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ABSTRACT

Splitting is a technique that can be used to improve the efficiency in simulating rare events. The basic idea
is to create separate copies (splits) of the simulation whenever it gets close to the rare event. To implement
splitting, several decisions must be made – for example, choosing a level function, choosing the number
of simulation runs for each level, etc. This paper analyzes the sensitivity of the variance of the rare-event
estimator to several parameters used within the splitting framework. We specifically consider a two-level
fixed-effort variation of splitting for which analytic results can be derived. Results are applied to a simple
model of cascading blackouts. The results illustrate that a good choice for the locations of levels may be
more important than a good choice for the importance function for these types of problems.

1 INTRODUCTION

Estimating rare-event probabilities using standard Monte-Carlo simulation can be intractable due to the
huge number of replications needed to obtain reasonable confidence intervals. Splitting is a technique that
can be used to reduce the variance in such problems (e.g., L’Ecuyer et al. 2009). The basic idea of splitting
is to interrupt the simulation whenever it gets “close” to the rare event and then to split the simulation into
multiple independent replications. In this way, more computer effort is spent on runs that are more likely
to hit the rare event. To implement splitting, the analyst must generally make several decisions, such as:
(a) What variant of splitting should be used (e.g., fixed-effort, fixed splitting, etc.)? (b) How many levels
should be used? (c) Where should the levels be located? (d) How many simulation replications should
be allocated to each level? (e) What importance function should be used? The importance function maps
the state of the system, which is typically multi-dimensional, to a single real value, denoting a measure
of proximity to the rare event. The choice of the importance function is generally regarded as the most
important decision to be made when implementing splitting (e.g., L’Ecuyer et al. 2009).

In this paper, we analyze the sensitivity of the estimator variance to several of the parameters used within
a splitting framework. We specifically consider a two-level fixed-effort variation of splitting. With only
two levels, it is possible to determine a relatively simple analytic formula for the variance of the rare-event
estimator, which we can then apply to several test problems to yield an analytic comparison of results. We
compare the relative impact of the following parameters – the locations of the single intermediate level,
the number of replications per level, and the choice of the importance function. That is, with respect to
the five previous questions, we fix the answer to questions (a) and (b), and then investigate the sensitivity
of the estimator variance to questions (c), (d), and (e).

We consider test problems in the application domain of power-grid blackouts. In these test cases,
we observe that the choice of the importance function does not seem to be as important as the choice
of the intermediate level. A similar observation was made in more complex simulations of power grids
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(Shortle 2013). In such problems, the system tends to move in small “jumps” as several power lines may
simultaneously fail in each iteration of the model. Thus, no matter where one draws the contours of the
importance function in the state space, the system may “jump over” a given contour in one step, rather than
landing exactly on the contour. This makes it difficult to define an importance function with the desired
property that the probability of reaching the next level does not depend on the starting state from that level.

2 PRELIMINARIES AND NOTATION

This section describes the splitting methodology and notation used in this paper. For an introduction and
overview of splitting, see L’Ecuyer, Demers, and Tuffin (2006), L’Ecuyer et al. (2009) and Shortle and
L’Ecuyer (2011).

Let X ≡ {Xt , t ≥ 0} be a Markov process (possibly multi-dimensional) with state space χ . Let
h(·) : χ → R+ be a map of the state space to the “level” of the process. The rare-event set is defined as a
set of states that are at or above some particular level l – that is, R ≡ {x ∈ χ : h(x)≥ l}. The probability
to estimate is γ ≡ Pr{Xt enters R before Xt returns to level 0}. For example, if h(Xt) denotes the total
number of customers in a queueing system at time t, then γ is the probability that – starting from an empty
system – the system reaches some critical threshold of customers before returning to empty. To implement
splitting, define a sequence of m levels l0 ≡ 0 < l1 < · · · < lm ≡ l. Let p j be the probability that h(Xj)
up-crosses l j before returning to 0 given that h(Xj) has up-crossed l j−1 before returning to 0. Figure 1
shows an example with a two-dimensional state space and two levels.Dependence on Entrance States
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• System may be much more likely to reach level 1 through point A than 
through point B, and

• System may be much more likely to reach rare event starting from B than 
from A

Glasserman, P., P. Heidelberger, P. Shahabuddin, T. Zajic.
•1998. A large deviations perspective on the efficiency of multilevel splitting. IEEE Transactions on Automatic Control, 43(12), 1666-1679.
•1999. Multilevel splitting for estimating rare event probabilities. Operations Research, 47(4), 585-600.
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Figure 1: Example level function

This paper considers a variation of splitting called fixed-effort splitting in which the numbers of runs
at each level are pre-selected, but not necessarily equal. This works as follows. Let A0 denote a set of
possible starting states (often there is only one possible starting state). Draw n1 states at random, with
replacement, from the set A0. Start n1 independent runs from these starting points and simulate each of
them until h(Xt) up-crosses l1 or returns to 0. Let Q1 be the number of those runs that up-cross l1 before
returning to 0. Then p̂1 ≡ Q1/n1 is an unbiased estimator of p1. The end states of the Q1 simulations
that up-cross l1 are collected into a set A1, and these states become the starting states for the next stage
of simulation. (A1 may include duplicate copies of the same state, so that |A1|= Q1.) Similarly, draw n2
states at random, with replacement, from the set A1 and conduct n2 independent runs start from these
points until h(Xt) up-crosses l2 or returns to 0. Simulation at the higher stages proceeds in an analogous
manner, though this paper only considers a two level implementation (m = 2). An unbiased estimator for
the rare-event probability is γ̂ ≡ p̂1 p̂2 · · · p̂m.

Let p2(X) be the probability of reaching the rare-event set from state X (before returning to 0). A
key challenge in splitting is that there may be significant differences between p2(X) for different starting
states X in A1. For example, in Figure 1 the system may be much more likely to reach the rare-event set
starting from a1 than from a2 (p2(a1)� p2(a2)). On the other hand, the system may be much more likely
to reach a2 in the first place, compared to a1. Thus, the set A1 would contain many more copies of the
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state a2 than a1. In this case, splitting would tend to emphasize paths that have a relatively low probability
of reaching the rare event. This problem is discussed in Glasserman et al. (1998).

Figure 2 shows a discrete representation of two-level splitting. In this figure, we ignore the detailed
sample paths of Xt and focus on the intermediate states at which the system may up-cross level 1. Suppose
that there are k possible entrance states to level 1. (All test cases in this paper have discrete state spaces; this
representation could otherwise be generalized to a continuous state space.) The probability of up-crossing
level 1 via state i (before h(Xt) = 0) is assumed to be p1qi. Without loss of generality, we assume that
∑

k
i=1 qi = 1. Then the probability of up-crossing level 1 (before h(Xt) = 0) is p1 = ∑

k
i=1 p1qi, consistent

with the notation defined previously. And qi can be interpreted as the conditional probability of up-crossing
level 1 through state i, given that level 1 has been up-crossed. Starting from the intermediate state i, the
probability of reaching the rare-event set (before h(Xt) = 0) is assumed to be p2(1+ ci). Without loss
of generality, assume that ∑

k
i=1 qici = 0. (If ∑

k
i=1 qici = a, relabel the transition probabilities as p′2(1+ c′i)

where p′2 ≡ (1+a)p2 and c′i ≡ (ci−a)/(1+a). Then p′2(1+c′i) = p2(1+ci) and ∑
k
i=1 qic′i = 0.) With this

convention, the probability of reaching the rare-event set, given that level 1 has been up-crossed is:

k

∑
i=1

qi · p2(1+ ci) = p2

(
k

∑
i=1

qi +
k

∑
i=1

qici

)
= p2 + p2

k

∑
i=1

qici = p2,

consistent with the previous definition of p2. Intuitively, ci represents the deviation of the state-based
probability p2(ai) from the overall value p2, which is the aggregate probability of advancing from level 1
to the rare event, starting from an arbitrary state chosen from the entrance distribution to level 1.

(1 )
Rare Event

p2(1+c1)

p2(1+c2)

p2(1+ck)

Level 1

a1

p1q2

a2 ak

p1q1
p1qk

Level 0 Starting state

Figure 2: General case with 2 levels

In an ideal situation, the probability of reaching the rare event is the same starting from any of the k
intermediate states – that is, ci = 0 for all i. It is potentially problematic when, for example, state 1 is the
most likely entrance state to level 1 (q1 ≈ 1), but it is otherwise a dead-end (e.g., c1 =−1 so p2(1+c1) = 0).
The severity of this problem can be quantified by var[p2(S)], where S is a random state drawn from the
entrance distribution to level 1. Using the notation from Figure 2,

var[p2(S)] = E[p2
2(S)]−E2[p2(S)] =

(
k

∑
i=1

qi[p2(1+ ci)]
2

)
− p2

2 = p2
2

(
−1+

k

∑
i=1

qi(1+2ci + c2
i )

)

= p2
2

k

∑
i=1

qic2
i .
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3 OPTIMAL ALLOCATION FOR 2-LEVEL SPLITTING

To obtain analytic results in a simplified setting, a common assumption in the literature (e.g., Villén-
Altamirano and Villén-Altamirano 1994, Garvels and Kroese 1998, Garvels 2000, p. 19, L’Ecuyer, Demers,
and Tuffin 2006, Shortle et al. 2012) is the following:
Assumption 1 The success probability of a stage- j run is independent of the starting state in A j−1.

Under the notation from the previous section, this assumption means that ci = 0 for all i and var[p2(S)] = 0.
Under this assumption, in a fixed-effort splitting scheme, the number of hits to level j is a binomial random
variable with parameters n j and p j. Further, p̂i and p̂ j (i 6= j) are independent. It is straightforward to
derive the variance of γ̂:

var[γ̂] = E[p̂2
1 · · · p̂2

m]−E2[p̂1 · · · p̂m] =

(
p2

1 +
p1(1− p1)

n1

)
· · ·
(

p2
m +

pm(1− pm)

nm

)
− p2

1 · · · p2
m.

In the two-level case, this reduces to:

var[γ̂] = γ
2
[

1− p1

n1 p1
+

1− p2

n2 p2
+

(1− p1)(1− p2)

n1n2 p1 p2

]
. (1)

For problems in which the state space is multi-dimensional, Assumption 1 does not typically apply
(e.g., Figure 1). In such cases, it is generally hard to derive an explicit expression for var[γ̂]. One special
case for which analytical results exist is the two-level case (m = 2). Garvels and Kroese (1998) gave the
variance of p̂2 conditional on the number of hits Q1 to level 1. From this, it is relatively straightforward
to derive the overall variance of γ̂ = p̂1 p̂2 (proof in Appendix).
Lemma 1 (Garvels and Kroese 1998)

var[p̂2|Q1] =
1
n2

(
p2− p2

2 +
n2−1

Q1
var[p2(S)]

)
. (2)

Theorem 1 In two-level fixed-effort splitting,

var[γ̂] = γ
2
[

1− p1

n1 p1
+

1− p2

n2 p2
+

(1− p1)(1− p2)

n1n2 p1 p2
+

(1−1/n2)var[p2(S)]/p2
2

n1 p1

]
. (3)

Alternatively, using the discrete formulation in Figure 2, equation (3) can be written as:

var[γ̂] = γ
2
[

1− p1

n1 p1
+

1− p2

n2 p2
+

(1− p1)(1− p2)

n1n2 p1 p2
+

(1−1/n2)∑
k
i=1 qic2

i

n1 p1

]
. (4)

From these theorems, it is possible to derive the optimal allocations of runs (n1 and n2) that minimizes
var[γ̂] subject to a fixed total number of runs n1 +n2 = T .
Theorem 2 (Garvels and Kroese 1998) Under Assumption 1, the optimal allocation of runs to each level
approximately satisfies (when n1,n2, . . . ,nm are large):

n1

√
p1

1− p1
= n2

√
p2

1− p2
= · · ·= nm

√
pm

1− pm
. (5)

Shortle et al. (2012) gave an extension to this result in the non-asymptotic case (i.e., without requiring
that each ni be large). The analogous result when Assumption 1 is relaxed, for a two-level problem, is:
Theorem 3 In two-level fixed-effort splitting (without Assumption 1), the optimal allocation of runs to
each level approximately satisfies (when n1 and n2 are large):

n1

√ p1

1− p1 +∑
k
i=1 qic2

i
= n2

√
p2

1− p2
. (6)
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The derivation of Theorem 3 is analogous to the derivation of Theorem 2. Specifically, one can compare
the forms of (1) and (3) and ignore terms with n1n2 in the denominator. As in Theorem 2, we do not attempt
to define what “approximately” means or what “n1 and n2 are large” means. Intuitively, the correction
term var[p2(S)]/p2

2 = ∑
k
i=1 qic2

i in (6) increases the relative allocation of level-1 runs n1 compared to the
allocation rule in (5). In other words, as the system deviates from Assumption 1, more runs must be
conducted in the first stage to ensure that a good sample distribution is obtained for starting states in the
second stage.

While (6) is a theoretically better allocation rule than (5), it is practically much more difficult to
implement. This is because (6) requires obtaining estimates for qi and ci for each value of i. Equation (5)
only requires obtaining estimates for two parameters, p1 and p2. Thus, the required warmup period may be
very long for (6). Nevertheless, we can still evaluate the theoretical benefit of (6) on analytic test problems
to understand the potential benefit that could be achieved with perfect information.

4 CASCADING BLACKOUTS

Splitting has been applied to cascading blackout models in several recent papers (Kim, Bucklew, and Dobson
2013, Shortle 2013, Wang et al. 2011). This section applies the theory of splitting from the previous
section to a simple test problem given in Shortle (2013). The test problem can be solved analytically. A
similar type of analytical blackout model was given in Dobson, Carreras, and Newman (2005).

Consider a power network with N lines. The total load (power demand) on the network is L. This
load is evenly distributed among the N lines. Initially, each line has a carried load of L/N. The capacity
of each line is individually set according to a fixed but random value with cumulative distribution function
F , conditional on the capacity being at least L/N. The stochastic nature of capacity is meant to model
variations in weather and other factors (such as vegetation growth) that impact line capacity. The system
begins with the failure of one line. When a line fails, the total load on the network is evenly distributed
among the remaining working lines. (In general, this assumption is unrealistic. One network topology for
which this assumption holds is a network of two buses connected by N identical lines in parallel. When a
line fails, the total load between the buses is evenly divided among the remaining working lines. However,
for general network topologies, the redistribution of flows depends on which line failed, which lines are
currently working, the laws of physics and so forth. These more complex models were also considered in
Shortle (2013) for a variety of network topologies including a grid network, a mesh network, and a small
real network.) If the resulting load on any working line exceeds its capacity, the line fails. At each step, it
is possible for multiple lines to fail simultaneously. The process continues until there is an iteration with
no new line failures. The objective is to find the probability that a blackout, starting with the failure of
one line, results in the failure of all N lines.

If F is an exponential distribution, the model can be solved analytically as a continuous-time Markov
chain. If F is non-exponential, the model can be solved numerically via a set of iterative equations (Shortle
2013). The model is relatively easy to solve because the topological properties of the network are not
modeled – every line has the same structural role in the model as every other. The state of the system
can be specified by two parameters (m,n), where n is the present number of failed lines and m≤ n is the
previous number of failed lines in the previous iteration. Under this formulation, it is possible to calculate:
(a) the probability that the system ever reaches state (m,n) and (b) the probability that the system reaches
the rare-event set starting from (m,n) (Shortle 2013).

Figure 3 shows two candidate definitions for the level function h(m,n). The obvious choice is to let
h(m,n) = n, the number of presently failed lines (left figure). We call this the “flat” level function. The rare-
event set is R ≡ {(m,n) : h(m,n)≥ N}. An alternate choice is suggested by Garvels, Kroese, and VanOm-
meren (2002). They state that the level function should be chosen so that the probability of reaching the next
level does not depend on the starting state within the current stage. This suggests the following level function,
which we call the “modified” level function: h(m,n) = Pr{system reaches rare event from state (m,n)}.
The right figure shows sample contours of this level function (for an example with N = 100, L = 100, and
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F is an exponential distribution with a mean of about 3.034; the rare-event probability is about γ ≈ 10−10).
The contours of this function are curved because the system is more likely to reach the rare-event set from
(m,n) than from (m+a,n) where a > 0. This is because the first state represents n−m line failures in the
most recent iteration of the model, while the second state represents n−m− a < n−m line failures. A
larger number of line failures in one step corresponds to a greater increase in load on the remaining lines
(even though the total load is the same in the two cases), resulting in a larger marginal failure rate of the
working lines.

“Optimal” Level Function
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Figure 3: Two level functions for power model (from Shortle (2013)).

Figure 4 shows sample evaluations of the work-normalized variance (n1 +n2)var[γ̂] using (3). In this
example, N = 30, L = 10, and F is an exponential distribution with a mean of 1. The resulting rare-event
probability is about 5×10−5. The left figure shows the impact of using the two different level functions.
The right figure shows the impact of using two different run-allocation schemes – equal allocation (n1 = n2)
and the allocation rule in (5) based on Assumption 1. (Assumption 1 does not hold for this problem. Thus,
the allocation rule is not technically optimal. However, the rule can still be applied.) The x-axis shows the
location of level 1, ranging from 2 to 29. (The system starts with one failed component, so the first level
must be at least 2; there are 30 lines, so the first level can be no more than 29.) Several observations are
made from this figure:

1. The optimal location of l1 is around 5. This is the “midway” point in the sense that p1 ≈ p2. That
is, the system is (roughly) equally likely to go from 1 failed line to 5 failed lines as it is to go from
5 failed lines to 30 failed lines. The first few lines are relatively unlikely to fail, but as more lines
fail, there are fewer lines to carry the fixed load L, so the failure probabilities of individual lines
increase as the blackout progresses.

2. If the level location is chosen appropriately (l1 ≈ 5), there is no benefit in using the optimal
allocation scheme (right figure). This is because the optimal allocation scheme of (5) reduces to
the equal-allocation scheme when p1 = p2. On the other hand, if a poor choice is made for l1, then
the optimal allocation provides a good benefit. This includes a choice of l1 = 15, which might be
considered “reasonable” in the sense that it is halfway between 0 and 30. Thus, in this example,
the optimal allocation provides somewhat of a mitigation against a poor choice for l1.

3. The modified level function provides some benefit (left figure), particularly for intermediate locations
of l1. Little benefit is achieved near the end points, including near the optimal choice for l1 around 5.

Figure 5 shows combined results for six different splitting schemes, including the results from Figure 4
in one graph. These results include two different level functions (flat levels and modified levels) and three
different run allocation schemes: (a) Equal allocation (n1 = n2), (b) optimal allocation based on (5) with
Assumption 1, and (c) optimal allocation based on (6) without Assumption 1. The y-axis is shown on
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Figure 4: Impact of splitting parameters on work-normalized variance, N = 30, L = 10

a log-scale in this figure. The differences between the allocations in (5) and (6) are small and hard to
see visually from the figure. Overall, the figure shows that, in this example, the most important decision
to get right is to put l1 near 5. A good level function is helpful as is a good allocation scheme, but the
benefit is dominated by the choice of l1. The likely reason for this outcome is that the system can move
in jumps, rather than in single steps. That is, it is possible for more than one line to fail simultaneously in
each iteration of the model. Thus, it is impossible to create a level function following the rule in Garvels,
Kroese, and VanOmmeren (2002) which states that the probability of reaching the rare-event set from every
possible entrance state to level 1 should be the same. No matter where the contour of the level function is
drawn, it is possible for the system to “jump over” the contour as well as to hit it exactly, meaning that the
probabilities cannot all be the same for all possible entrance states. This may work to reduce the benefit
of choosing a good importance function.

1.E‐04 Equal allocation

Optimal allocation
( / A ti 1)

Flat level
functionˆvar[ ]γ × (w/ Assumption 1)

Modified

1 2

var[ ]
( )n n

γ ×
+

1.E‐05
Modified

level function

1.E‐06
0 5 10 15 20 25 30

Location of intermediate level l11

Figure 5: Impact of splitting parameters on work-normalized variance, N = 30, L = 10

Figure 6 shows results for a problem with N = 60 and L = 15 (as before, F is an exponential distribution
with a mean of 1). The rare-event probability is about 7×10−11. This is a larger network than before with a
lower rare-event probability. Qualitatively, Figures 5 and 6 show similar results. Again, the modified level
function is helpful in reducing the variance as is a good allocation scheme, but the benefit is dominated
by the choice of l1. The differences between the allocations in (5) and (6) are again small, though slightly
more discernable in this figure.
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Figure 6: Impact of splitting parameters on work-normalized variance, N = 60, L = 15.

5 CONCLUSIONS

This paper analyzed the sensitivity of the variance of a rare-event estimator to several parameters used within
a splitting framework on a simple model of cascading blackouts. Specifically, we compared the relative
impact of the following parameters – the locations of an intermediate level, the number of replications
per level, and the choice of the importance function. The results illustrate that a good choice for the
locations of levels may be more important than a good choice for the importance function for these types of
problems. A key reason may be that the system can move in small jumps rather than in single steps. Thus
it is impossible to construct an “optimal” level function in a manner suggested in Garvels, Kroese, and
VanOmmeren (2002). These types of results, of course, may be specific to the model and test cases given
in this paper. Nevertheless, the results are consistent with experimental results applying splitting to more
complicated blackout models that incorporate network topologies and the physics of power flows (Shortle
2013). In those experiments, the locations of the levels also seemed to be critical in reducing the variance
of the estimator. In other types of test problems (e.g., the tandem queue in Glasserman et al. 1998), the
choice of the level function is expected to have the largest impact.

ACKNOWLEDGMENTS

This material is based upon work supported by the Department of Energy under Award Number DE-
SC0002223. This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

752



Shortle and Chen

A APPENDIX

Proof of Theorem 1: Condition on the number of hits Q1 to level 1:

var[p̂1 p̂2] = E[var[p̂1 p̂2|Q1]]+var[E[p̂1 p̂2|Q1]]

= E
[

Q2
1

n2
1

var[p̂2|Q1]

]
+var

[
Q1

n1
E[p̂2|Q1]

]
= E

[
Q2

1

n2
1

1
n2

(
p2− p2

2 +
n2−1

Q1
var[p2(S)]

)]
+var

[
Q1

n1
p2

]
=

E[Q2
1](p2− p2

2)+E[Q1](n2−1)var[p2(S)]
n2

1n2
+

p2
2var[Q1]

n2
1

=
[n1 p1(1− p1)+n2

1 p2
1](p2− p2

2)+n1 p1(n2−1)var[p2(S)]
n2

1n2
+

p2
2n1 p1(1− p1)

n2
1

= p2
1 p2

2

[
(1− p1 +n1)(1− p2)

n1n2 p1 p2
+

(n2−1)var[p2(S)]
n1n2 p1 p2

2
+

1− p1

n1 p1

]
= γ

2
[

1− p1

n1 p1
+

1− p2

n2 p2
+

(1− p1)(1− p2)

n1n2 p1 p2
+

(1−1/n2)var[p2(S)]/p2
2

n1n2 p1

]
.

The third equality uses Lemma 1 and the fact that E[p̂2|Q1] = p2. The fifth equality uses the fact that Q1
is a binomial random variable.

REFERENCES

Dobson, I., B. Carreras, and D. Newman. 2005. “A loading-dependent model of probabilistic cascading
failure”. Probability in the Engineering and Informational Sciences 19 (1): 15–32.

Garvels, M. 2000. The splitting method in rare event simulation. Ph. D. thesis, University of Twente, The
Netherlands.

Garvels, M., and D. Kroese. 1998. “A comparison of RESTART implementations”. In Proceedings of the
1998 Winter Simulation Conference, 601–608. Piscataway, NJ: IEEE.

Garvels, M., D. Kroese, and J. VanOmmeren. 2002. “On the importance function in splitting simulation”.
European Transactions on Telecommunications 13 (4): 363–371.

Glasserman, P., P. Heidelberger, P. Shahabuddin, and T. Zajic. 1998. “A large deviations perspective on the
efficiency of multilevel splitting”. IEEE Transactions on Automatic Control 43 (12): 1666–1679.

Kim, J., J. A. Bucklew, and I. Dobson. 2013. “Splitting method for speedy simulation of cascading
blackouts”. IEEE Transactions on Power Systems. To appear.

L’Ecuyer, P., V. Demers, and B. Tuffin. 2006. “Splitting for rare-event simulation”. In Proceedings of 2006
Winter Simulation Conference, edited by L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M.
Nicol, and R. M. Fujimoto, 137–148. Piscataway, NJ: IEEE.

L’Ecuyer, P., F. L. Gland, P. Lezaud, and B. Tuffin. 2009. “Splitting techniques”. In Rare Event Simulation
using Monte Carlo Methods, edited by G. Rubino and B. Tuffin, 39–62. Chichester, U.K.: Wiley.

Shortle, J. 2013. “Efficient simulation of blackout probabilities using splitting”. Electrical Power and Energy
Systems 44 (1): 743–751.

Shortle, J., C. H. Chen, B. Crain, A. Brodsky, and D. Brod. 2012. “Optimal splitting for rare-event
simulation”. IIE Transactions 44 (5): 352–367.

Shortle, J., and P. L’Ecuyer. 2011. “Introduction to rare-event simulation”. In Wiley Encyclopedia of
Operations Research and Management Science, edited by J. Cochran.

Villén-Altamirano, M., and J. Villén-Altamirano. 1994. “RESTART: A straightforward method for fast
simulation of rare events”. In Proceedings of the 1994 Winter Simulation Conference, edited by J. D.
Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila, 282–289. Piscataway, NJ: IEEE.

753



Shortle and Chen

Wang, S.-P., A. Chen, C.-W. Liu, C.-H. Chen, and J. F. Shortle. 2011. “Rare-event splitting simulation for
analysis of power system blackouts”. In Proceedings of the IEEE Power and Energy Society General
Meeting. Paper 678.

AUTHOR BIOGRAPHIES

JOHN F. SHORTLE is an Associate Professor of Systems Engineering and Operations Research at George
Mason University. His research interests include simulation and queueing applications in air transportation,
telecommunications, and energy. Previously, he worked at US WEST Advanced Technologies. He received
his doctorate degree in industrial engineering and operations research from UC Berkeley. His email address
is jshortle@gmu.edu.

CHUN-HUNG CHEN is a Professor of Systems Engineering and Operations Research at George Mason
University. Dr. Chen has led research projects in stochastic simulation and optimization, systems design
under uncertainty, and air traffic management, which are sponsored by NSF, FAA, and NASA. He served as
Co-Editor of the Proceedings of the 2002 Winter Simulation Conference and Program Co-Chair for 2007
INFORMS Simulation Society Workshop. He is serving on the editorial boards of IEEE Transactions on
Automatic Control, IIE Transactions, Journal of Simulation Modeling Practice and Theory, and International
Journal of Simulation and Process Modeling. He received his Ph.D. degree from Harvard University in
1994. His email address is cchen9@gmu.edu.

754


