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ABSTRACT

We explore the adaptation of a ranking and selection procedure, originally designed for a sequential
computer, to a high-performance (parallel) computing setting. We pay particular attention to screening and
explaining why care is required in implementing screening in parallel settings. We develop an algorithm
that allows screening at both the master and worker levels, and that apportions work to processors in such
a way that excessive communication is avoided. In doing so we rely on a random number generator with
many streams and substreams.

1. INTRODUCTION

Parallel computing environments are increasingly ubiquitous. Desktop or laptop computers with multi-core
processors, local-area networks of stand-alone computers, cloud-computing environments with potentially
enormous numbers of processors, and high-performance computing are becoming readily available to
researchers and practitioners alike. As these environments become increasingly ubiquitous, so increases
the need for stochastic simulation methodologies that can exploit these computing architectures.

There are two main research areas related to exploiting parallel computing in simulation. The first, and
perhaps most well-known, is parallel and distributed simulation, where many processors are harnessed to
simulate a single system. This work has a large and well-developed history of both theory and implementation
(Fujimoto 2000). The second is for systems that can be simulated by one processor in a modest amount of
time, and hence parallel independent replications are generated to estimate the desired performance metric.
The method of parallel independent replications was most notably explored in Heidelberger (1988) and
Glynn and Heidelberger (1991). In particular, these papers consider bias properties of different estimators
for the expected value of a random variable where replications are obtained through parallel independent
simulation replications across a set of processors.

Our interest lies in exploiting parallel architecture for simulation optimization (SO) algorithms, which
seek to maximize a function that can only be observed with error through a stochastic simulation. The
vast majority of SO algorithms developed to date are designed specifically for serial processing. Some
commercial simulation products already exploit multicore capabilities, but to the best of our knowledge,
there are no generally available guiding principles for designing SO algorithms for parallel environments.
Since there are many versions of SO algorithms (depending on the properties of the search space) and
many versions of parallel computing platforms (depending on the computer architecture), we investigate
the complexities associated with the seemingly simplest of both: unconstrained SO algorithms on finite
sets, assuming no topology, in high performance computing (HPC) environments.

Within the literature on unconstrained SO algorithms on finite sets, we focus specifically on developing
efficient parallel versions of ranking and selection (R&S) algorithms for problems with up to several
thousand systems where every system is simulated to some degree. Upon termination, R&S algorithms
report a system as the estimated “best” among the contenders, together with a statistical guarantee that
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the reported system is, indeed, best. We limit ourselves to R&S algorithms, rather than to general SO
algorithms (that focus on search and do not provide any kind of statistical guarantees on the quality of
a reported solution) because the interplay of the desire for statistical guarantees along with the desire for
computational efficiency creates interesting algorithmic tension and challenges.

We develop parallel R&S algorithms in the context of HPC environments, which can include thousands
of cores. The HPC environment differs from other, less-reliable parallel architectures in that cores rarely
fail, communication is fast and relatively straightforward, and memory is not typically shared between cores.
These features mean that HPC environments are perhaps the most straightforward of parallel environments
in which to explore stochastic simulation optimization. Further, while HPC environments may be less-
available to the general public than cloud computing environments such as Amazon, our work is supported
by the Extreme Science and Engineering Discovery Environment (XSEDE), an NSF-funded infrastructure
for high-performance computing available to researchers worldwide. Thus access to an HPC environment
is a plausible reality for many researchers.

The reliability of the HPC environment also enables us to develop a relatively simple structure for our
parallel algorithms, in which one core is dedicated as the “master” and all other cores are “workers.” The
master assigns tasks to the workers, which the workers complete in parallel. The master also operates as a
coordinator for the workers, so that each worker only communicates with the master and not with the other
workers. To be available to process tasks from the workers, the master does not perform any simulation
replications. In other less-reliable computing environments, this structure may not be desirable since cores
— in particular, the master — may fail. However in the HPC environment, this simple structure is stable.
We adopt a master-worker framework for the algorithms we develop.

Our study has similarities with Luo and Hong (2011), and indeed, that paper helped to motivate our
work. Both studies involve the implementation of ranking and selection algorithms in parallel computing
environments, and both employ sequential screening methods. An important difference is that we are
working in a high-performance environment that affords the advantages mentioned above, whereas Luo and
Hong (2011) employed a local-area network. Algorithmically, the two most important differences between
their work and ours are that

1. we explore screening at both the master and worker levels, implementing screening at only the
worker level, whereas they limited screening to the master level, and

2. our algorithm reduces the communication requirements and balances workload between the workers
through an initial “Stage 0” of sampling.

Several authors have discussed parallel computing in stochastic simulation. Early work includes
Heidelberger (1988), Glynn and Heidelberger (1990), Glynn and Heidelberger (1991), and those papers
contain additional references. More recently, the survey paper Fu (2002) briefly mentions the potential of
parallel computing for simulation optimization.

Our primary contribution is a careful exploration of the implications of random completion times for
simulation replications within ranking and selection. In this setting, algorithms must be carefully designed
to ensure statistical validity, and we discuss this issue in depth.

To fix ideas, we want to maximize E[ f (i;ξ )] over i ∈ S, where S is a finite set of “systems,” indexed
i = 1, . . . , |S|, ξ represents a random vector, and E[ f (i;ξ )] is estimated by a sample mean. (One can think
of ξ as the the set of uniform random variables used to drive a simulation replication, so its distribution
need not depend on i.) Our goal is to implement an algorithm that delivers a certain probability of correct
selection efficiently. By “efficiently” we mean that it achieves a large value of speedup (ratio of expected
wall-clock running time on a single core to the expected wall-clock running time on multiple cores).

In our computing environment, we pay for cores in blocks of 12. For example, if we employ 13 cores
in a calculation, we actually pay for 24 cores. Thus, within each block we would select the number of
cores to minimize wall-clock completion time. We view this discretized cost structure as a secondary issue,
and instead attempt to minimize wall-clock completion time.
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2. PRELIMINARIES

As noted earlier, a wide variety of parallel computing architectures exist.
Assumption 1 We assume the following about the computing architecture:

(1) a fixed number |C| of cores are always available and do not “fail” or suddenly become unavailable;
(2) one core is designated the “master” and the others are “workers;”
(3) the workers are identical;
(4) the cores are capable of periodic communication;
(5) communication between cores is nearly instantaneous;
(6) messages join a queue for processing by the receiving core and are never “lost.”

As is common in R&S literature, for the validity of our screening procedures, we assume that the output
random variables can be produced as iid normally distributed replicates on a serial computing platform. That
is, we are in the “multiple replications” setting and any dependence or non-normality in the output random
variables or their estimators is only a function of the way the random variables are produced or aggregated
in the parallel environment. We allow random simulation replication completion times — completion times
may be the result of inherent properties in the systems under consideration, e.g., it takes longer to simulate
a busy queuing system than a near-empty queuing system. Since the workers are identical, it is reasonable
to expect that the simulation completion times are independent of the core task assignments.

More formally, we denote the output of the kth replication of simulating System i on core j as the
random variable Yi jk, where 1 ≤ i ≤ |S|, 1 ≤ j ≤ |W|, and W is the set of workers. The (random) time
required to run the kth replication of System i on core j is Ti jk. We assume the following.
Assumption 2 If the simulation output data {(Yi jk,Ti jk), j = 1, . . . , |W|,k ≥ 1} were produced on a sin-
gle core, it would be straightforward to obtain iid replicates of (Yi,Ti) for each i ∈ S, where Yi is
marginally normally distributed with finite mean µi and finite variance σ2

i . Further, E[Ti jk] is finite
for all 1≤ i≤ |S|,1≤ j ≤ |W|,k ≥ 1.

3. IMPLICATIONS OF RANDOM COMPLETION TIMES

The first method one may consider when attempting to parallelize an R&S algorithm is to farm out the
replications to the processors, and screen the systems as the replications finish, using naı̈ve estimators
of the means. As it turns out, there are several subtle complications with algorithms constructed in this
fashion. We now discuss these complications in a simplified setting.

3.1 One System, Two Workers

For the moment, suppose that we only wish to obtain n iid replications from a single system, and to share
the simulation task across two workers. Suppose the master instructs the workers to generate replications
and return the results of each replication when complete. The master then uses the first n replications
received as the desired sample, and constructs the sample mean across the n replications as the estimator
of the expected value. This setting is discussed in detail in Heidelberger (1988), Glynn and Heidelberger
(1991), and here we summarize its importance for our R&S setting.

The first n replications received by the master are more likely to have small computation times rather
than large ones, so the values received are not the desired iid sample, even though each worker can itself
generate such samples. To illustrate the bias inherent in this method, we present the following example.
Example 1 Suppose each worker j = 1,2 can independently generate iid replications Yj1,Yj2, . . ., with
associated generation times Tj1,Tj2, . . .. In other words, the sequence of replications completed by Worker j,
Wj = ((Yj1,Tj1),(Yj2,Tj2), . . .), consists of iid pairs for each j = 1,2, and the two sequences W1 and W2
are independent. (We drop the index i associated with systems, since for the moment we only have one
system.) Such realizations may be obtained through the use of a random number generator with many
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streams and substreams, as in L’Ecuyer et al. (2002), using a different stream for each worker, and using
a new substream whenever a new replication is desired.

Suppose that the first replication from Worker 1 has the same distribution as the first replication from
Worker 2, as would arise if we used the same code on identical cores. Let the joint distribution of the first
replication from Worker j, (Yj1,Tj1), be such that Yj1 is (marginally) normal(0,1), and let

Tj1 =

{
1 if Yj1 < 0,
2 if Yj1 ≥ 0,

for j = 1,2. Hence it takes twice as long to generate larger values as smaller values. Let T∗1 be the time
at which the master receives the first replication, or replications in the event of simultaneous arrivals. Due
to the marginal normality of Yj1, j = 1,2, we have

P(Y11 < 0,Y21 < 0)︸ ︷︷ ︸
T∗1=1

= P(Y11 < 0,Y21 ≥ 0)︸ ︷︷ ︸
T∗1=1

= P(Y11 ≥ 0,Y21 < 0)︸ ︷︷ ︸
T∗1=1

= P(Y11 ≥ 0,Y21 ≥ 0)︸ ︷︷ ︸
T∗1=2

= 1/4. (1)

Now consider the expected value of the first replication(s) received by the master. Let N− and N+ be
random variables whose distribution is the same as Yj1 | Yj1 < 0 and Yj1 | Yj1 ≥ 0, respectively, j = 1,2.
In all cases except the last in expression (1), the first replication(s) to report will be N− because they are
computed in only one time unit. Thus, the first communication received at the master is

• two iid replications of N− after 1 time unit with probability 1/4,
• one replication of N− after 1 time unit with probability 1/2, or
• two iid replications of N+ after 2 time units with probability 1/4.

The expected value of the first communication received at the master (where this value is assumed to be
the average of the values of two replications if they are received simultaneously) is therefore

3
4

E(N−)+
1
4

E(N+) =
1
2

E(N−)< 0,

reflecting a negative bias, so that the first replication received is not distributed as Y11. A similar problem
arises if we average the replications that are received after any deterministic amount of time. For example,
if we wait two time units and average the results received, we obtain an average of 1

12 E(N−)< 0.
In the context of R&S, the screening and selection procedures we use rely on obtaining iid sequences

of random variates with the correct distribution. Unfortunately, if results are returned as they complete, as
in the above examples, then we do not obtain the correct distribution as evidenced by the presence of bias.
In other words, the distribution of responses received differs from the desired iid normal sequence, despite
the fact that each worker generates such a sequence.

3.2 Two Systems, Two Workers

The R&S setting we consider faces the complications discussed by Heidelberger (1988), Glynn and
Heidelberger (1991) and outlined in the previous section, as well as complications resulting from simulating
multiple systems on multiple cores and coordinating screening across the cores.

For example, suppose we have two systems and two workers, and we would like to select the “best”
among the two systems. We can allocate the processing effort under one of the following scenarios:

(i) each worker simulates separate systems, for example, Worker 1 only simulates System 1 and
Worker 2 only simulates System 2;

(ii) each worker may simulate more than one system, for example, Worker 1 simulates Systems 1 and 2,
and Worker 2 also simulates Systems 1 and 2.
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In Scenario (i), where each worker creates an iid stream of replicates of a separate system, one must still
take care. In particular, it is not true that the set of replications that have completed by a fixed time are iid
with the correct distribution. Hence, it is not clear that sample means constructed over the random number
of completed replications will have the desired normal distribution upon which much of screening theory
depends. Scenario (ii) is more complex in the sense that when each worker can simulate both systems, the
frequency of required coordination between the workers may increase to ensure that the correct random
number streams are being used and the workers are not duplicating each others’ efforts. Further, care must
still be taken to avoid the bias issues of Section 3.1. In general, screening in the setting of a random number
of completed replications requires great care and perhaps new theory.

We can allocate screening effort in three different ways:

(a) the master performs all screening activities;
(b) the workers receive messages from the master containing information about the simulation of

systems on other workers, and the workers perform all screening;
(c) the master and workers share screening activities.

If the simulation replications complete quickly, each worker communicates each replication as it finishes,
and the master completes all screening activities (Scenario (a)), then the master can be overwhelmed with
messages and the subsequent queuing delays. This issue can slow overall computation time, as noted by
Luo and Hong (2011). Therefore we find it desirable to allow the workers to complete screening tasks in
addition to the master, as in Scenarios (b) and (c). However, in doing so, ensuring that the “distributed”
screenings are valid is nontrivial.

4. CONSIDERATIONS FOR VALID PROCEDURES

We now explore issues specific to a parallel computing environment that should be considered to ensure
that selection procedures are valid, in the sense that they achieve the desired selection guarantee. Selection
procedures typically consist of up to three stages (Kim and Nelson 2006). In Stage 1, a small initial
sample of size n0 is obtained from all systems, which provides an estimate of means and variances for
each system. In Stage 2, systems are screened as the run length increases. In Stage 3, we halt screening,
and choose the best of the systems that survived the screening stage by obtaining a carefully considered
number of replications from each surviving system. As we have already noted, an important ingredient in
all stages is an iid sequence of normally distributed variates from each system. We first explore methods
for constructing such an iid sequence, and then discuss issues related to screening.

4.1 Constructing an iid Sequence

There are two broad types of estimators proposed by Heidelberger (1988): (i) estimators that produce a
fixed number of replications in a random completion time, and (ii) estimators that produce a random number
of replications in a fixed completion time. Heidelberger (1988), Glynn and Heidelberger (1990), Glynn
and Heidelberger (1991) discuss unbiased estimators of each type. Type (ii) estimators appear to be very
difficult to incorporate in our context, because even if the estimators are unbiased, which is not automatically
assured, it is not clear that the replications have the desired distribution. Thus we confine our attention
to Type (i) estimators. Of these, we consider exclusively those that obtain a predetermined, deterministic
number of replications from each worker, thereby avoiding the issues outlined in the previous section. For
example, in the one-system, two-worker example of Section 3.1, we might wait until the master receives n j
replications from Worker j, j = 1,2. This scheme ensures that we take the first n j terms in the iid sequence
((Yj1,Tj1),(Yj2,Tj2), . . .) for each Worker j, so there is no “re-ordering” of the simulation replications by
completion time, and we therefore get the correct distribution. With this strategy, the completion time of
the overall calculation is random, being a maximum over j of the sum of a deterministic number of Tjk
random variables. Type (i) estimators fit well with Stage 1 and Stage 3 of current R&S algorithms, in
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which we require a predetermined number of replications from each system. With this approach the master
may have to leave one worker idle for some time while the other worker completes its task. As we will
see though, it is possible to design algorithms that reduce the need to idle workers, which is important in
fully exploiting the capabilities of parallel computing.

The desired iid sequences of random variables can be constructed through careful use of a random
number generator with many streams and substreams, as we now discuss. We separately explore the
coordination of random number streams in Scenarios (i) and (ii) from Section 3.2, that is, (i) when systems
are dedicated to a single worker, and (ii) when systems may be simulated on more than one worker.

Under Scenario (i) where systems are dedicated to a single worker, the assignment of random number
streams is straightforward. If we wish to simulate systems independently, i.e., not use CRN, then we simply
assign unique streams to systems, and each worker processes replications of the system from the assigned
stream. Further, there is no need to use a separate substream for each successive replication, although
doing so is useful in the extensions discussed below. If, instead, we wish to use CRN in Scenario (i), then
we assign all systems the same stream and initial substream. To improve synchronization, we can use a
new substream, common to all systems, for each successive replication, as discussed in Kelton (2006).
Unbiased estimators can then be constructed from the iid output by waiting for the workers to complete a
predetermined number of replications.

To assist with load balancing, we may wish to split the set of replications of a single system across
multiple workers. Under Scenario (ii), where systems are not dedicated to a single worker, we must proceed
carefully to avoid the issues discussed in Sections 3.1 and 3.2. As in Scenario (i), we propose that each
system is assigned a fixed stream, and each replication of that system is taken from a new substream. We
then assign a set of replications (equivalently, substreams) of a single system to each worker. For a total
desired number of replications n, we ensure that the workers’ sets partition the numbers {1,2, . . . ,n}. After
the replications are complete, the workers communicate both the results and the indices of the substreams
used to the master, which reassembles the sequence of replications in the order of the substream indices.
Example 2 Suppose that we wish to simulate eight replications of System 1, distributed over two workers.
We assign stream 1 to System 1, assign substreams 1, 3, 5 and 7 to Worker 1, and substreams 2, 4, 6,
and 8 to Worker 2, and identify substreams with replications. Then, irrespective of the order in which
complete replications are communicated to the master, as long as the observations are ordered according
to the substream indices, we recover the desired iid random variables. The key requirements are that each
system uses a single stream, and that the substreams used for replications are tracked.

This stream and substream management system is reminiscent of the function of a clothing “zipper”
that meshes corresponding teeth together. We refer to this management system as “zipping” replications.
Definition 1 Suppose that each system is assigned a fixed stream. An n-zip of System i consists of the
replications of System i corresponding to substreams 1,2, . . . ,n. Hence, an n-zip consists of n iid replications
with the desired distribution.

To implement independent sampling, we assign a unique stream to each system. To implement CRN, we
assign the same stream to all systems. In both cases we ensure the substreams are managed using zipping.
When systems are dedicated to a single worker, the replications reported to the master are automatically
“zipped.” As before, unbiased estimators can then be constructed from the iid output by waiting for a
zipped sequence of the desired length.

4.2 Screening

For now, suppose that we use a screening procedure that screens between all surviving systems at each
replication count n, where we use an n-zip from each surviving system, as in, e.g., Kim and Nelson (2001).
In the scenario where systems are dedicated to unique workers, the n-zip is obtained naturally.

The screening procedure can be implemented in a parallel setting as follows. Workers communicate to
the master the results of all replications on all systems they are assigned. The master performs any zipping
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needed for each system, and screens at replication n only when n zipped replications are available from all
surviving systems. The master notifies workers when systems they are simulating are screened. Workers
continue generating replications from systems that they believe have not been screened, passing the results
to the master as each replication finishes, until notified by the master of the identity of screened systems.

If it is required to do all pairwise comparisons of surviving systems after every replication, and each
worker simulates a disjoint subset of the surviving systems, then the master must at least receive all
replications from all surviving systems. This could lead to a heavy communication workload, reducing,
perhaps dramatically, the benefits from a parallel implementation, as noted in Kim and Nelson (2006).
Indeed this difficulty was reported in Luo and Hong (2011). The master can be overwhelmed because
screening can be computationally expensive relative to the effort in simulating systems. To understand why,
consider a problem with |S| alternatives. There are |S|(|S|−1)/2 pairs to consider in the initial screening
step, and this quadratic (in |S|) amount of work is all performed at the master. This issue remains, even if
systems are not dedicated to workers, because we must first zip the system replications before screening.

Hence, we want to avoid performing all pairwise screenings at every step, and to distribute the screening
workload among the workers.
Assumption 3 For simplicity of exposition, we assume for the remainder of the paper that we employ
Scenario (i) where systems are dedicated to workers, so that zipping is automatic. The ideas below extend
naturally to Scenario (ii) where systems are not dedicated to workers, provided that zipping is employed.
Furthermore, we adopt Scenario (b), where workers perform all screening.

4.2.1 Avoiding All Pairwise Screenings

Suppose that each worker performs screening on the surviving systems dedicated to it. The screening
is likely to be more effective if the worker can use estimated-best systems from other workers in its
screening, or for less communication, the estimated-best system seen by the master. Consider the case
where the estimated-best system seen by the master is communicated to all workers. If the identity of the
estimated-best system changes, then the master must communicate all previous replication results of the
new estimated-best system to the workers, so that they can perform all of the screening steps up to the
current replication to ensure validity of the screening. (If screening is performed on a strict subsequence of
replications, it may be sufficient to communicate summary statistics.) This same “catch up” screening was
employed in Pichitlamken, Nelson, and Hong (2006). If all systems dedicated to a worker are screened,
then the worker ceases its activity and idles. Although one could perform work balancing using zipping,
recall that, for simplicity, we have assumed dedicated systems to workers. Eventually at most two workers
will remain simulating, and eventually one system will screen the other, and the algorithm terminates.

Is this implementation a valid screening procedure, given that not all pairwise comparisons are performed?
Many screening procedures exploit the following Bonferroni argument to establish validity. For notational
ease in this section, let the number of systems |S| be denoted by k. The incorrect selection event ICS is
the event that System k, the best system, is eliminated. In a setup in which System i and System k are
simulated until one eliminates the other, let Aik be the event that System i eliminates System k, assuming
that System k is at least δ > 0 better than System i. Then

P(ICS)≤ ∑
k−1
i=1 P(Aik).

To ensure correct selection, the pairwise comparisons are chosen so as to ensure that the sum above lies
below some desired threshold, i.e., that P(Aik) is small for each i = 1,2, . . . ,k−1.

If a selection procedure is based on this argument, then we argue that the above implementation is,
indeed, valid, even though screening is not performed between all pairs of systems. To see why, note that
an incorrect selection event arises only when System k is screened out. Since screening is performed on
all replications between any two systems that are screened against one another, from the perspective of
the two systems, the screening process is statistically identical to a sequential implementation. Therefore
P(Aik) does not change in our parallel implementation.
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4.2.2 Screening on a Subsequence of Replications

Even if we do not perform all pairwise screening steps, screening can still represent a tremendous amount
of computation. We may therefore prefer to screen only on a subsequence of the replications.

We do not consider screening on a random subsequence. Whether such a procedure would be valid is
unclear, because of the random screening times. For example, suppose we compare System k (the truly
best system) with some suboptimal system, say System i. If we only screen at the random times when
the difference between the estimated performance of the two systems is small, then we may never screen
System i out. While this particular choice of random times is artificial, it nevertheless demonstrates that
care is needed to ensure the validity of screening procedures when screening occurs at random times.

Accordingly, we restrict our attention to deterministic subsequences. For example, we want to ensure
validity when we perform screening only every 10th replication from each surviving system. One can
assure validity of such an approach for many screening procedures.

For example, suppose P(Aik) is bounded using the Paulson procedure (Paulson 1964). The Paulson
procedure uses the fact that an incorrect selection arises only when a certain random walk with negative
drift exceeds a fixed positive level at some point, and uses a standard result to bound the probability
of this exceedance occurring in finite time. If we screen on a subsequence of the replications, then an
incorrect selection arises when the random walk, observed on a subsequence of transitions, exceeds the
same positive level. Exceeding the level on a subsequence implies that the level is exceeded in finite time,
so the upper bound on P(Aik) remains valid. In fact, this bound remains valid even if we screen on a
random subsequence. In any case, subsequence screening when the procedure is based on the Bonferroni
argument above together with the Paulson procedure is therefore valid.

A second important example arises when P(Aik) is bounded using the triangular continuation region
proposed by Fabian (1974). Now incorrect selection arises only when a certain random walk with negative
drift exits a triangular region through the upper boundary. Fabian bounds this probability, both in discrete
time, and when the random walk is embedded in a Brownian motion. Several procedures based on Fabian
(1974) also exploit a result (Jennison et al. 1980, Jennison et al. 1982) that extends Fabian’s results to
allow the random walk to be observed only on a broader class of potentially random times. The class of
random times is somewhat restrictive, e.g., stopping times are not allowed.

If the screening procedure used is of the Fabian type, then one can employ the result established in
Jennison, Johnstone, and Turnbull (1980) to ensure the validity of screening on a deterministic subsequence
of replications as desired; see, for example, Hong (2006). This same argument also applies in our setting.

5. THE ALGORITHM

We now turn from exploring design principles to a specific algorithm instance under the auspices of
Scenarios (i) and (b), i.e., systems are dedicated to workers, and screening is performed only by workers.
Our algorithm is a parallelized version of the “unknown-variance” sequential R&S procedure (UVP) in
Section 4 of Hong (2006). See Hong (2006) for a detailed proof of statistical validity of the procedure.

The algorithm includes an initial stage, Stage 0, where we learn about the simulation completion times
of each system, which are subsequently used to try to balance the workload in Stage 1 when n0 replications
are obtained from each system, and which help to determine the subsequence of replications on which we
screen in Stage 2. The algorithm then screens until a single system remains, so there is no Stage 3.

Stage 0 We simulate all systems for a fixed number n00 of replications to obtain an estimate of simulation
completion times. No other statistics from this stage are subsequently used.

Stage 1 Independently of Stage 0, systems are simulated by workers to obtain variance estimates, as
in the Initialization phase of Hong (2006). These replications in Stage 1 are used for an initial
screening, which is done at the worker level.

Stage 2 The workers simulate the remaining systems, send the results of their best system (the one with
the highest sample mean) to the master, receive statistics of the best systems found on other workers,
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and screen. Each worker screens as in the Screening phase of Hong (2006) on a subsequence of
replications, screening among the systems it is assigned to and the best systems from other workers,
until only one system remains across all workers. To help balance the workload, in the beginning
of Stages 0 and 2 we perform a random permutation of systems (in case of long runtimes for some
systems that are indexed closely together), and in Stages 1 and 2 we use the simulation completion
times in Stage 0 to evenly allocate systems to workers.

In each stage, we dedicate each system to a unique worker and systems are simulated independently,
i.e., we do not use CRN. To save on communication effort, we do not report the result of every replication
to the master, but only those replications that correspond with the subsequence on which screening is
performed. This helps avoid undesirable communication congestion when the message buffers (a portion
of the memory dedicated to temporarily store messages being communicated between cores) have limited
size or are expensive to access.

In Figure 1 we demonstrate in greater detail how the master core allocates and distributes systems, how
random number streams are created and distributed together with the assigned systems to ensure independent
sampling, and how simulation results are communicated between cores. For notational simplicity, we assume
that the number of systems |S| is divisible by the number of workers |W|, although in practice we can
freely distribute the few extra systems to workers. We use the following notation for some repeatedly-used
subroutines. Send( j,n) denotes the sub-process “Send configurations for the next system to Worker j;
create a new random number stream and send to Worker j; send run length n to Worker j”. Receive(i,ni)
denotes the sub-process “Receive configurations for System i from the master; receive the random number
stream used for System i; Receive run length for System i, ni”. Collect(info) denotes the sub-process
“Collect info from all workers for all systems, in the order of worker completion”. Simulate(i,n, info)
denotes the sub-process “Simulate System i for n replications and record info”.

6. NUMERICAL EXPERIMENTS

In this section, we apply the master-worker algorithm proposed in Section 5 to a stylized throughput-
maximization problem for which we know the optimal solution. We briefly verify the empirical probability
of correct selection (PCS) before presenting results on the empirical speed-up with different choices of
communication frequency, screening method and number of cores employed.

6.1 Test Problem

We consider a 3-stage flow line problem with an infinite number of jobs in front of the first station and finite
buffer space in front of stations 2 and 3. Job completion times at each station are exponentially distributed.
If the buffer space in front of stations 2 or 3 become full, then a completed job in the previous station is
blocked from proceeding through the line. We control the expected throughput in this problem by changing
the placement of B buffers and allocating R (integer-valued) units of service rates. Then to maximize the
expected throughput, we solve an integer-ordered optimization problem whose decision variables are the
allocation of service rates r ∈ Z3 and the allocation of buffers b ∈ Z2. An analytical solution is found by
modeling each system as a discrete-time Markov chain and computing its steady-state throughput. For
B = R = 20, the number of systems is

(19
1

)
×
(19

2

)
= 3,249. Two systems, namely r = (6;7;7), b = (12;8)

and r = (7;7;6), b = (8;12), have the highest expected throughput of 5.776. In addition, there are four
other systems with expected throughput above 5.766. If the indifference-zone parameter δ is 0.01, a correct
selection should conclude with any of these six systems. A complete problem description can be found in
Pichitlamken, Nelson, and Hong (2006), and sample simulation code in both Matlab and C++ language is
available in Pasupathy and Henderson (2011).
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Master Core Routine
Input: List of systems S; Stage 0 size n00; Approx. Stage 2

batch size n1; Parameters δ ,α,λ ,a,n0 (Hong 2006).
begin Stage 0: Estimating simulation completion time

Randomly permute systems in S;
for each worker j ∈W do

Send no. of sys. to simulate, |S|/|W|, to Worker j;
for i = 1 to |S|/|W| do

Send( j,n00);
end

end
Collect(simulation time for n00 replications);

end
begin Stage 1: Estimating sample variances

for each worker j ∈W do
Determine the no. of sys. to simulate s j such that
the sum of the completion times for the next s j
systems is approx. Ttot/|W|, where Ttot is the total
completion time across all systems from Stage 0;
for i = 1 to s j do

Send( j,n0);
end

end
Collect(sample variance S2

i for all surviving sys. i);
if Screen on the master level then

Screen among the |S| systems;
end

end
begin Stage 2: Screening procedure

S← systems surviving Stage 1 screening;
Randomly permute systems in S;
for each worker j ∈W do

Send no. of sys. to simulate, |S|/|W|, to Worker j;
Tj ← simulation time sum for next |S|/|W| sys.;
for i = 1 to |S|/|W| do

ti← simulation time for the next System i;
ni←

⌈
(n1Tj|W|)/(ti|S|)

⌉
;

Send( j,ni);
end
for each System i ∈ S do

Send S2
i from Stage 1 to Worker j;

end
end
while Number of surviving systems > 1 do

Wait for next Worker j′ to report; Receive indexes
of sys. eliminated on Worker j′; Update surviving
sys.; Receive stats. (sample mean and sample size)
of the best system for Worker j′, for each batch
simulated up to this point; Send stats. of the best
sys. from other workers to Worker j′; Instruct
Worker j to continue simulation;

end
Report the single surviving system as best; Send a
terminate instruction to all workers;

end

Worker Core Routine
Input: Parameters δ ,α,λ ,a,n0 (Hong 2006).

begin Stage 0: Estimating simulation completion time
Receive the number of systems to simulate, r;
for i = 1 to r do

Receive(i,ni);
end
for i = 1 to r do

Simulate(i,n,simulation time for i);
end
Report simulation times for r systems to the master;

end
begin Stage 1: Estimating sample variances

Receive the number of systems to simulate, r;
for i = 1 to r do

Receive(i,ni);
end
for i = 1 to r do

Simulate(i,ni,S2
i );

end
if Screen on the worker level then

Screen among the r systems simulated;
end
Report S2

i for all surviving sys. i to master;
end

begin Stage 2: Screening procedure
Receive the number of systems to simulate, r;
for i = 1 to r do

Receive(i,ni);
end
for each System i surviving Stage 1 do

Receive S2
i collected in Stage 1;

end
while continue = true do

for i = 1 to r do
Simulate(i,ni, X̄i) for one batch;

end
Screen among r sys. using current batch stats.;
for each batch k up to the current one do

If batch k stats. available, screen the r
systems simulated, against the best systems
from the other workers, at batch k;

end
if Master sends a terminate instruction then

continue ← false;
else if Master is ready to communicate then

Report indexes of eliminated sys. to master;
Report stats. of the best system for each
batch simulated up to this point; Receive
stats. of the best sys. from other workers;

end
end

end

Figure 1: A master-worker algorithm for parallel ranking and selection

6.2 Programming Environment and the Use of Random Number Streams

We implement our master-worker algorithm in C++, using Message Passing Interface (MPI) for com-
munication between cores. The program is compiled and executed on Extreme Science and Engineering
Discovery Environment (XSEDE)’s Lonestar HPC cluster. According to its User Guide (Texas Advanced
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Computing Center 2013), the Lonestar cluster has 1,888 nodes, each equipped with two 6-core Westmere
processors and 24 GB of memory and runs Linux Centos 5.5 OS. Compiled MPI programs are submitted
as batch jobs through SGE (Sun Grid Engine) 6.2 which enables users to specify the number of nodes and
cores used to run the said programs.

The RngStream interface for C++ offered in L’Ecuyer et al. (2002) is used for random number
generation. To ensure that random numbers generated on different workers for different systems and
replications are independent, we use the strategy discussed in Karl et al. (2010) as follows. Each time
the master assigns systems to a worker, it creates a new RngStream object, which is 264 steps from the
previous one. We then use the GetState method to obtain an array of six unsigned integers (the “seed”)
representing the state of the current stream. The seed is then sent to the worker core together with other
decision variables representing the system being assigned. The worker receives the system and the seed,
creates a new RngStream object and uses a call to the SetSeed method to match the state of the new
stream with the master. The new stream is used by the worker to simulate this particular system exclusively,
and multiple substreams can be used by calling the ResetNextSubstream method if the system is to
be simulated on the worker for multiple replications. In this way, mutual independence between streams
is maintained because all streams used are initialized and distributed by the master, and communication is
minimal since only the seeds need to be sent to workers.

6.3 Numerical Results

We measure the quality of our algorithm by speedup, subject to the constraint that a certain PCS is
maintained. Since our algorithm is based on Hong (2006), the PCS constraint is automatically satisfied.
Indeed, using α = 0.05, in more than 2,000 macroreplications of our algorithm the empirical PCS was
93.7%. (We followed a suggestion in Section 4.3 of Hong (2006) in choosing a parameter a of the procedure
that reduces the computation but also the PCS.)

We study the speedup by changing three factors in our algorithm: the number of cores used, which is the
main source of speedup; the communication frequency in Stage 2, as represented by the “batch size” n1 (the
approximate number of simulation replications per system to complete before the worker communicates
summary statistics to the master; smaller batch sizes represent more frequent communication); and whether
screening is centralized on the master or distributed to the workers in Stage 1. The batch size n1 is
approximate because we select different batch sizes for different systems in order to balance the workload
on the workers. This is done using the results of Stage 0, so the statistical validity of our procedure is not
affected. We could also try centralizing screening in Stage 2, as in Luo and Hong (2011), but preliminary
tests on our platform show that it performs significantly slower (with 6 cores, our implementation of Luo
and Hong (2011) requires more than 1,100 seconds) so we use distributed screening in Stage 2.

Our algorithm exhibits a number of interesting trade-offs as shown in Table 1. First and foremost,
the speedup associated with the increase in the number of workers employed is most significant when the
number of workers is small. Indeed, for both screening methods, increasing the number of workers from
1 to 3 or 5 introduces an almost proportional speedup. However, as a consequence of an increased level
of communication, the marginal speedup from using more workers generally diminishes, as expected.

Second, distributing Stage 1 screening to the worker level has two effects in opposite directions.
Stage 1 screening will most likely be faster as the pairwise comparison is parallelized, but since each
worker performs only a subset of screening, and collectively across the workers we only perform a strict
subset of what would have been done if screening were centralized, Stage 1 screening inevitably becomes
weaker as we employ more workers. Thus more systems are left for Stage 2. (Our tests reveal that centralized
screening eliminates, on average, some 3150 out of 3249 systems, whereas distributed screening with 59
workers eliminates fewer than 2000). The latter effect could explain why more cores slow down the overall
execution in some cases, and why distributed Stage 1 screening performs slightly worse in almost all batch
size/worker number configurations. Stage 1 screening might be more effective if, as in Stage 2 screening,
we share the estimated-best solutions among workers, but our current implementation does not do so.
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Table 1: Wall-clock completion times (in seconds) of the master-worker algorithm using parameters n00 = 20,
δ = 0.01, λ = δ/2 = 0.005, α = 0.05, averaged over 20 macroreplications from each configuration

Stage 1 Batch Number of worker cores employed |W| (total cores employed is |W|+1)
Screening Size (n1) 1 3 5 9 11 23 35 47 59

Master

50 100.51 35.29 22.01 13.90 11.94 13.30 9.37 10.78 16.39
100 101.17 35.59 22.11 13.73 11.90 9.89 6.64 6.22 7.14
200 104.33 36.61 22.80 14.20 12.06 8.68 6.09 5.48 5.42
300 107.81 38.07 23.46 14.50 12.50 8.83 6.22 5.40 5.29
400 110.46 39.13 24.06 14.77 12.76 10.89 6.21 5.71 5.25
500 111.57 39.48 24.76 15.19 12.61 9.26 6.36 8.76 5.13

Workers

50 100.45 35.43 23.40 14.01 12.55 14.44 10.04 10.05 12.88
100 101.82 36.14 25.08 14.38 13.60 22.17 7.82 6.74 7.23
200 104.50 38.25 28.04 15.81 15.91 12.42 7.94 6.59 6.56
300 107.14 40.22 31.58 17.13 18.45 14.94 9.26 7.74 7.16
400 110.20 42.10 34.91 18.55 20.77 18.14 10.22 8.80 8.12
500 111.97 44.55 38.43 20.27 23.77 17.75 11.45 9.95 8.92

Third, the effects of communication frequency in Stage 2 are again twofold. It is conceivable that smaller
batch sizes (higher communication frequency) implies more screening per sample taken, and eliminates
inferior systems at an earlier stage. On the other hand, the amount of communication increases as we
employ more workers and a bottleneck may emerge because all communication goes through the master.
As a result of both effects, fixing the worker number/screening rule combination, we typically observe that
the total execution time first decreases and then increases as we increase the batch size.

7. Concluding Remarks

The parallelization of R&S algorithms designed for serial platforms is a nontrivial task. Ongoing research
includes matching problem features to efficient parallel algorithm designs and creating new algorithms
explicitly designed to exploit parallel platforms.
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