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ABSTRACT 

Maintenance and spare parts management are interrelated and the literature shows the significance of op-

timizing them jointly. Simulation is an efficient tool in modeling such a complex and stochastic problem. 

In this paper, we optimize preventive maintenance and spare provision policy under continuous review in 

a non-identical multi-component manufacturing system through a combined discrete event and continu-

ous simulation model coupled with an optimization engine. The study shows that production dynamics 

and labor availability have a significant impact on maintenance performance. Optimization results of 

Simulated Annealing, Hill Climb and Random solutions are compared. The experiments show that Simu-

lated annealing achieved the best results although the computation time was relatively high. Investigating 

multi-objective optimization might provide interesting results as well as more flexibility to the decision 

maker. 

1 INTRODUCTION 

Maintenance plays a vital role in sustaining and improving asset availability, which in turn affects the to-

tal output production of the system. A large and growing body of literature has investigated the optimiza-

tion of maintenance in manufacturing systems. Dekker (1996) conducted a comprehensive review of 

maintenance optimization models and applications. It is interesting to note that simulation optimization 

was not mentioned in his research, rather, the focus was on mathematical modeling only. 

As the complexity of maintenance systems has increased, the limitation of mathematical modeling 

became apparent as many maintenance policies are not analytically traceable (Garg and Deshmukh 2006, 

Nicolai and Dekker 2008). In a recent review, Sharma and Yadava (2011) discussed the published 

maintenance optimization models. They observed that the use of simulation has been an emerging trend 

which changed the maintenance view. This is mainly because simulation allows experimentation and bet-

ter understanding of complex systems (Sebastian 2006). 

Simulation based optimization (Rogers 2002) is an approach that consists of two main elements: a simula-

tion model and an optimization engine. As shown in Figure 1, the optimization engine provides the simu-

lation model with the decision variables. The simulation runs and provides the optimization engine with 

the objective function. Depending on the optimization algorithm the optimization engine will conduct an 

analysis and provide the simulation model with a new set of variables seeking to improve the objective 

function. This cycle will continue until a condition is met. For example a specific number of evaluations 

without improvement in the objective function. 
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Figure 1: Simulation based optimization approach. 

Alrabghi and Tiwari (2013) systematically classified the published literature on simulation based op-

timization in maintenance. Their study highlight that the vast majority of researchers optimize mainte-

nance assuming maintenance resources are readily available including spare parts. However, research has 

consistently shown the significance of optimizing maintenance and spare parts jointly. Kabir and Farrash 

(1996) optimized maintenance jointly and separately with spare parts. Their study shows that separate op-

timization of maintenance and spare parts policies do not lead to global minimum costs. Similarly, the 

work of Sarker and Haque (2000) and Bruzzone and Bocca (2012) confirm this finding. 

Van Horenbeek et al. (2012) review the literature on joint maintenance and optimization systems. 

Their study confirms the preference of simulation optimization to solve a problem with such a complex 

and stochastic nature. They observe that the research focus is on single-unit systems with few studies ex-

amining multi-components systems, usually assuming identical units. In addition, they suggest that simu-

lation coupled with more sophisticated optimization techniques such as simulated annealing might de-

crease computational time and provide superior results. Figure 2 shows an overview classification of 

published literature and the focus of this research is illustrated by the shaded boxes. 

 

Figure 2: Classification of published literature and the focus of this research. 

Attempts to optimize maintenance and spare parts in multi-component systems through simulation 

optimization are shown in Table 1. Sarker and Haque (2000) examined a manufacturing system compris-

ing of identical units and compared optimization results jointly with spare parts policies and separately. In 

fact, with the exception of Ilgin and Tunali (2007), all remaining studies assumed units to be identical and 

independent which does not reflect the complexity of real manufacturing systems. Similarly, it is apparent 

that studies assumed that maintenance technicians are always available. Discrete event simulation was 

expected to dominate as it is the most popular technique in modeling manufacturing systems (Jahangirian 
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et al. 2010). Studies either used a single optimization algorithm (Chen, Hsu, and Chen 2006; Ilgin and 

Tunali 2007) or conducted design of experiments (Sarker and Haque 2000; Boulet, Gharbi, and Kenn 

2009). Table 1 also shows how the present study complements the previous research by the inclusion of 

labor, modeling through combined discrete event and continuous simulation and examining three optimi-

zation algorithms. 

Table 1: Review of simulation based optimization of joint maintenance and spare parts in multi-

components systems. 

Paper Non-identical Labor Simulation technique Optimization algorithm 

(Sarker and 

Haque 2000) 
No No Discrete event Design of experiment 

(Chen, Hsu, and 

Chen 2006) 
No No Discrete event Scatter search 

(Ilgin and Tunali 

2007) 
Yes No Discrete event Genetic algorithms 

(Boulet, Gharbi, 

and Kenn 2009) 
No No Discrete event Design of experiment 

Current research Yes Yes 
Combined discrete event 

and continuous 

Simulated Annealing, Ran-

dom Solutions and Hill 

Climb 

 

The aim of this paper is to explore specific gaps observed in the previous literature by optimizing 

preventive maintenance and spare provision policy under continuous review in a non-identical multi-

component manufacturing system through a combined discrete event and continuous simulation model 

coupled with an optimization engine. Three optimization algorithms are compared and examined, namely, 

Simulated Annealing, Random Solutions and Hill Climb. 

2 PROBLEM DEFINITION 

Notations: 

Mcn   Machine n 

SPn   Spare part for machine n 

Sn   Reorder level for SPn 

Qn   Order quantity for SPn 

PMfreqn Preventive maintenance frequency for machine n 

Labor   Number of maintenance technicians  

 

 Preventive Maintenance (PM) costs less than Corrective Maintenance (CM) and requires considerably 

shorter periods. Unlike CM, PM is scheduled therefore it can be accommodated in both production and 

maintenance plans. The main question is how often a machine should be maintained (see Figure 3). Over-

maintaining machines leads to unnecessary halts and costs. On the other hand, under-maintaining leads to 

unplanned breakdowns that results in chaos and expensive impacts. 
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Figure 3: Comparison of CM and PM.  

In theory, the most effective solution is to schedule PM to be conducted just before a machine breaks 

down. In practice that is impossible partly because the machine degradation is a stochastic process. Other 

challenges include production dynamics in multi-component systems. While PM is planned through a 

fixed time frame, the machine degradation increases only when it is in use. However, the machine could 

become idle if there are not any parts to be processed as a result of another breakdown that occurred in the 

production line. 

 The problem becomes more complex when considering spare parts and labor availability. Spare parts 

availability affect maintenance performance considerably. Shortage of spare parts increases machines un-

availability. On the other hand, keeping a large inventory of spare parts might lead to unnecessary costs. 

One of the methods to control inventory is the continuous review spare provision policy includes (s, Q) 

where Q units are ordered each time the stock level reaches s. 

In this study, we investigate a non-identical multi-component manufacturing system with the aim of 

optimizing joint preventive maintenance and spare provision policy under continuous review (s, Q) 

through simulation based optimization, namely a combined discrete event and continuous simulation 

model coupled with an optimization engine. 

3 SIMULATION MODEL 

3.1 Simulation Technique 

A combined discrete event and continuous simulation model is developed using the available simulation 

package within the research group: Witness 12 manufacturing performance edition, which is a product of 

Lanner Group. Manufacturing systems are in general discrete event systems where the state of the system 

changes according to events (Sebastian 2006). Additionally, discrete event simulation has been success-

fully applied to model various types of manufacturing systems including maintenance systems (Jahangi-

rian et al. 2010). Continuous simulation, on the other hand, is used to model systems that change continu-

ously over time (Robinson 2007). This is particularly true for the machine degradation process where 

machines deteriorate continuously over time when in use. 

3.2 Overview of the Manufacturing System 

A model of a manufacturing system consisting of 6 non-identical machines is developed as illustrated in 

Figure 4. A buffer exists after the following machines: machine 1, machine 2, machine 3 and machine 4, 

and machine 5.  Parts are pulled into the manufacturing system through machine 1 and machine 2 in par-

allel. The output of machine 1 is stored in a buffer until machine 3 becomes available. Similarly, the out-

put of machine 2 is stored in a buffer until machine 4 becomes available. The output of both machine 3 

time
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Breakdown
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Corrective maintenance
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and machine 4 is stored in a buffer and is assembled in machine 5 when it becomes available. Finally, the 

output of machine 5 is stored in a buffer until machine 6 becomes available which then ships the final 

product out of the system. 

 

 

Figure 4: Overview of the simulation model. 

Failure patterns for machines are assumed to follow Weibull and Exponential, two of the most widely 

used distributions to model lifetime in reliability and maintenance engineering (Ben-Daya 2009). Cycle 

times follow Triangular distribution and vary between machines. Repair times for CM and PM tasks fol-

low a Uniform distribution and vary between machines as well. All related distributions along with their 

parameters are shown in Table 2. 

Table 2: Cycle times, breakdown patterns and repair times for the manufacturing system. 

Machine Cycle time Breakdown pattern CM duration PM duration 

Mc1 Triangle(3, 6, 12) Weibull(2, 3) IUniform (1,3) IUniform (0.2,1) 

Mc2 Triangle(4, 5, 11) Weibull(4, 2) IUniform (1.2,3.5) IUniform (0.8,2.5) 

Mc3 Triangle (3,9,10) Weibull(2, 2.5) IUniform (1.7,2.3) IUniform (1,1.5) 

Mc4 Triangle (5,9,10) Weibull (3,1) IUniform (1.5,3) IUniform (1,1.5) 

Mc5 Triangle (7,9,13) NegExp (2.5) IUniform (0.7,2.5) IUniform (0.5,1.6) 

Mc6 Triangle (5,10,14) NegExp (3) IUniform (1,2.2) IUniform (0.4,1.8) 

 

Spare provision policy is under continuous review and it includes (s, Q) where Q units are ordered 

each time the stock level reaches s. Lead times are stochastic and follow a uniform(72, 168) distribution. 

All machines are subject to CM when their degradation reaches a specific threshold. They are also 

subject to PM at predetermined intervals (PMfreqn). PM and CM cannot occur at the same time. If a ma-

chine is broken down, all PM activities will be postponed until the machine is fixed. On the other hand, if 

a machine is undergoing preventive maintenance it will not be working and thus its degradation level re-

mains constant. Maintenance tasks are assumed to be perfect where the machine becomes as good as new 

after maintenance actions. In addition, machines are assumed to deteriorate only when in use. 

A typical machine degradation cycle is shown in Figure 5. The machine will degrade as long as it is 

in use. If there are not any parts to be processed due to the breakdown of a preceding machine or due to 

shortages of raw materials, the machine will become idle and hence its degradation level remains con-

stant. If the degradation level reaches the breakdown threshold the machine will stop working instantly 

and it will be repaired as soon as there are available spare parts and labor. Repair time for CM is always 

longer than the repair time for PM as shown above in Table 2. On the other hand, PM is conducted peri-

odically every Pmfreqn unit of time. Observing machine degradation in the simulation leads to the conclu-

sion that production dynamics and labor availability have a significant impact on maintenance perfor-

mance. 

Mc1

Mc6Mc5

Mc4

Mc3

Mc2
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Figure 5: A typical machine degradation cycle. 

3.3 Cost Formulation 

Total Cost can be divided into three subcategories as follows: 

Total Cost= maintenance cost+ spare parts cost+ unavailability cost 

where  

Maintenance cost = PM cost + CM cost, and, Spare parts cost= order cost+ holding cost. 

Maintenance cost includes the cost of both preventive and corrective maintenance tasks and is in-

curred whenever these tasks are executed. The cost of spare parts includes the cost of ordering which is 

incurred whenever the inventory for SPn falls below the reorder level sn and the cost of holding which is 

incurred for every unit of time a spare part spends in the inventory. On the other hand, unavailability cost 

is incurred for every time unit a machine is not available due to maintenance tasks, shortage of spare parts 

or waiting for labor. The costs are constant during the simulation and are as follows: 

 

 Corrective maintenance = 2000/task, 

 Preventive maintenance = 750/task, 

 Holding cost = 2/unit/hour, 

 order cost = 100/order, 

 Unavailability penalty = 300/ unavailable machine hour. 

 

Hours were considered to be the time units for the simulation. The model was run for 10 years = 

87600 hours with a warm up period of 1 year = 8760 hours and 3 replications. 

4 OPTIMIZATION PROBLEM 

4.1 Problem Formulation 

A single objective optimization of both preventive maintenance and spare parts is formulated. The objec-

tive is minimizing the Total Cost as detailed in the previous section. 19 decision variables are defined for 

this problem as follows: 

1 <labor< 6, 

168 (1 week) <Pmfreqn< 504 (3 weeks), 

0 <sn< 15, 

1 <Qn< 15. 

Time

Machine 
degradation

Working Idle Working Waiting for
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4.2 Optimization Algorithms 

Hill Climb is a local search heuristic algorithm that changes a single element in each iteration depending 

on the objective function performance. The main advantage of this algorithm is that it uses little memory 

and it makes rapid progress. However, one of its known limitations is that it performs local rather than 

global search. This will likely result in local optimum solution while there might be a better global solu-

tion as show in Figure 6 (Russell and Norvig 2003). 

 

 

Figure 6: Global and local optimum solutions. Adapted from Russell and Norvig (2003). 

In contrast, Random Solutions is simply randomizing the values of decision variables without a struc-

tured algorithm to guide it to better solutions. This search method can search globally but without the ca-

pability to learn from evaluations. Therefore it is seen as inefficient and unlikely to result in global opti-

mum. It is used to find initial feasible solutions for complex problems (Deb 2005). 

Simulated annealing (SA) combines the advantages of both Hill Climb and Random Solutions. The 

concept comes from the annealing process in metallurgy to harden metals. Metals are melted in high tem-

perature at the start and then cooled gradually in a controlled environment. In simulated annealing, the al-

gorithm starts with high randomized search and builds on good solutions. However the randomization 

gradually decreases as the algorithm learns and the focus is switched to finding a local improvement to 

the best solution so far (Russell and Norvig 2003). 

Preliminary analysis was conducted by running the optimization several times while changing the 

number of evaluation for each algorithm continuously and monitoring the performance. It is observed that 

all three algorithms struggle to improve the objective function after around 150 evaluations. Therefore the 

number of evaluations was set to 200 for all algorithms. Experiments were run using Witness optimizer 

version 5 which is a product of Lanner Group. 

5 RESULTS AND DISCUSSIONS 

Optimization results are presented in Table 3. Experiments were run on PC with Intel Core i7-2600 CPU 

@ 3.40 GHz. Simulated annealing achieved the best result providing 13% and 2% reduction in cost com-

pared to Hill Climb and Random Solution respectively. Depending on the maintenance expenditures, the 

savings can be significant. It is interesting to note that Random solution yielded better results than Hill 

Solution space

Objective function

global minimum

local minimum

Initial solution
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Climb. This can be due to the vast search area containing many optimum solutions where Hill Climb is 

not capable of searching beyond neighboring solutions as previously illustrated in Figure 6. 

Table 3: Optimization computation time and best results. 

Optimization algorithm Computation time 

(hh:mm:ss) 

Best result 

1 Random solutions 07:18:52 26,563,700 

2 Hill Climb 04:05:01  29,893,939  

3 Adaptive Thermostatistical SA (Simu-

lated Annealing) 

08:17:34 25,958,218 

 

On the other hand, simulated annealing performed poorly in terms of computational time requiring 

almost 100% and 12.5% more time compared to Hill Climb and Random Solution respectively. In gen-

eral, all optimization algorithms required a significant time to produce the results which is an indicative of 

the problem complexity. Optimizing a larger manufacturing system means adding more machines and 

thus more decision variables which would inevitably increase the required computational time exponen-

tially. Conducting design of experiments before running the optimization might assist in focusing the op-

timization effort in the factors that have the most impact on the objective function and hence reduce the 

computational time. 

 

Figure 7 shows the performance of the three optimization algorithms. It seems that both Simulated 

annealing and Hill Climb have a similar convergence rate at the beginning while Random Solutions con-

verged at a faster rate. Furthermore, Hill Climb and Random Solutions struggled to deliver significant 

improvements early in the process, after around the 15th
 evaluation. On the other hand, Simulated anneal-

ing continued to converge and provide apparent improvements until around the 135
th
 evaluation. 

 

 
Figure 7: Algorithms’ performance over evaluations. 
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The optimal decision variables are compared in Table 4. It is interesting to observe that although the 

Total Cost for both SA and Random solutions is almost similar, the optimal variables differed substantial-

ly. This might suggest that there are multiple optimum solutions. Additionally, this might indicate that 

there is still room for improvements, perhaps by altering SA parameters or by experimenting with other 

optimization algorithms such as Genetic Algorithms (Deb 2005). 

Table 4: Optimal decision variables. 

 Hill Climb Random So-
lutions 

SA 

Total Cost 29,893,939  26,563,705  25,958,218  

PMFreq1 209 262 308 

PMFreq2 203 502 213 

PMFreq3 358 216 459 

PMFreq4 393 324 374 

PMFreq5 384 422 373 

PMFreq6 341 281 322 

Labor 4 3 3 

s1 0 5 9 

s2 8 2 7 

s3 2 12 2 

s4 2 11 1 

s5 10 4 13 

s6 9 7 9 

Q1 11 6 10 

Q2 3 9 4 

Q3 7 11 8 

Q4 12 7 2 

Q5 13 10 5 

Q6 6 10 6 

 

However, with a single model, caution must be applied, as the findings might not be transferable to 

other maintenance systems. More experiments are needed to understand optimization algorithms perfor-

mances, preferably with different maintenance models such as condition based maintenance and imper-

fect maintenance. 

6 CONCLUSIONS 

Preventive maintenance and spare provision policy were optimized using a combined discrete event and 

continuous simulation model coupled with an optimization engine. The results illustrate the complexity of 

optimizing maintenance in non-identical multi-component manufacturing systems. The study also shows 

that production dynamics and labor availability have a significant impact on maintenance performance. 

Simulated annealing produced better results compared with Random Solutions and Hill Climb although 

the computation time was relatively high.  

Further work needs to be done to establish whether computational expenses can be reduced whilst 

improving the objective function, possibly through design of experiments, experimenting with different 
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SA parameters or investigating Genetic Algorithms. Further research might also explore multi-objective 

optimization of both cost and availability as it has the ability to diverge and produce a range of results 

providing more flexibility to the decision maker.  
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