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ABSTRACT 

This paper describes a diagramming methodology, referred to as an Object Flow Diagram (OFD), that is 
intended to be a key component in the conceptual design of a discrete-event simulation model. It provides 
an effective means for representing salient system elements and their relationships. It draws upon other 
popular system diagramming methods, such as IDEF0 and IDEF3, to bring the relevant aspects of these 
tools to the simulation modeler. It is intended to be easy to apply, with few symbols and constructs, yet 
robust and comprehensive enough to represent a wide variety of systems. It is simulation software neutral 
and thus provides a basis for model development in any language. A simple example is used to illustrate 
the approach. The methodology has been used in industry projects and in simulation courses.  

1 INTRODUCTION 

It is important in any modeling, but especially in simulation modeling, to have a clear understanding of 
the system being considered. Modeling is basically representing, in some abstract way, the key elements 
and interactions that drive a system’s behavior as well as its structure. Therefore, it is paramount for mod-
elers to effectively capture and represent their understanding of a system so that they include the correct 
and the salient aspects of the system in their model. Similarly, modelers need to communicate their under-
standings and representations to others.   
 Diagrams, symbolic visual representations of information, effectively support critical thinking and 
problem solving (Kosslyn 1980; Larkin and Simon 1987). Larkin and Simon (1987) indicate diagrams are 
superior to verbal descriptions for problem solving since they group together information that is used to-
gether, use location to group information about a single element, and support a large number of perceptual 
inferences. 
 Modeling is a process – a set of coordinated activities that transform input into output. As a process, 
modeling transforms needs, knowledge, and data into measures, new knowledge, and satisfied needs. In 
simulation, the key transform in this process is the simulation model. Execution of the model provides 
measures of system performance under varying conditions that provide the basis for analysis that ulti-
mately supports decisions and actions. Of course, the quality of the results depends on the quality of the 
input – the definition and specification for the model.  
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 In simulation, two types of models – conceptual and programmed – are oftentimes used during the 
modeling process. In a broad sense, one definition of a conceptual model is “a non-software specific de-
scription of the simulation model (that will be, is or has been developed), describing the objectives, in-
puts, outputs, content, assumptions and simplifications of the model.” (Robinson 2008). The programmed 
model is the conceptual model converted to some simulation software environment (e.g. FlexSim, Arena, 
Witness) for the purpose of execution and analysis. 

As in product design, conceptual modeling is a necessary precursor to detailed design. It is dangerous 
and oftentimes wasteful to begin detail design or modeling without a clear understanding of the problem, 
system operation and behavior, and objectives of the project (needs of the decision maker). While there is 
general agreement in the modeling community that a conceptual model needs to precede a programmed 
model, there is little agreement as to what that conceptual model should be (Robinson 2006; Robinson 
2012).  
 We consider a critical part of a conceptual model to be a visual representation or diagram that depicts 
the key elements in the system that need to be considered and the relationships among the elements, both 
in terms of structure and behavior. The diagram should provide a generic description of the system and 
not represent the elements in terms of any specific simulation software constructs.  The diagram is meant 
to depict how a system works at the level of detail required to meet the objectives of the simulation pro-
ject. We believe that most conceptual models are, or are composed of, some form of diagram. 
 The conceptual model, and any supporting diagrams, is not just for modelers. For most models the 
system is too complex for any one person to have a full understanding of the system and its behavior. As 
a result, most modeling projects have many stakeholders with widely varied backgrounds, most of whom 
are non-modelers. Therefore, an effective way is needed to present a collective understanding of the sys-
tem. Again, a diagram is an effective way to describe a system to a variety of stakeholders. It also pro-
vides an effective means to facilitate model validation with the stakeholders. 
 Since a conceptual model defines and describes system boundaries that will be captured by the model, 
diagrams provide an effective means to convey scope and to clarify what will, and equally important what 
will not, be included in the model. Finally, diagrams can effectively provide context for the many and var-
ied stakeholders in a simulation project. 
 This paper provides a diagramming methodology that can be, and has been, applied to facilitate the 
conceptual design of discrete-event simulation models. Prior to defining the methodology, a brief discus-
sion of alternative diagramming approaches is provided. The paper concludes with an illustrative example 
of the application of the methodology. 

2 DIAGRAMMING ALTERNATIVES 

Since simulation modeling and analysis is applied to a wide variety of systems – from manufacturing to 
logistics to healthcare and other service providers – any diagramming methodology must be quite generic 
and flexible. Also, since the stakeholders in a simulation project are typically quite diverse, the diagram-
ming methodology needs to be able to accommodate varying degrees of details and perspectives. 

There are many types of diagrams that are used to help represent systems. Those closely related to 
simulation modeling range from simple flow charts that depict detailed steps in a process to large, com-
plex enterprise architectures that depict key aspects of enterprises. 

Discrete-event simulation (DES) modeling includes some special aspects that need to be considered 
in a conceptual model diagram. Two broad classes of resources -- fixed and mobile (or shared) -- are 
common in most simulation models and provide the overall structure of the model. Each of these classes 
has unique and dynamic features and behaviors that need to be represented in a static diagram. Just as im-
portant, if not more so, are the relationships among the class element since most DES models focus on 
flows, albeit mostly process or items flows, between objects. However, in addition to entity flows, infor-
mation flows and other types of communications between objects must also be considered. There are nu-
merous software products available to transform conceptual models into a programmed model, each of 
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which uses a different modeling approach and terminology. Having a neutral diagramming approach fa-
cilitates communication among different software users and creates a common language for those who are 
not experts in a particular software. 

Most existing diagramming approaches do not lend themselves to effectively developing conceptual 
simulation models. While many of these approaches provide some support, or at least notions of what to 
address in a diagram and how to represent it, they either are too simplistic or too extensive (contain too 
many unneeded features and/or foundational requirements) for discrete-event simulation conceptual mod-
eling, Simple flow charts are often used in the early stages of simulation projects, but they are not rich 
enough to capture many of the salient system features needed for simulation modeling. Since they are of-
ten used in detail code development, they might drive modelers toward too much detail at this stage of the 
modeling process. Value-stream maps (for example, Jones and Womack (2002)) are also oftentimes used 
as a starting point for simulation project, but again they do not provide enough detail for simulation mod-
eling.  

There are many approaches on the opposite end of the spectrum. Enterprise modeling tools, such as 
CIMOSA, GRAI, and ARIS, are too broad and massive for use in most simulation projects. See, for ex-
ample, Giachetti (2010) and Petrie (1992) for information about these tools. Aspects of UML (Unified 
Modeling Language), a widely used notation for software developers, can be applied to simulation model-
ing, such as the Component or Object Diagrams for structure and the Activity Diagram for behavior. 
However, they do not include all of the aspects needed to meet the needs of most simulation modelers and 
having all aspects resident in a single diagram, as we propose, is much more effective. See, for example, 
Fowler and Scott (2000) for information about UML tools. Similarly aspects of SysML (Systems Model-
ing Language), a general purpose modeling language for systems engineering, can be applied to simula-
tion modeling, but as with UML, the toolset is too broad and has too much overhead, yet is incomplete for 
most simulation applications. For more information on SySML, see for example Holt (2008) and Frieden-
thal (2008). 

The DEVS (Discrete-Event System Specification) formalism provides a visual approach to model 
specification. However, we believe the representation is typically more applicable later in the model de-
velopment process and has limited use during conceptual design and in model formulation. For more in-
formation on DEVS, see Hwang and Zeigler (2006) and Zeigler et al. (2000). 

Since discrete-event simulation models are typically process-based, then a reasonable foundation for 
modeling diagrams are constructs used in business process modeling. As described below, our approach 
is process based. Both Onggo (2009) and Onggo and Karpat (2011) use a portion of Business Process 
Model and Notation (BPMN) in their approach. BPMN is Object Management Group’s (OMG) graphical 
notation that “provides business with the capability of understanding their internal business procedures … 
and communicate these procedures in a standard manner.” (OMG 2013). See also OMG (2010) and Briol 
(2010) for more information on BPMN 

Onggo and Karpat (2010) propose the use of BPMN as a foundation for a conceptual model dia-
gramming methodology. While their approach could be used in discrete-event simulation, albeit the con-
structs are a bit limited, their focus is on agent-based simulation models. 

3 OBJECT FLOW DIAGRAM METHODOLOGY  

As the name indicates, the proposed Object Flow Diagram (OFD) methodology primarily focuses on the 
key objects in a system that need to be modeled via simulation and the relevant flows that occur between 
those objects.  

The OFD methodology is introduced in Beaverstock et al. (2012) as a conceptual modeling approach 
to facilitate the simulation model development process. It is intended to help the modeler document the 
system being considered and think through many of the initial modeling issues, e.g. defining system 
boundaries, identifying key components, assessing the level of detail needed. This paper more fully de-
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fines and describes the approach, as well as providing extensions and refinements to the basic methodol-
ogy. 

The OFD methodology is designed to be software neutral so that it can be used by modelers with a 
wide range backgrounds and can be an effective means of communication with project stakeholders that 
have little knowledge of simulation software. Being software neutral also helps modelers avoid moving 
too quickly to a modeling approach or programming prematurely without adequate system understanding 
and problem definition. As a result, the OFD approach is not conducive, by design, to automatic model 
code generation. 

Many of the symbols used in an OFD are based on the IDEF (Integration DEFinition) methodology 
and especially IDEF0. See Giachetti (2010) for a summary of the IDEF methodology. As shown in Figure 
1, a symbol using IDEF0’s ICOM notation uses all four sides of the symbol. That is, the left side is for 
inputs to, in a simulation model’s case, the resource; flow items that are transformed or consumed by the 
operation. The right-side of the symbol is for outputs from the resource; flow items that are produced by 
the operation. The bottom side is for “mechanisms,” other resources used to support the operation, such as 
operators, empty containers, etc. The top side of the symbol is for “controls,” those things that constrain 
operations or are conditions used by functions in the model, e.g. messages and downtimes. OFDs, like 
IDEF0 diagrams, are hierarchical – details of an object can be expanded in a lower-level representation of 
the object.  

 
Figure 1: IDEF0 ICOM notation (B4). 

As indicated earlier, the methodology, symbols, and terminology are simulation software neutral. Use 
of OFDs can help simulation modelers develop better models regardless of the software they use to im-
plement their models. 

Most discrete-event simulation models focus on a series of operations (process, transport, store, 
group/ungroup) that are performed on discrete items (parts, people, packages, etc.) as they flow through a 
system of resources. Therefore, the OFD primarily takes the perspective of the item flowing through the 
system. However, it considers mobile (typically shared) resource flows as well. While some simulation 
software refer to the items flowing through the model as entities or transactions, we refer to these as flow 
items – we believe this to be a more descriptive term.  

The symbols that are used in an OFD, along with a brief functional definition of each symbol, are 
presented in Tables 1 through 3. Table 1 contains the symbols used to represent basic operations – these 
include process, transport, store, and group/ungroup. Since many operations include known delays, we in-
clude the duration symbol in this category. Thus, an operation symbol and duration symbol are oftentimes 
used together. The operations symbols all use the ICOM (input, control, output, and mechanism) notation 
from IDEF0. That is, the sides of the symbols are significant as described above.   
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Table 1:  Symbols denoting basic operations. 

OFD Symbol Functional Description 
Process 

 

 

Transformation of a flow item.  
Typically involves a known delay and thus includes a duration 
symbol. 
name =  identifier 
cap = capacity of the resource; maximum number of items that 
can be contained within the object. If capacity is not an issue, de-
note (inf) for infinite. 

Transport 
 

 

Transportation or movement of a flow item.  
Typically involves a known delay and thus includes a duration 
symbol. However, if associated with a shared (mobile) resource, 
the duration may be determined by the speed of the mobile re-
source and distance traveled. Also, distance transported may be 
annotated on the symbol. 
name =  identifier 
qty/cap = the quantity of items moved at a time and/or the total 
capacity of the resource (maximum number of items that can be 
contained within the object). If capacity is not an issue, capacity 
denoted as (inf) for infinite. 

Storage 

 
 

Temporary holding area for flow items. 
name =  identifier 
cap = total capacity of the resource (maximum number of items 
that can be contained within the object). If capacity is not an is-
sue, capacity denoted as (inf) for infinite. 

Group/Ungroup 

 

Combining items into a single unit, or conversely, splitting a unit 
into multiple items. 
qty = number of items grouped or number of items ungrouped or 
split (copied) 
basis = criterion for grouping or ungrouping, e.g. combine based 
on product type. 
May involve a known delay before or after grouping; thus it may 
include a duration symbol.  
Oftentimes the symbols are associated with another operation and 
thus if the symbol on the left is placed on the left or input side of 
an object, it denotes a combine operation. Similarly, if the symbol 
on the right is placed on the right or output side of the object, it 
denotes a split or separation operation. 

Duration 
 

 

Activity or task performed by a basic operation object. Therefore, 
oftentimes used in conjunction with another symbol. There may 
be multiple processes conducted sequentially, such as a setup and 
then a basic process activity. 
time – time to complete an activity 

 
 Note, for all operations symbols:  

1. They usually represent a fixed-location physical resource. 
2. For all, except the Duration symbol, the sides are significant. They use IDEF0’s ICOM (Input-

Control-Output-Mechanism) notation. 

name 
(cap) 

name 
(qty/cap) 

name 
(cap)  

basis 

qty qty 

basis 

  

time 
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• Left-side is for inputs to the resource; the primary item(s) that are transformed or consumed 
by the object. 

• Right-side is for outputs from the resource; the primary item(s) that are produced by the ob-
ject. 

• Bottom-side is for “mechanisms,” other resources used to support operations of the object.  
• Top-side is for “controls,” those things that constrain operations or are conditions for func-

tions of the object 
 
Table 2 contains symbols that are flow related. This includes the flow of items (often referred to as 

routing) and the flow of resources (mobile or shared). Since routing implies alternative paths, decision 
points and criteria need to be specified. This is done through the Decision symbol. Flow items need to be 
created and destroyed beyond the system boundaries. Therefore, there must be a source to create the flow 
items and a sink to remove them from the model at the appropriate time. These are denoted by the Source 
and Sink symbols in an OFD. Mobile resources travel or flow through the system as well and their paths 
need to be identified and specified. Usually, processing objects need more than just physical flow items; 
they often need information, and other forms of communication, from other objects.  

Table 3 contains the remaining OFD symbols – they support the operation- and flow-oriented sym-
bols. Resources – both fixed and mobile – are not always available; therefore, there is a Downtime sym-
bol that indicates the time between breakdowns and the duration of the breakdown. Performance meas-
ures are used to decide which of the alternatives being considered is better. Simulation can collect 
information on any measure of performance and most software automatically collect statistics on many 
common measures. However, it important to identify early in the modeling process what measures are the 
most important. Those measures are noted on the OFD through a special symbol. The OFD is intended to 
be used more like a sketch than a final drawing. Therefore, annotation is encouraged. A Note symbol is 
used for clarification; a Questions symbol is used to call out a point of uncertainty that needs further defi-
nition or specification. 

4 APPLYING OBJECT FLOW DIAGRAMS 

Since the methodology is intended to be used to help modelers identify and understand the key compo-
nents of a system and their interactions, and to convey that information to project stakeholders, there is 
considerable latitude in how it is applied. After all, it is a model itself, albeit a conceptual model, and just 
like the resulting simulation model, it should only be as complex as it needs to be to be in order to address 
the problem at hand. Therefore, the OFD symbols should be used sparingly, it should only be as detailed 
as needed to adequately represent the system so that it can be modeled appropriately. 

 

1297



Greenwood, Pawlewski, and Bocewicz 
 
 

Table 2:  Symbols denoting flows between operations. 

OFD Symbol Functional Description 
Flow/Route (item) 

 

 

Link between operations; route that items flowing through the 
models take. The following two parameters are optional - it de-
pends on if clarification is needed. For example, if a single type 
of item is flowing through the model, then this can be stated as a 
note on the diagram and not on each link. 
item =  name of the item(s) following the route 
qty = quantity of items that flow together 
Flows usually require time for items to move between objects; 
therefore, a duration symbol may be included. However, if the 
flow is made through a shared (mobile) resource, the duration 
may be determined by the speed of the mobile resource and dis-
tance traveled. Also, distance transported may be annotated on 
the symbol. 

Decision 

 

Decision rule typically used to either route an item out or “pull” 
an item into an operation. 
criterion = rule used to make the selection 
Typically added to an operations symbol. If placed on the left or 
input side of the object, it denotes a pull operation; if placed on 
the right or output side of the object, it denotes a routing decision. 

Source 

 

Creates items that flow in the model. Defines the input system 
boundary. 
freq = time between arrivals 
qty = quantity of items that enter the system at each arrival event 

Sink 

        

Destroys items that flow through the model; output system 
boundary. 

 
 
 

Shared (mobile) resource 

        

Performs activities at multiple operations. Typically involves 
processing or moving items, repairing equipment. 
name = identifier 
qty = number of resources needed to perform an operation 

Travel (resource) 
 

Path followed by shared (mobile) resource to perform activities 
at, or between, various objects. 

Communication 

 

Link between objects that involves information, messages, etc. 
These links do not represent the flow of an item. 

 

(item/qty) 

criterion  

(freq,qty) 

name 
(qty) 
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Table 3:  Supporting symbols 

OFD Symbol Functional Description 
Downtime 

 

 

Denotes resources, both fixed and shared(mobile), may become 
unavailable, or down. Downtimes can occur for a variety of rea-
sons, e.g. breakdowns, preventative maintenance, operator 
breaks, shift schedules. 
TBD = time between downtimes 
duration = how long the resource is down 
Objects may undergo several types of downtime (e.g., planned 
and unplanned breakdowns). Multiple downtimes can be repre-
sented with multiple symbols or with a single symbol and a note 
describing the downtimes. 

Performance Measure 
 

 

System variable that is of particular interest. An output of a simu-
lation model; sometimes referred to as a response variable or de-
pendent variable. 
name = identifier 
Attached to the object of interest; e.g. “average content” might be 
associated with a Storage symbol or “utilization” might be asso-
ciated with an operation or a shared (mobile) resource. 

Note/Comment 

 

Annotation that provides information about the system, an object, 
a flow, etc. 

Question 

 

Annotation that raises one or more questions that need to be ad-
dressed. It identifies the need for additional information, or de-
notes issues that need to be discussed. 

 
While an OFD can be created in many ways, the following are the typical and suggested ordered steps 

for initially creating an OFD. Since the conceptual design process is iterative, the construction of an OFD 
is also quite iterative. It is constantly being modified and updated as more is understood about the system 
and as more detail is needed. Detail is oftentimes added hierarchically in order to enhance readability and 
meet the needs of various stakeholders. 

1. Denote input and output system boundaries. This is based on where flow items enter and leave 
the system being considered and modeled. Thus, indicate the items’ source(s) and sink(s). Typi-
cally, a source includes the specification of the frequency and quantity of arrivals. 

2. Indicate all key physical fixed resources (e.g. machines, workstations, conveyors, storage areas) 
using the appropriate OFD symbol. 

3. Connect the resources with directional arrows denoting the flow of items through the system us-
ing the Flow/Route (item) symbol. 

4. Identify points in the flow where choices in the flow need to be made. These points are noted us-
ing the decision symbol. The criterion for the decision is also specified. 

   TBD        duration  

name 

Note 

Question 
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5. Identify points in the flow where items are grouped or ungrouped (e.g. for transport or through 
assembly) and denote in the diagram using the OFD symbols. Specify the quantity of items that 
are combined. 

6. Identify where known delays occur (e.g. for processing or transport) and denote in the diagram 
using the OFD Duration symbol. Specify the time duration (for processes, this is typically a prob-
ability distribution). 

7. Associate shared resources (also referred to as mobile or dynamic resources) with processing and 
transport operations. 

8. Identify any flows between objects other than item flows, e.g. communication and information 
flows. 

9. Link shared resource associations to form resources paths using the Travel (resource) symbol. 
This step identifies missing shared resource paths since most shared resources operate in cycles or 
travel in “loops.” 

10. Identify and note on the diagram any planned or unplanned resource downtimes that need to be 
addressed in the model.  

11. Identify and note on the diagram the key performance measures that should be captured by the 
model. These are usually the factors that are considered when deciding among competing alterna-
tives.  

12. Annotate the diagram with comments, notes, and questions. 
 

5 ILLUSTRATIVE EXAMPLE  

A simple manufacturing cell is used to illustrate the application of the OFD methodology. Of course, 
OFDs can and have been applied to a variety of operations systems, such logistics, healthcare, and other 
service industries. 

Figure 2 provides an OFD representation of the example system; a plan view of the system is shown 
in the insert. The cell contains five pieces of processing equipment (labeled SR1-SR5), two fixed trans-
porters (conveyors labeled SR6 and SR7), six storage locations (labeled I1 through I5 and Q-SR4), and 
two operators (labeled A and B). Component items (i1 through i4) go through several processing and as-
sembly operations. In order to illustrate hierarchy, the turntable (SR3) is broken down into its main com-
ponents and thus is represented as SR3.1, SR3.2, and SR3.3. These are its processing positions; TT repre-
sents the turntable resource. 
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Figure 2: OFD of example system (shown in insert). 

The cell operation begins with the assembly of two items, i1 and i2, at workstation SR1 by operator 
A. The assembly is then moved to SR2 by Operator A. Operator A also sets up the turntable machine at 
position SR3.1. In addition, Operator A repairs machine SR1 when it breaks down.  

Concurrently to the above operations, component items i3 and i4 are processed at the turntable (op-
erations at SR3.1, SR3.2, and SR3.3) using fixture i5. When complete, the subassembly is automatically 
transferred to SR4. Operator B moves the subassembly from SR2 and combines it, at SR4, with the sub-
assembly produced by the turntable. Once the assembly is complete, operator B moves the product to SR5 
for final processing. After processing, operator B separates the fixture and assembly and move the assem-
bly to the outgoing conveyor, SR6. The fixture is automatically returned to its storage location via con-
veyor SR7. 

The Note symbol is used to indicate that a breakdown of SR1 will preempt Operator A so that SR1 
will be repaired as quickly as possible. Similarly, the Performance Measure symbols are used to indicate 
that the throughput of the cell and the utilization of operators A and B are important measures. 

The shared or mobile resource paths are constructed from the locations of the calls for service from 
the fixed resources. It is important to note that if only the items’ flows are considered, then some of the 
shared (mobile) resource travel segments would not be identified. It is only by connecting the activities 
for operators A and B and turntable TT that resource paths or cycles are completed. Those “missing” flow 
segments are shown with dot-dashed flow lines, rather than the dashed flow lines that are created by the 
items’ flows. This notion is an important extension of the methodology. Approaches that are only process 
driven, i.e. processes cause the demands on resources(e.g. a part moves to a machine) will overlook situa-
tions where the resources have tasks to complete which are not flow related, e.g. return to a previous posi-
tion to await a call from another resource to perform another task.   
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6 CONCLUSIONS 

The Object Flow Diagram provides an effective means to represent systems being modeled using dis-
crete-event simulation. OFDs are succinct, comprehensive, software-neutral diagrams that provide a solid 
foundation for conceptual model development and an effective means for communication with 
stakeholders that are not simulation experts. While based on concepts from other diagramming method-
ologies in process, enterprise, and computer system modeling, OFDs focus on the aspects of systems that 
are the most relevant to discrete-event simulation modelers. 
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