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ABSTRACT

We consider the problem of allocating a given simulation budget among a set of design alternatives in
order to maximize the probability of correct selection. Prior work has focused on deriving static rules that
predetermine the number of simulation replications to be allocated to each design. In contrast, we formulate
the problem as a Markov decision process (MDP) and propose a dynamic myopic scheme to adaptively
allocate simulation samples based on current estimates of the means and variances of the design alternatives.
We provide numerical examples to illustrate the performance of the proposed dynamic allocation rule.

1 INTRODUCTION

We consider the problem of identifying the best design from a finite set of design alternatives. Each design
is assumed to involve random uncertainty and requires stochastic simulation for performance estimation.
When simulation is expensive and the number of design alternatives is relatively small, a well-known
class of procedures for solving such problems is ranking and selection, where the goal is to determine
the number of simulation runs to be allocated to each design in order to guarantee a pre-specified correct
selection probability. Examples of ranking and selection methods include Rinott’s two-stage indifference
zone procedure (Rinott 1978), the expected value of information procedure (Chick and Inoue 2001), and
the KN family of algorithms (Kim and Nelson 2006); some reviews and advances in this field can be found
in e.g., Goldsman and Nelson (1998), Nelson et al. (2001), and Kim and Nelson (2007).

Chen (1995) approached the problem from a different perspective by determining the best allocation of
a given simulation budget among the designs in order to maximize the probability of correct selection (PCS).
In particular, Chen (1996) proposed to use a Bayesian approach to estimate the design performance measures
based on prior sampling information and derived a lower bound for the correct selection probability. The
idea was subsequently used in Chen, Chen, and Yücesan (2000) and Chen et al. (2000) to develop analytical
allocation rules called Optimal Computing Budget Allocation (OCBA) that asymptotically optimize the
lower bounds of the probability of correct selection. More recently, Chen et al. (2006) also investigated
a dynamic allocation rule based on perfect information assumption, and suggested that a dynamic scheme
could dramatically improve the performance of static allocation rules.

In this paper, we consider the setting of OCBA, i.e., maximizing PCS under a simulation budget
constraint. However, unlike previous work, which has primarily focused on static rules that predetermine
the number of simulation replications to be allocated to each design, we investigate a dynamic programming
approach that adaptively allocates simulation samples based on current estimates of the means and variances
of various designs. Our work can be viewed as an extension of that of Chen et al. (2006) based on perfect
information. In particular, we model the simulation allocation process as a Markov decision process (MDP)
with a terminal cost function. The state variable of the MDP model consists of the current sample mean
of each design and the number of simulation replications allocated to each of them by assuming that
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design variances are known. These variances can then be estimated by sample variances. Since analytically
solving the MDP model is intractable, we further develop an upper bound to the optimal value function and
propose a one-step lookahead index policy to myopically minimize the sum of the current one-stage cost
and the upper bound of the optimal value function. Our preliminary numerical results indicate competitive
performance of our approach with that of OCBA, especially when the simulation budget is small.

The rest of the paper is organized as follows: In Section 2, we define notations and describe the problem
setting. In Section 3, we formulate the problem as an MDP, provide an upper bound to the optimal value
function, and derive a myopic index policy for simulation allocation. Numerical examples are provided in
Section 4 to illustrate the performance of our approach. Finally, we conclude the paper in Section 5.

2 PROBLEM SETTING

Consider the following optimization problem:

min
i∈Θ

Ji ≡min
i∈Θ

E[Li(ξ )]

where Θ = {1,2, . . . ,k} is a finite set of design indices and Ji is the true performance measure of design i.
Note that Ji itself is the expectation of the sample performance Li(ξ ), where the expectation is understood
with respect to the distribution of the random variable ξ representing the stochastic uncertainty of the
design. We assume that the expectation cannot be evaluated exactly; however, for a given simulation budget
t, the performance measure Ji can be estimated by the sample mean

J̄t
i ≡

1
Nt

i

Nt
i

∑
j=1

Li(ξi j),

where Nt
i represents the number of replication runs allocated to design i and ξi j represents the jth realization

of ξ (simulation sample path) from design i. Throughout this paper, we assume that the simulation outputs
are independent of each other.

We begin by defining some notations.

σ 2
i : the true variance of design i, i.e., σ2

i =Var(Li(ξ )), which can be estimated by its sample variance.
bt : the index of the design that shows the current best sample performance after t simulation replications

have been allocated, i.e., J̄t
bt
≤mini J̄t

i .
st : the index of the design that shows the second best sample performance after t simulation runs have

been allocated, i.e., J̄t
st
≤mini6=bt J̄t

i .
δ t

bt ,i = J̄t
bt
− J̄t

i : the difference between the sample performance of the current best and the ith designs.

σ t
bt ,i =

√
σ2

bt
Nt

bt
+

σ2
i

Nt
i
: the standard deviation of the random variable δ t

bt ,i.

Define the event of correct selection (CS) as the event that design bt (i.e., the one with the current best
sample performance) is actually the best design. For a given simulation budget, the goal is to find a way
to maximize the probability of correct selection P{CS}.

We follow the Bayesian approach introduced in Chen (1996) and assume that the output performance
measure Li(ξ ) is normally distributed for each design. Let J̃i be a random variable whose distribution is
the posterior distribution of design i given the previous sampling information:

P{J̃i}= P{Ji|Li(ξi j), j = 1,2, · · · ,Nt
i },

for i = 1,2, · · · ,k. It can be shown that if no priori knowledge is given on the performance of each design,
J̃i has the normal distribution J̃i ∼ N(J̄t

i ,
σ2

i
Nt

i
). Thus, a lower bound to P{CS} called approximate probability
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of correct selection (APCS) can be obtained by applying Bonferroni’s inequality.

P{CS}= P{Jbt < Ji,∀i 6= bt |Li(ξi j), j = 1,2, · · · ,Nt
i , i = 1,2, · · · ,k}

= P{J̃bt < J̃i,∀i 6= bt},

= P{
⋂
i6=bt

(J̃bt − J̃i < 0)}

≥ 1−∑
i6=bt

P{J̃bt − J̃i > 0)}

= 1−∑
i6=bt

Φ

( δ t
bt ,i

σ t
bt ,i

)
= APCS,

where throughout this paper, we use Φ and φ to denote the c.d.f. and p.d.f. of the standard normal
distribution.

Since P{CS} is difficult to evaluate, whereas APCS can be computed analytically without resorting
to additional simulation effort, Chen et al. (2000) proposed to use APCS as an approximation to the true
probability of correct selection. For a given budget T , the goal is to find a simulation budget allocation
that solves the following optimization problem.

min
NT

1 ,N
T
2 ,··· ,NT

k

k

∑
i=1

Φ

(
δ T

bT ,i

σT
bT ,i

)

s.t.
k

∑
i=1

NT
i ≤ T and NT

i ≥ 0. (1)

3 A DYNAMIC BUDGET ALLOCATION PROCEDURE

Motivated by the work of Hu et al. (2011) and that of Chen et al. (2006), we aim to solve the allocation
problem by modeling the allocation process as an MDP model with a terminal cost function. So instead
of allocating all T simulation replications at the beginning as in (1), we derive a dynamic policy that
sequentially allocates the budget based on the estimated performance measure of all designs as well as the
current sampling information.

3.1 Modeling the Allocation Process as an MDP

Given a total of T simulation samples, we start by assigning at step t = 0 a small number n0 simulation
replications to each of the k designs. Define the state variable wt = (J̄t

i ,N
t
i , i = 1,2, · · · ,k)T as a vector

containing the current performance estimates of all designs and the number of times each design has been
sampled thus far, where N0

i = n0 and J̄0
i = 1

n0
∑

n0
j=1 Li(ξi j) for all i. Next consider a sequential allocation

policy π that determines, at each step t = 1,2, · · · ,T −n0k based on wt , whether one more replication run
should be allocated to one of the k designs or the entire allocation process should be terminated. Let
πt(wt) ∈ {0,1, . . . ,k} be the action taken at step t, then

πt(wt) =

{
i allocate one simulate run to design i, i = 1,2, · · · ,k
0 stop the allocation process.

(2)
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For every allocation policy π described above, it can be seen that {wt} is a Markov chain with the following
state transition dynamics:

J̄t+1
i =

Nt
i J̄t

i +YiI{a=i}

Nt
i + I{a=i}

for i = 1,2, · · · ,k (3)

Nt+1
i = Nt

i + I{a=i} for i = 1,2, · · · ,k , (4)

where I is the indicator function, a is the action taken at step t under π , and Yi is the simulation output
performance measure of design i after the additional allocation. Based on (3) and (4), the updating formula
for the current best sample mean is given by:

J̄t+1
bt+1

=

 J̄t
st
−
(

J̄t
st
− Nt

bt
J̄t

bt
+Ybt

Nt
bt
+I{a=i}

)+
if a = bt

J̄t
bt
−
(

J̄t
bt
− Nt

aJ̄t
a+YaI{a=i}

Nt
a+I{a=i}

)+
if a 6= bt ,

(5)

where Z+ = max{0,Z}.
Let w = (J̄i,Ni, i = 1, . . . ,k)T be a given state and define b = argmini J̄i, δb,i = J̄b− J̄i, and σb,i =√

σ2
b

Nb
+

σ2
i

Ni
. By associating the state action pair (w,a) with the following one-stage cost function:

Rt(w,a) =

{
0 if a 6= 0

∑
k
i=1 Φ

(
δb,i
σb,i

)
if a = 0

and Rs(w,a) = 0 for all s ≥ t +1 whenever πt(w) = 0, we obtain a (T −n0k+1)-horizon MDP with the
total cost

V π(w) = E
[T−n0k

∑
t=0

Rt (wt ,πt(wt))
∣∣w0 = w

]
,

where the expectation is taken respect to the probability measure induced by π . For a given initial state
w0 = w, the objective is to find an optimal simulation allocation policy π∗ to minimize the total cost
accumulated before the allocation process terminates.

3.2 A Myopic Index Policy

Since obtaining the exact optimal policy for the MDP model is intractable, we derive a myopic index policy
using one-step lookahead optimization. The following result provides an upper bound to the optimal value
function.
Theorem 1 Let Vt be the optimal cost-to-go function at stage t of the MDP defined in Section 3.1. For
every t = 0,1,2, · · · ,T −n0k and w = (J̄i,Ni, i = 1, . . . ,k)T , we have

Vt(w)≤
k

∑
i=1

Φ

(
δb,i

σb,i

)
. (6)

Proof. At the final stage t = T −n0k, all T replications have been exhausted, so the only option is to
stop the allocation process. Therefore, we must have

π
∗
T−n0k(w) = 0 and VT−n0k(w) =

k

∑
i=1

Φ

(
δb,i

σb,i

)
.

It follows that when t = T −n0k−1,

VT−n0k−1(w) = min
a

Ea[RT−n0k−1(w,a)+VT−n0k(w′)]
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where a ∈ {0,1,2, · · · ,k} and w′ = (J̄′i ,N
′
i , i = 1,2, · · · ,k)T is the next state generated according to the

transition dynamics (3) and (4) when action a is taken, in particular, J̄′i =
NiJ̄i+YiI{a=i}

Ni+I{a=i}
and N′i = Ni + I{a=i}.

Therefore,

VT−n0k−1(w) = min
a

Ea[RT−n0k−1(w,a)+VT−n0k(w′)]

= min

{
k

∑
i=1

Φ

(
δb,i

σb,i

)
,min

a6=0
Ea

[ k

∑
i=1

Φ

(
δb′,i

σb′,i

)]}

≤
k

∑
i=1

Φ

(
δb,i

σb,i

)
,

where b′ = argmini J̄′i , δb′,i = J̄b′ − J̄′i , and σb′,i =

√
σ2

b′
N′b′

+
σ2

i
N′i
.

Now proceed by induction and assume that Vt+1(w)≤ ∑
k
i=1 Φ

(
δb,i
σb,i

)
for all w. Then

Vt(w) = min
a

Ea[Rt(w,a)+Vt+1(w′)]

≤min
{ k

∑
i=1

Φ

(
δb,i

σb,i

)
,min

a6=0
Ea

[ k

∑
i=1

Φ

(
δb′,i

σb′,i

)]}
≤

k

∑
i=1

Φ

(
δb,i

σb,i

)
.

This completes the proof of the theorem.

Motivated by Theorem 1, we propose a simple (stationary) greedy policy that minimizes the sum of
the current one-stage cost function and the upper bound of the optimal cost-to-go function at each step:

π̂(w) =

 0 if ∑
k
i=1 Φ

(
δb,i
σb,i

)
≤mina6=0 Ea

[
∑

k
i=1 Φ

(
δb′,i
σb′,i

)]
argmina6=0Ea

[
∑

k
i=1 Φ

(
δb′,i
σb′,i

)]
otherwise.

(7)

By connecting π̂ to (1), it is not difficult to see that if one more simulation sample is needed, such a policy
myopically allocates the next sample in such a way so that the APCS in the next step is maximized after
the additional allocation. Since π̂ is an index policy, we can create an index for each action a based on
the current state w. Denote by index(a) as the index of action a and let w′ = (J̄′i ,N

′
i , i = 1, . . . ,k)T be the

sampled next state when action a is taken, we have three different cases based on the transition dynamics
(3), (4), and (5):
case 1) If a = 0,

index(0) =
k

∑
i=1

Φ

(
J̄b− J̄i√
σ2

b
Nb

+
σ2

i
Ni

)
, (8)

case 2) If a = b,

index(b) = Eb

[ k

∑
l=1,l 6=b

Φ

( J̄s−
(
J̄s− NbJ̄b+Yb

Nb+1

)+− J̄l√
σ2

b′
N′b′

+
σ2

l
Nl

)
+Φ

( J̄s−
(
J̄s− NbJ̄b+Yb

Nb+1

)+− NbJ̄b+Yb
Nb+1√

σ2
b′

N′b′
+

σ2
b

Nb

)]
, (9)
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case 3) If a 6= b and a 6= 0,

index(a) = Ea

[ k

∑
l=1,l 6=a

Φ

( J̄b−
(
J̄b− NaJ̄a+Ya

Na+1

)+− J̄l√
σ2

b′
N′b′

+
σ2

l
Nl

)
+Φ

( J̄b−
(
J̄b− NaJ̄a+Ya

Na+1

)+− NaJ̄a+Ya
Na+1√

σ2
b′

N′b′
+ σ2

a
Na

)]
, (10)

where b′ = argmini J̄′i and σ2
b′ is the variance of design b′.

Let Bs = {NbJ̄b+Yb
Nb+1 ≤ J̄s}. The (·)+ operator can be removed from (9) by conditioning on event Bs:

index(b) = Eb

[
∑
l 6=b

Φ

( NbJ̄b+Yb
Nb+1 − J̄l√

σ2
b

Nb+1 +
σ2

l
Nl

)
+

1
2

∣∣∣Bs

]
×P(Bs)

+ Eb

[
∑
l 6=b

Φ

(
J̄s− J̄l√
σ2

s
Ns

+
σ2

l
Nl

)
+Φ

( J̄s− NbJ̄b+Yb
Nb+1√

σ2
s

Ns
+

σ2
b

Nb+1

)∣∣∣Bc
s

]
×P(Bc

s). (11)

Similarly, by conditioning on Bb = {NbJ̄b+Yb
Nb+1 ≤ J̄b}, the index in case 3) can be obtained as

index(a) = Ea

[
∑
l 6=a

Φ

( NaJ̄a+Ya
Na+1 − J̄l√

σ2
a

Na+1 +
σ2

l
Nl

)
+

1
2

∣∣∣Bb

]
×P(Bb)

+ Ea

[
∑
l 6=a

Φ

(
J̄b− J̄l√
σ2

b
Nb

+
σ2

l
Nl

)
+Φ

( J̄b− NaJ̄a+Ya
Na+1√

σ2
b

Nb
+ σ2

a
Na+1

)∣∣∣Bc
b

]
×P(Bc

b). (12)

3.3 A Dynamic Budget Allocation Algorithm

Note that when a= 0 the index in case 1) can be calculated analytically, whereas calculating the performance
indices in (11) and (12) require evaluating the expectations with respect to the design distributions. One
natural approach to evaluate/estimate these expectations is to use Taylor expansion. Taking (11) as an
example, we can treat each respective term as a function of the sample mean NbJ̄b+Yb

Nb+1 and perform a first
order Taylor expansion of the term around J̄b. In addition, by replacing the true mean of the current best
design b with its sample mean J̄b, P(Bs) can be approximated by Φ

(
(Nb+1)(J̄s−J̄b)

σb

)
. Thus when a = b, we

can approximate the index of action b by the following analytical formula:

̂index(b) =

[
1
2
+∑

l 6=b
Φ

(
J̄b− J̄l√
σ2

b
Nb+1 +

σ2
l

Nl

)]
×Φ

(
(Nb +1)(J̄s− J̄b)

σb

)

− ∑
l 6=b

φ

(
J̄b− J̄l√
σ2

b
Nb+1 +

σ2
l

Nl

)
σb

(Nb +1)
√

σ2
b

Nb+1 +
σ2

l
Nl

×φ

(
(Nb +1)(J̄s− J̄b)

σb

)

+

[
Φ

(
J̄s− J̄b√
σ2

s
Ns

+
σ2

b
Nb+1

)
+∑

l 6=b
Φ

(
J̄s− J̄l√
σ2

s
Ns

+
σ2

l
Nl

)]
×
(

1−Φ

(
(Nb +1)(J̄s− J̄b)

σb

))

− φ

(
J̄s− J̄b√
σ2

s
Ns

+
σ2

b
Nb+1

)
σb

(Nb +1)
√

σ2
s

Ns
+

σ2
b

Nb+1

×φ

(
(Nb +1)(J̄s− J̄b)

σb

)
. (13)
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Similarly, when a 6= b and a 6= 0, index(a) can be approximated by

̂index(a) =

[
1
2
+∑

l 6=a
Φ

(
J̄a− J̄l√
σ2

a
Na+1 +

σ2
l

Nl

)]
×Φ

(
(Na +1)(J̄b− J̄a)

σa

)

− ∑
l 6=a

φ

(
J̄a− J̄l√
σ2

a
Na+1 +

σ2
l

Nl

)
σa

(Na +1)
√

σ2
a

Na+1 +
σ2

l
Nl

×φ

(
(Na +1)(J̄b− J̄a)

σa

)

+

[
Φ

(
J̄b− J̄a√
σ2

b
Nb

+ σ2
a

Na+1

)
+∑

l 6=a
Φ

(
J̄b− J̄l√
σ2

b
Nb

+
σ2

l
Nl

)]
×
(

1−Φ

(
(Na +1)(J̄b− J̄a)

σa

))

− φ

(
J̄b− J̄a√
σ2

b
Nb

+ σ2
a

Na+1

)
σa

(Na +1)
√

σ2
b

Nb
+ σ2

a
Na+1

×φ

(
(Na +1)(J̄b− J̄a)

σa

)
. (14)

Finally, by replacing true variances with sample variances, we propose the following algorithm for
simulation budget allocation.

Dynamic Simulation Budget Allocation (DSBA)

Step 0: Perform n0 simulation replications for all designs. Calculate the sample mean and sample
variance for each design.

Step 1: For each action a ∈ {0, . . . ,k}, compute the index of action a according to (8), (13), and (14).
Step 2: Select the action a∗ with the smallest index value. If a∗ = 0, then stop the allocation process;

else if a∗ = i, perform one simulation replication for design i, update the sample mean and sample
variance of design i. Increase the number of simulation replications to design i by 1 and go back
to Step 1 until the given budget is exhausted.

4 NUMERICAL RESULTS

In this section, we test the proposed DSBA algorithm and compare its performance with that of OCBA on
some simple examples. OCBA was derived based on analytically solving the static optimization problem
(1). It has been shown in Chen et al. (2000) that the asymptotically optimal solution to the problem as
T → ∞ satisfies the following conditions.

(1) Ni
Nj

=
(

σi/δb,i
σ j/δb, j

)2

(2) Nb = σb

√
∑

k
i=1,i6=b

N2
i

σ2
i
,

where Ni is the number of samples allocated to design i, δb,i = J̄b− J̄i, J̄b ≤mini J̄i, and σi is the standard
deviation of the performance measure for design i, which can be estimated by sample variance. OCBA
sequentially allocates a given budget T by splitting it into batches of size ∆. Then at each step, the current
computing budget is increased by ∆ and a budget allocation is calculated using conditions (1) and (2)
based on the updated computing budget. This allocation is then used to determine the number of additional
simulation runs need to be allocated to each design. The process continues until all budget has been
consumed.

We consider the following examples in our computational experiment.

Example 1 : This is a special example where the best design has a zero variance and the rest two designs
have the same performance:

X1 j ∼ N(0,02),X2 j ∼ N(0.4,32),X3 j ∼ N(0.4,32)
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Example 2 : There are five design alternatives with the best design being deterministic:

X1 j ∼ N(0,02),X2 j ∼ N(0.4,1.52),X3 j ∼ N(0.4,32),X4 j ∼ N(1,32),X5 j ∼ N(2,32)

Example 3 : This example is an extension of the previous one with the deterministic design removed:

X1 j ∼ N(0,1.52),X2 j ∼ N(0.6,32),X3 j ∼ N(1,32),X4 j ∼ N(2,32)

Example 4 : This is an example with three alternatives, all of which are random:

X1 j ∼ N(1,12),X2 j ∼ N(1.5,32),X3 j ∼ N(1.5,32)

In our experiment, the initial number of replications n0 is set to 10 for both DSBA and OCBA. Figure 1
shows the performance of both algorithms for each of the four respective test cases, where the true P{CS}
in each case is estimated by the proportional of times the best design is found by an algorithm out of 10,000
independent experiments. The figure indicates competitive performance of DSBA with that of OCBA in all
test cases. In particular, DSBA outperforms OCBA when the simulation budget is small, whereas OCBA
shows slightly better performance when the budget is increased, especially in the last case. Our conjecture
is that this is due to the asymptotic optimality of OCBA, whereas DSBA is myopic in nature.

5 CONCLUSION

In this paper, we have introduced a dynamic simulation budget allocation procedure for determining the
best design from a set of finite design alternatives. The idea is to use a myopic one-step lookahead policy to
approximately solve an underlying MDP characterizing the budget allocation process. Such a policy gives
rise to a stationary index rule that adaptively determines at each step which design should be simulated next
in order to myopically maximize the approximate probability of correction after the additional allocation.
Our preliminary numerical results indicate that our approach may provide competitive performance with
that of OCBA, especially when the computing budget is small.
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Chen, H.-C., C.-H. Chen, and E. Yücesan. 2000. “Computing Efforts Allocation for Ordinal Optimization
and Discrete Event Simulation”. IEEE Transaction on Automatic Control 45:960–964.

Chick, S. E., and K. Inoue. 2001. “New Two-Stage and Sequential Procedures for Selecting the Best
Simulated System”. Operations Research 49:732–743.

Goldsman, D., and B. L. Nelson. 1998. “Comparing systems via simulation”. In Handbook of simulation,
edited by J. Banks, 273–306. New York: John Wiley.

895



Fan and Hu

Figure 1: Comparison of OCBA and DSBA.

Hu, J., H. S. Chang, M. C. Fu, and S. I. Marcus. 2011. “Dynamic Sample Budget Allocation in Model-Based
Optimization”. Journal of Global Optimization 50:575–569.

Kim, S.-H., and B. L. Nelson. 2006. “Selecting the Best System”. In Handbooks in Operations Research and
Mangement Science: Simulation, edited by S. G. Henderson and B. L. Nelson, Chapter 17, 501–534.
Oxford, UK: Elsevier Science.

Kim, S.-H., and B. L. Nelson. 2007. “Recent Advances in Ranking and Selection”. In Prodeedings of the
2007 Winter Simulation Conference, edited by S. Henderson, B. Biler, M.-H. Hsieh, J. Shortle, J. Tew,
and R. Barton, 162–172. Piscataway, NJ: IEEE.

Nelson, B. L., J. Swann, D. Goldsman, and W. Song. 2001. “Simple Procedures for Selecting the Best
Simulated System when the Number of Alternatives Is Large”. Operations Research 49:950–963.

Rinott, Y. 1978. “On Two-Stage Selection Procedures and Related Probability Inequalities”. Communications
in Statistics - Theory and Methods 7:799–811.

AUTHOR BIOGRAPHIES

Qi Fan is a Ph.D. student in the Department of Applied Mathematics and Statistic at the State University
of New York, Stony Brook. He received the B.S. degree in mathematics from Zhejiang University, China
in 2011. His research interests include Markov decision processes, optimization and simulation. His e-mail
address is qfan@ams.sunysb.edu.

896



Fan and Hu

JIAQIAO HU is an Associate Professor in the Department of Applied Mathematics and Statistics at the
State University of New York, Stony Brook. He received the B.S. degree in automation from Shanghai
Jiao Tong University, the M.S. degree in applied mathematics from the University of Maryland, Baltimore
County, and the Ph.D. degree in electrical engineering from the University of Maryland, College Park. His
research interests include Markov decision processes, applied probability, and simulation optimization. His
email address is jqhu@ams.sunysb.edu.

897


