces the creation of the loop
and causes a lot of data exchange.

Figure 1: Flame front.

In addition to this two models eighteen sub-models complement the global physical model and used
to calculate internal variables as the flame temperature, the ratio energy radiated, the rate of climb of gas,
the flame height Hy, and several other parameters. Details of these equations, as well as a comprehensive
look at the models can be found in Balbi et al. (2010).

2.2 DEVS Formalism

Since the 1970s, formal tasks have been performed to develop the theoretical foundations of modeling
and simulating of discrete event systems. Our interest focuses on the DEVS formalism. It may be defined
as a universal, general methodology which provides tools to model and simulate complex systems. Major
efforts have been made to adapt this formalism to various domains and situations as to study forest fire
spreading. DEVS permits the modeling of causal and deterministic systems with two types of compo-
nents. A DEVS atomic model is based on continuous time, inputs, outputs, states and functions (output,
transition and lifetime of states). More complex models are constructed by connecting several atomic
models in a hierarchical way. The interactions are created via the models' input and output ports, which
favors modularity.

The atomic model provides an independent description of the system's behavior, defined by the states
and functions of the inputs/outputs and by the model's internal transitions. An atomic model is described
by the following formula: AM: < X; Y; S; ta; Oex 5 Oine 5 A>. Where, X = {(Pin, V) | pin € Input ports, v €
Xpin}: 1s the list of the model inputs; Y = {(Pout, V) | Pour € Output ports, v € Ypou}: is the list of the mod-
el outputs; S: is the list of the states or state variables; t,; S—R: is the time advancement function or the
S state's lifetime; O.: QxX—S : is the external transition function; ;,,:S—S: is the internal transition
function; and, .:S—Y: is the output function.

The DEVS formalism uses the notion of a description hierarchy, which permits the construction of
coupled models, based on a collection of atomic models and/or coupled, and on three coupling relations.
It is described by the following formula: CM: < Xy; Yu; Cu; EIC; EOC; IC; L >. Where, Xy: is the set of
input ports; Yy is the set of output ports; Cy;: is the list of models that composed the coupled model CM;
EIC: is the set of the input couplings, which links the coupled model to its components; EOC: is the set of
the output couplings, which links the components to the coupled model; IC: is the set of the internal cou-
plings, which links the components to one another; and, L: is a list of priorities among components.

Why DEVS? We mainly use this formalism to its openness and extensibility. For example, the physi-
cal model presented has already been used with conventional software tools, they give the same results!
Our advantage is to open the application to other fields such as web applications or Web Services.

219

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

Many works have been proposed with the aim of mapping DEVS models in Web Services. Generally
the aim of this works is twofold: (1) provide a service based on a DEVS model, and (2) extend the in-
teroperability of DEVS formalism. We do not propose evolution at these levels, but simply the use of
these concepts applied to another application field: the ASD calculation. Our approach is general because
we want to use DEVS as a calculation tool. We also propose a comparison with a calculation program
scientist and to equivalent results our environment is much more efficient. In addition, we can use DEVS
to transform our calculation tool in online tool, and propose complete software architecture; efficient and
adapted to the problem we were asked. That is to say: developing a field tool, portable, for fuelbreak di-
mensioning.

3 OVERALL APPROACH

Our approach is fairly standard, it resembles in this work (Harzallah et al. 2008). We constructed a com-
putational service as Web Service. Our Web Service is based on the DEVS formalism. It allows sending a
safety distance, used to planning aid (fuelbreak) and prevention against forest fires. For our calculations,
we need a certain number of data, and these data are either acquired locally, such as geolocation, or re-
trieved through other Web Services, such as ground slope. The Figure 2 describes this architecture. A
main Web Service hosting a DEVS simulator to calculate the ASD. It can connect to another Web Ser-
vices. The client sends data and displays the results.

le \\' data :\
I Web Service 2 ¢ Q:a_g/

<
Interfac
Smlt(g} <

gtAsl)
setArgs()

,#,

7 N\
(DEVS framework)

—x .
@ I Web Service 1 A= Web Service QI
o EE
args

Figure 2: An overview of the overall approach.

3.1 Mapping a Physical Model to a DEVS Model

We have seen the complexity of the physical model, and the large number of parameters to be taken into
account. Figure 3 shows a simplified diagram of the interconnectedness of all these parameters. The ASD
calculation was divided into five blocks, to solve some equations. Each of these blocks has been mapped
into DEVS model.

Modeling the ASD model using the DEVS formalism gives a coupled model composed of several
sub-models. The graphical representation of model is given in Figures 3 and 4; we can see the coupling
relations: CM_SD gives the ASD; CM_GV gives the rate of climb of gas, and the energy ratio, CM_HR
gives the flame height; CM_CF gives the flame temperature and the flat velocity; generator initializes all
components by reading the input data from a file or from a Web Service; parameter r0 calculates a ratio
surface / volume (depending on ground); AM_LF gives the length of the flame; and, AM_S calculates the
flame inclination and the flame front velocity. Once the dependency relationships were obtained, we
built the ASD-DEVS models.

220

These models have been implemented on our framework. A DEVS framework implement in C# lan-
guage and, using simulation architecture called flat or direct coupling. Flat algorithms are presented in
Zacharewicz et al. (2010). The hierarchy of the simulation objects is flattened to reduce the communica-
tion overheads, using a flat simulation approach that eliminated the intermediate coordinator, in order to
reduce the time of simulation and to speed up the production of results. A flattened representation of the

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

CM_SD I

ASD

Figure 3: link between the ASD model parameters.

model is show in figure 4.

init

ASD

ASD (Acceptable Safety Distance)
Acceptable Safety Distance ASD ASD
AM_FL
thau Lf Gam eps hid init [«
Flame Height (FH) c c % %
init Q uo0 w0 mu Tf 1
T . Y 'y 3 ASD
1 Flame Base Emissivity (FBE)
cs AM_FL AsD mu FBE P GamR 0
| Atomic Spread (AM_S) MR A
ASD ParA -
FH .
HRR Atomic Flam‘e w0 init A k B Rp 0
init thau Af Length (AM_FL) X [
7S Hf Gam
Y
_A_T i]
_,\J ™ M S AM_S AM_S
HRR Upward gas velocity u0 P:‘l;(amth.:fB F.lrz;t speed (MVP)
. init
Combustion uoo init Ute mu
Surface (CS) 'y Y 2 I
init thau R I
—
NS
)
uo I b
[MUte 0 FH W0 mu B FH ASD MVP
uoo init A
HRR CS ASD Parameter mu Flame temperature (MTF)
Residedent Time T MUt it K_TC R 4 init Xi
oD f .
init
x [[
L mu 'l:” AM-kS MTF
MUt arameter Radiation (MR)
uoo init A T int 0 GamR
T ‘ [3 *
FH w0 MUt MUt L A~ Mut Mute MP | :
Parameter A
Pa.rameter u0o o MR VP FBE
T i Lf init Parameter r0
T L_? Tx

Figure 4: ASD-DEVS flattened representation.

221

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

The models were executed with multiple test cases, these same examples were solved in Rossi et al.
(2011) using the software Mathematica and gave exactly the same values for the ASD. To validate our
model, we made comparisons with the original physical model ASD. The physical model under Mathe-
matica was validated by comparison with experimental results. The results obtained with our ASD-DEVS
models are identical, therefore we can consider as valid.

States .
X, port="init’ / X, port#init’ /

[fixed=values && clear other] Porte [pli]=value]

Waiting
tn=eo

*, [existe i]
plil=null

ring
tn=0

*, falli]
plil# null

*/send Y && clear
(\ interim
Stop Output
\ .y tn=0,

X, port#’init’ / [p[i]=value]

X, port="init’ /
[fixed=values]

Figure 5: evolution of model state.

The ASD model is composed of twenty-one different atomic models (Figure 4). Except the Generator
each atomic model AM; (Figure 5) compute a specific equation for estimating the value x; associated with
the model. The models are initially loaded by assigning arbitrary values to all variables except the con-
stants and the fixed values like the Stefan-Boltzmann constant (B), the threshold heat flux level: (®),
the local terrain slope angle («) or the ambient temperature (7,). A new value is computed for each x;
variable by appropriated atomic model. During each iteration k, variables values from previous iteration
are used to calculate the new value x;. The variables are immediately updated with their new values. The
process stops when the Atomic Speed Model (AM_S) reaches the fixed-point | R® — R*-1| < 1073, In
almost ever case, the solution converges to the correct answer after 10 steps.

For each equation we have split the parameters into two groups: the interim and the fixed parameters.
For each calculation of the ASD, fixed parameters are initialized through the “init” port by the “Genera-
tor” model. Interim parameters are cleared during the initialization phase. All models operate in the same
basic way show in the Figure 5. Where p[i] is the model parameter.

3.2 Identification of the Parameters Influence

A sensitivity analysis is conducted to identify the model parameters that must be chosen with care be-
cause of their large impact on model predictions, and the other parameters that may have only a small im-
pact on the model. Three kinds of environmental parameters are particularly sensitive to the model; exact-
ly twelve parameters are used in the formulas. We can point to the physical parameters: the local terrain
slope angle («) and the fuel depth (e); to the chemical parameters: the heat yield of the fuel (AH,), the
specific heat (C,,) and the moisture content of the dead fuel (m); and to the meteorological data like the

normal wind speed or ambient temperature (7).

Currently, there is no chemical data available on the net, and all other parameters are not sufficient in
temporal and spatial resolution to be used directly in a surface fire spread model. In this study, a simple
univariate sensitivity analysis was performed to assess how the ASD values are affected by a parameter
change. The chosen parameters correspond to the local terrain slope angle, the fuel depth, the normal
wind speed and the ambient temperature. All other values are estimated depending on experimental
measures.

222

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

o
~

Distance in meters
&
o
Distance in meters

~
o
o n

0,00 2,00 4,00 6,00 8,00 10,00

0,00 0,50 1,00 1,50 2,00 2,50 3,00 .
Vegetal's height in meters

Wind speed in m/s

(a) Normal wind speed (m/s) (b) Fuel depth (m)

23,0

223 //

Distance in meters
Distance in meters

0,00 2,00 4,00 6.00 8,00 10,00 0,00 10,00 20,00 30,00 40,00 50,00

Slope angle in degrees Temperature in celsius degrees

(c) Local terrain slope (°) (d) Ambient temperature (K)

Figure 6: The influence of wind speed, temperature, vegetal height and slope parameters on ASD results.

This analysis indicates that parameters with significant effects on ASD evaluation are the normal
wind speed and the fuel depth. However, local terrain slope but above ambient temperature have less in-
fluence on ASD and do not produce significant changes on the final results. The results in Figure 6.a and
6.c may be surprising, but it is easily explained, since the radiation rate directly depends on the fire front
length. Wind and slope incline the fire front, thus decreasing the radiation rate perceived by firefighters.
So, it is not necessary, but interesting, to have a highly accurate estimate on these parameters.

Web Services for the local ground slope and meteorological service are more than enough to calculat-
ed safety distance. There is no service which provides access to fuel depth, the value will be given with
great precision between zero and two meters, by the user.

3.3 Mapping a DEVS Model to a DEVS Service

To transform our ASD-DEVS models into Web Service, we relied on existing work. Our application is
based on the following technologies: a simulation framework in C# and based on the flat DEVS algo-
rithms. Our framework is hosted on a server; an interface in C# makes a link between the simulator and
the data retrieved by the client, and/or other Web Services. This interface allows remote start the simula-
tion, and sends the results. The underlying technologies are Internet standards: XML, KML and JSON for
data transfer; REST architecture to drive communications; to display on the client, we use the Goolge
Map SDK. The Client, tablet or browser, sends data to the server interface. The interface collects local da-
ta, that is to say the client data, and other external data by querying other Web Services, and then it runs
the simulation and finally returns the results to the client.

3.3.1 Underlying Technologies
Since REST (REpresentational State Transfer) architecture has emerged as a predominant Web Service

design model for its simplicity and clarity, we chose to expose our Web Service with this architecture,
where we only rely on URIs and HTTP verbs to expose our methods.

223

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

Client / server communications are made through URIs to pass on parameters, and results from server
are sent as KML. KML or Keyhole Markup Language is an XML notation for expressing geographic an-
notation and became an international standard of the Open Geospatial Consortium in 2008. The main in-
terest of sending back data as KML format is that we can lighten up the clients since they doesn’t have to
interpret raw results before drawing them on a map. Also, we can use directly this format to store the re-
sults and visualize them later.

3.3.2 ASD-DEVS Service

The Web Service relies on a custom DEVS framework in C#. Originally used as a desktop application for
modeling purposes, we added web components on top of it. Since the original application were developed
in a typical SOA fashion, no extraction of code was necessary because the core simulators were already
isolated. Software Oriented Architectures aims to organize several software components as services
providing properties including loose coupling, abstraction and reusability among others.

The solution is composed of several projects, each representing a service:

e DataContracts: provides APIs to access data
Data: provides an implementation of DataContracts APIs, providing elevation data, temperature
and wind speed through external Web Services and providing ASD from local simulation results

e DEVSModeling: the modeling abstraction of our original DEVS framework. It contains ASD
models implementations among others

e DEVSSimulation: like above, this layer was part of the original DEVS framework and provides
the DEVS simulators
ServicesContracts: represent the API of our service

e Services: implements the Web Service with the API described in ServicesContracts

The API of the ASD Web Service is quite simple. It’s composed of one single method available
through an HTTP GET request with the following pattern:

/asd/{encoded polyline}.{format}

The encoded polyline variable is a string representing a set of latitudes and longitudes encoded fol-
lowing Google’s encoded polyline format (« Google Encoded Polyline »), which allow to represent sev-
eral locations in a concise manner. For each of those points, we launch a simulation and build by default a
KML string that will contain the polyline passed in arguments and a polygon representing the ASD area.
The format parameter is optional and can take either json, xml, or kml value. The first two values returns
a list of distances in meters for each given location (the raw results). The last value is the default one,
which sends back KML as described above. We chose to minimize the amount of parameters passed to
our Web Service, but some missing parameters are essential to calculate results. That’s why we have to
retrieve them from external Web Services.

3.3.3 Web Services Connection and Data

Some parameters needed to compute the ASD depends on environment related data around a given loca-
tion. Since not all of parameters can be easily retrieved, we selected those having a significant influence
on the results. For each of them, we either propose to retrieve the information (if available) or to launch
the simulation, graduating the value of the parameter from the simple case to the worst case. Then, the us-
er will have to evaluate these different results. Since the goal is to evaluate the extent of a fuelbreak,
we’re interested in data representing a critical case.

224

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

We managed to get some parameters by using external Web Services. The local slope of the terrain is
calculated by sampling elevation data around the given location. Services such as (« Google Elevation
API ») or (« MapQuest Open Elevation ») can give such data. Once we sampled data around the location,
we use a gradient descent to find the local slope of the terrain (results Figure 7).

{ "results" : [
{
"elevation" : 428.9814758300781,

"location™ : {"lat" : 42.30640,"1lng" : 9.151400000000001},
"resolution" : 152.7032318115234
}
1, "status" : "OK"

Figure 7: Result of a Google Map Elevation API query.

For wind speed and temperature data, we used the (« Wunderground ») Weather API, which is one of
the Web Services offering access to worldwide weather data, not only for live or forecast but also for his-
toric data, which is particularly what we’re looking for. Their RESTful API exposes the history feature,
which accept a date along with latitude and longitude coordinates and which returns a summary of the ob-
served weather at the specified location and date in JSON format.

{"history":{
"dailysummary": [
{
"date":{"pretty":"12:00 AM CET on January 01, 2011",},
"meantempm":"11", // Mean temp in C
"meanwindspdm":"10", // Mean wind speed in kph
"meanwdire":"NE", // Mean wind direction description
"meanwdird":"46", // Mean wind direction in degrees
"maxtempm":"15", // Max temp in C
"mintempm":"7", // Min temp in C
"maxwspdm":"15", // Max wind speed in kph
"minwspdm":"2", // Min wind speed in kph
}
]

Figure 8: Result extract of a weather history query.

As shown in Figures 7 and 8, the query returns a JSON string that contains weather information for a
given location including: maximum, average and minimal values for wind speed, direction and tempera-
ture along with various parameters that we omitted. With this data, we can establish mean values for a
given period, e.g the mean of max temperatures and max wind speed for the last summer.

Once all parameters cited above are in our hands, we’re able to launch the simulation and send back
the results to the client which will display them.

4 DISPLAYING

ASD results provided by our Web Service are useful for firefighters on field when evaluating distances
for fuelbreak, the client side must then provide a clear GUI to visualize the terrain and our results, an un-
obtrusive way to feed input data and a way to retry computations in case of a network failure. In order to
fit such requirements, the client has been implemented as a mobile application on both iOS and Android
platforms and designed to run primarily on tablets. The user interface will be essentially composed of: (1)

225

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

a sliding panel on the left side providing a section containing a list of previous cached computations and
the ability to create a new one. Another section is there for configuration purposes; (2) a map fitting the
whole screen and representing the current selected computation. The map contains the user location if
available; the path for which we want the results and when these are available, the ASD zone is drawn as
a polygon. The user can touch the zone to display detailed information about results; (3) the map has three
distinct modes: the normal mode, the user-tracking mode and the drawing mode. Each of these are de-
tailed respectively below : (3.1) the normal mode displays all available data for the current selected com-
putation and allows user interaction to show detailed information; (3.2) since our Web Service input is es-
sentially a set of coordinates, these GPS enabled devices allow us to provide a handy user-tracking mode.
Thereby, as the user location is updated we can spawn requests to our Web Service and draw a polygon
that will represent the ASD; (3.3) finally, the drawing mode allows the user to place a set of locations di-
rectly on the terrain and adjust each of them.
The final result is shown in Figure 9. We can see the contours of the safety zone.

s == =T === et bt i 8

Figure 9: Display example.

5 CONCLUSIONS

We have introduced a Web Service combining three tools: a physical model describing the forest fires
mechanisms and to estimate the acceptable safety distances (ASD); a DEVS simulator as a calculation
tool, to compute safety distances and, a set of Web Services to get or send data. Our service is based on
web standards technologies: XML, REST, KML, etc. We used these standards to enhance performance,
interoperability and usability. Our Web Service was designed to transform information (position and ele-
vation) and to bring a visualization support to a DEVS based ASD model. A visualization support is a
mobile application for tablet. It allows, from a geographical positions, draw a shape describing the safety
distance to be respected (ASD). GUI and the ASD model will continue to evolve. The application is in the
process of testing and validation since July 2013. Firefighters want to change some features, such as pre-
define vegetation types (characterization). The application can evolve into a dimensioning tool. For ex-
ample, it could be used to estimate the ASD of a building. To do this, it must change the ASD model to
take into account the building materials resistance to the radiative flux.

In terms of DEVS formalism, we offer nothing really new. There have been a lot of works to trans-
form a DEVS model in Web Service. We based our architecture on this works. By cons, we propose a
new application of the formalism to model physical systems. This new application allows us to demon-
strate the possibility to consider DEVS formalism as a simulation tool and also a calculation tool. Based
on these initial results, we can draw a first conclusion. For nearly forty years, the DEVS formalism has
evolved. The community extended to the new application domain, it has been associated with many other
formalisms: cellular automata (Muzy et al. 2002), fuzzy logic (Bisgambiglia, Filippi, and Gentili 2006),

226

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

multi-agent system (Quesnel, Duboz, and Ramat 2009), etc. It is now regularly described as multi-
formalism. Beyond these advances and, from our results, we think that DEVS can be used as scientific
computing tool, just like proprietary solutions. Our results are identical, obtained in equivalent time, if not
better. It remains to improve the intuitive software interface, this ease of use, but much work is already
well advanced in the field. Although are still gaps compared to proprietary tools, expansion capacity is
definitively an advantage. In our case, it will allow us to go further, by deploying our application as a
Web Service.

This preliminary work is to be included in a more general approach to provide a set of tools for deci-
sion support for the fight against forest fires. Each of these tools meets a specific problem and is based on
a Web Service architecture or web application, like Fore Fire for the simulation of forest fire spread
(Nader, Filippi, and Bisgambiglia 2011). For example, we believe precompute the ASD to provide faster
service. Modify the model, taking into account the type of material and its resistance to radiation, to re-
turn the ASD for a structure such as a building, a fire truck, etc. We also can improve the model results by
refining the input data.

ACKNOWLEDGMENTS

The present work was supported in part by the French Ministry of Research, the Corsican Region and the
CNRS.

REFERENCES

Balbi, J.-H., J.-L. Rossi, T. Marcelli, and F.-J. Chatelon. 2010. “Physical Modeling of Surface Fire Under
Nonparallel Wind and Slope Conditions.” Combustion Science and Technology 182: 922-939.

Bisgambiglia, P.-A., J.B. Filippi, and E. de Gentili. 2006. “A Fuzzy Approach of Modeling Evolutionary
Interfaces Systems.” In Proceedings of the ISEIM 2006, 98-103. Corte, France: Institute of Electrical

and Electronics Engineers, Inc.

Google Elevation APIL 2013. “Google Maps API v3.” Last updated June 6, 2013.
https://developers.google.com/maps/documentation/elevation/.

Google Encoded Polyline. 2012. “Google Encoded Polyline.” Last updated mars 15, 2012.
https://developers.google.com/maps/documentation/utilities/polylinealgorithm.

Harzallah, Y., V. Michel, Q. Liu, and G. Wainer. 2008. “Distributed Simulation and Web Map Mash-Up
for Forest Fire Spread.” In Proceedings of IEEE Congress on Services 2008, 176-183. Honolulu, HI:

Institute of Electrical and Electronics Engineers, Inc.
MapQuest Open Elevation. 2012. “The MapQuest Platform.”
http://developer.mapquest.com/web/products/open/elevation-service.

Morandini, F., P.A. Santoni, and J.H. Balbi. 2001. “The Contribution of Radiant Heat Transfert to Labor-
atoryscale Fire Spread under the Influences of Wind and Slope.” Fire Safety Journal 36: 519-543.
Mugzy, A., E. Innocenti, A. Aiello, J.-F. Santucci, and G. Wainer. 2002. “Cell-DEVS Quantization Tech-

niques in a Fire Spreading Application.” In Proceedings of the 2002 Winter Simulation Conference,
542-549. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.
Nader, B., J.-B. Filippi, and P. -A Bisgambiglia. 2011. “An Experimental Frame for the Simulation of

Forest Fire Spread.” In Proceedings of the 2011 Winter Simulation Conference, 1010-1022. Pisca-
taway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

227

Bisgambiglia, Franceschini, Chatelon, Rossi, and Bisgambiglia

Quesnel, G., R. Duboz, and E. Ramat. 2009. “The Virtual Laboratory Environment — An Operational
Framework for Multi-modelling, Simulation and Analysis of Complex Dynamical Systems.” Simula-
tion Modelling Practice and Theory 17: 641-653.

Rossi, J.L., A. Simeoni, B. Moretti, and V. Leroy-Cancellieri. 2011. “An Analytical Model Based on Ra-
diative Heating for the Determination of Safety Distances for Wildland Fires.” Fire Safety Journal
46: 520-527.

Vangheluwe, H. 2001. “Multi-Formalism Modelling and Simulation.” Technical Report, School of Com-
puter Science, McGill University, Canada.

Wainer, G., R. Madhoun, and K. Al-Zoubi. 2008. “Distributed Simulation of DEVS and Cell-DEVS
Models in CD++ Using Web-Services.” Simulation Modelling Practice and Theory 16: 1266-1292.

Wunderground. “Wunderground.” http://www.wunderground.com/weather/api.

Zacharewicz, G., M. El-Amine Hamri, C. S. Frydman, and N. Giambiasi. 2010. “A Generalized Discrete
Event System (G-DEVS) Flattened Simulation Structure: Application to High-Level Architecture
(HLA) Compliant Simulation of Workflow.” Simulation 86: 181-197.

Zarate, L., J. Arnaldos, and J. Casal. 2008. “Establishing Safety Distances for Wildland Fires.” Fire Safe-

ty Journal 43: 565-575.

Zeigler, B. P. 2003. “DEVS Today - Recent Advances in Discrete Event-Based Information Technology.”
In Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simula-
tion of Computer Telecommunications Systems, 148 - 161. Orlando, FL.

Zeigler, B. P., H. Prachofer, and T. Gon Kim. 2000. Theory of Modeling and Simulation, 2nd ed. Aca-
demic Press, Inc.

AUTHOR BIOGRAPHIES

PAUL-ANTOINE BISGAMBIGLIA is an Associate Professor at the University of Corsica. His re-
search interests include complex systems, fuzzy systems, multi agent systems, discrete systems (DEVS)
and simulation. His email and web addresses are bisgambiglia@univ-corse.fr and http://paul-antoine-
bisgambiglia.univ-corse.fi/, respectively.

ROMAIN FRANCESCHINI is a master student at the University of Corsica. Currently, he is internship
in the computer lab to prepare a thesis. His email address is r.franceschini@univ-corse.fr.

FRANCOIS-JOSEPH CHATELON is an Associate Professor in applied mathematics at the University
of Corsica. His research interests deal with forest fire physical modeling. His email address is
chatelon@univ-corse.ft.

JEAN-LOUIS ROSSI is an Associate Professor at the University of Corsica. His research interests in-
clude forest fire modeling and heat transfer. His email address is rossi@univ-corse.ft.

PAUL ANTOINE BISGAMBIGLIA is full Professor at the University of Corsica. His research activi-
ties concern the techniques of modeling and simulation of complex systems and the test of systems de-
scribed at high level of abstraction. Email: bisgambi@univ-corse.fr.

228

