
Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds

A CONCEPTUAL DESIGN TOOL TO FACILITATE SIMULATION MODEL

DEVELOPMENT: OBJECT FLOW DIAGRAM

Allen G Greenwood Pawel Pawlewski

Mississippi State University Poznan University of Technology

260 McCain Engineering Building Dept. of Management Engineering
P. O. 9542 ul.Strzelecka 11

Mississippi State, MS, 39762, USA Poznan, 60-965, POLAND

Grzegorz Bocewicz

Koszalin University of Technology
Śniadeckich 2

Koszalin, 75-453, POLAND

ABSTRACT

This paper describes a diagramming methodology, referred to as an Object Flow Diagram (OFD), that is
intended to be a key component in the conceptual design of a discrete-event simulation model. It provides
an effective means for representing salient system elements and their relationships. It draws upon other
popular system diagramming methods, such as IDEF0 and IDEF3, to bring the relevant aspects of these
tools to the simulation modeler. It is intended to be easy to apply, with few symbols and constructs, yet
robust and comprehensive enough to represent a wide variety of systems. It is simulation software neutral
and thus provides a basis for model development in any language. A simple example is used to illustrate
the approach. The methodology has been used in industry projects and in simulation courses.

1 INTRODUCTION

It is important in any modeling, but especially in simulation modeling, to have a clear understanding of
the system being considered. Modeling is basically representing, in some abstract way, the key elements
and interactions that drive a system’s behavior as well as its structure. Therefore, it is paramount for mod-
elers to effectively capture and represent their understanding of a system so that they include the correct
and the salient aspects of the system in their model. Similarly, modelers need to communicate their under-
standings and representations to others.
 Diagrams, symbolic visual representations of information, effectively support critical thinking and
problem solving (Kosslyn 1980; Larkin and Simon 1987). Larkin and Simon (1987) indicate diagrams are
superior to verbal descriptions for problem solving since they group together information that is used to-
gether, use location to group information about a single element, and support a large number of perceptual
inferences.
 Modeling is a process – a set of coordinated activities that transform input into output. As a process,
modeling transforms needs, knowledge, and data into measures, new knowledge, and satisfied needs. In
simulation, the key transform in this process is the simulation model. Execution of the model provides
measures of system performance under varying conditions that provide the basis for analysis that ulti-
mately supports decisions and actions. Of course, the quality of the results depends on the quality of the
input – the definition and specification for the model.

1292978-1-4799-2076-1/13/$31.00 ©2013 IEEE

Greenwood, Pawlewski, and Bocewicz

 In simulation, two types of models – conceptual and programmed – are oftentimes used during the
modeling process. In a broad sense, one definition of a conceptual model is “a non-software specific de-
scription of the simulation model (that will be, is or has been developed), describing the objectives, in-
puts, outputs, content, assumptions and simplifications of the model.” (Robinson 2008). The programmed
model is the conceptual model converted to some simulation software environment (e.g. FlexSim, Arena,
Witness) for the purpose of execution and analysis.

As in product design, conceptual modeling is a necessary precursor to detailed design. It is dangerous
and oftentimes wasteful to begin detail design or modeling without a clear understanding of the problem,
system operation and behavior, and objectives of the project (needs of the decision maker). While there is
general agreement in the modeling community that a conceptual model needs to precede a programmed
model, there is little agreement as to what that conceptual model should be (Robinson 2006; Robinson
2012).
 We consider a critical part of a conceptual model to be a visual representation or diagram that depicts
the key elements in the system that need to be considered and the relationships among the elements, both
in terms of structure and behavior. The diagram should provide a generic description of the system and
not represent the elements in terms of any specific simulation software constructs. The diagram is meant
to depict how a system works at the level of detail required to meet the objectives of the simulation pro-
ject. We believe that most conceptual models are, or are composed of, some form of diagram.
 The conceptual model, and any supporting diagrams, is not just for modelers. For most models the
system is too complex for any one person to have a full understanding of the system and its behavior. As
a result, most modeling projects have many stakeholders with widely varied backgrounds, most of whom
are non-modelers. Therefore, an effective way is needed to present a collective understanding of the sys-
tem. Again, a diagram is an effective way to describe a system to a variety of stakeholders. It also pro-
vides an effective means to facilitate model validation with the stakeholders.
 Since a conceptual model defines and describes system boundaries that will be captured by the model,
diagrams provide an effective means to convey scope and to clarify what will, and equally important what
will not, be included in the model. Finally, diagrams can effectively provide context for the many and var-
ied stakeholders in a simulation project.
 This paper provides a diagramming methodology that can be, and has been, applied to facilitate the
conceptual design of discrete-event simulation models. Prior to defining the methodology, a brief discus-
sion of alternative diagramming approaches is provided. The paper concludes with an illustrative example
of the application of the methodology.

2 DIAGRAMMING ALTERNATIVES

Since simulation modeling and analysis is applied to a wide variety of systems – from manufacturing to
logistics to healthcare and other service providers – any diagramming methodology must be quite generic
and flexible. Also, since the stakeholders in a simulation project are typically quite diverse, the diagram-
ming methodology needs to be able to accommodate varying degrees of details and perspectives.

There are many types of diagrams that are used to help represent systems. Those closely related to
simulation modeling range from simple flow charts that depict detailed steps in a process to large, com-
plex enterprise architectures that depict key aspects of enterprises.

Discrete-event simulation (DES) modeling includes some special aspects that need to be considered
in a conceptual model diagram. Two broad classes of resources -- fixed and mobile (or shared) -- are
common in most simulation models and provide the overall structure of the model. Each of these classes
has unique and dynamic features and behaviors that need to be represented in a static diagram. Just as im-
portant, if not more so, are the relationships among the class element since most DES models focus on
flows, albeit mostly process or items flows, between objects. However, in addition to entity flows, infor-
mation flows and other types of communications between objects must also be considered. There are nu-
merous software products available to transform conceptual models into a programmed model, each of

1293

Greenwood, Pawlewski, and Bocewicz

which uses a different modeling approach and terminology. Having a neutral diagramming approach fa-
cilitates communication among different software users and creates a common language for those who are
not experts in a particular software.

Most existing diagramming approaches do not lend themselves to effectively developing conceptual
simulation models. While many of these approaches provide some support, or at least notions of what to
address in a diagram and how to represent it, they either are too simplistic or too extensive (contain too
many unneeded features and/or foundational requirements) for discrete-event simulation conceptual mod-
eling, Simple flow charts are often used in the early stages of simulation projects, but they are not rich
enough to capture many of the salient system features needed for simulation modeling. Since they are of-
ten used in detail code development, they might drive modelers toward too much detail at this stage of the
modeling process. Value-stream maps (for example, Jones and Womack (2002)) are also oftentimes used
as a starting point for simulation project, but again they do not provide enough detail for simulation mod-
eling.

There are many approaches on the opposite end of the spectrum. Enterprise modeling tools, such as
CIMOSA, GRAI, and ARIS, are too broad and massive for use in most simulation projects. See, for ex-
ample, Giachetti (2010) and Petrie (1992) for information about these tools. Aspects of UML (Unified
Modeling Language), a widely used notation for software developers, can be applied to simulation model-
ing, such as the Component or Object Diagrams for structure and the Activity Diagram for behavior.
However, they do not include all of the aspects needed to meet the needs of most simulation modelers and
having all aspects resident in a single diagram, as we propose, is much more effective. See, for example,
Fowler and Scott (2000) for information about UML tools. Similarly aspects of SysML (Systems Model-
ing Language), a general purpose modeling language for systems engineering, can be applied to simula-
tion modeling, but as with UML, the toolset is too broad and has too much overhead, yet is incomplete for
most simulation applications. For more information on SySML, see for example Holt (2008) and Frieden-
thal (2008).

The DEVS (Discrete-Event System Specification) formalism provides a visual approach to model
specification. However, we believe the representation is typically more applicable later in the model de-
velopment process and has limited use during conceptual design and in model formulation. For more in-
formation on DEVS, see Hwang and Zeigler (2006) and Zeigler et al. (2000).

Since discrete-event simulation models are typically process-based, then a reasonable foundation for
modeling diagrams are constructs used in business process modeling. As described below, our approach
is process based. Both Onggo (2009) and Onggo and Karpat (2011) use a portion of Business Process
Model and Notation (BPMN) in their approach. BPMN is Object Management Group’s (OMG) graphical
notation that “provides business with the capability of understanding their internal business procedures …
and communicate these procedures in a standard manner.” (OMG 2013). See also OMG (2010) and Briol
(2010) for more information on BPMN

Onggo and Karpat (2010) propose the use of BPMN as a foundation for a conceptual model dia-
gramming methodology. While their approach could be used in discrete-event simulation, albeit the con-
structs are a bit limited, their focus is on agent-based simulation models.

3 OBJECT FLOW DIAGRAM METHODOLOGY

As the name indicates, the proposed Object Flow Diagram (OFD) methodology primarily focuses on the
key objects in a system that need to be modeled via simulation and the relevant flows that occur between
those objects.

The OFD methodology is introduced in Beaverstock et al. (2012) as a conceptual modeling approach
to facilitate the simulation model development process. It is intended to help the modeler document the
system being considered and think through many of the initial modeling issues, e.g. defining system
boundaries, identifying key components, assessing the level of detail needed. This paper more fully de-

1294

Greenwood, Pawlewski, and Bocewicz

fines and describes the approach, as well as providing extensions and refinements to the basic methodol-
ogy.

The OFD methodology is designed to be software neutral so that it can be used by modelers with a
wide range backgrounds and can be an effective means of communication with project stakeholders that
have little knowledge of simulation software. Being software neutral also helps modelers avoid moving
too quickly to a modeling approach or programming prematurely without adequate system understanding
and problem definition. As a result, the OFD approach is not conducive, by design, to automatic model
code generation.

Many of the symbols used in an OFD are based on the IDEF (Integration DEFinition) methodology
and especially IDEF0. See Giachetti (2010) for a summary of the IDEF methodology. As shown in Figure
1, a symbol using IDEF0’s ICOM notation uses all four sides of the symbol. That is, the left side is for
inputs to, in a simulation model’s case, the resource; flow items that are transformed or consumed by the
operation. The right-side of the symbol is for outputs from the resource; flow items that are produced by
the operation. The bottom side is for “mechanisms,” other resources used to support the operation, such as
operators, empty containers, etc. The top side of the symbol is for “controls,” those things that constrain
operations or are conditions used by functions in the model, e.g. messages and downtimes. OFDs, like
IDEF0 diagrams, are hierarchical – details of an object can be expanded in a lower-level representation of
the object.

Figure 1: IDEF0 ICOM notation (B4).

As indicated earlier, the methodology, symbols, and terminology are simulation software neutral. Use
of OFDs can help simulation modelers develop better models regardless of the software they use to im-
plement their models.

Most discrete-event simulation models focus on a series of operations (process, transport, store,
group/ungroup) that are performed on discrete items (parts, people, packages, etc.) as they flow through a
system of resources. Therefore, the OFD primarily takes the perspective of the item flowing through the
system. However, it considers mobile (typically shared) resource flows as well. While some simulation
software refer to the items flowing through the model as entities or transactions, we refer to these as flow
items – we believe this to be a more descriptive term.

The symbols that are used in an OFD, along with a brief functional definition of each symbol, are
presented in Tables 1 through 3. Table 1 contains the symbols used to represent basic operations – these
include process, transport, store, and group/ungroup. Since many operations include known delays, we in-
clude the duration symbol in this category. Thus, an operation symbol and duration symbol are oftentimes
used together. The operations symbols all use the ICOM (input, control, output, and mechanism) notation
from IDEF0. That is, the sides of the symbols are significant as described above.

1295

Greenwood, Pawlewski, and Bocewicz

Table 1: Symbols denoting basic operations.

OFD Symbol Functional Description
Process

Transformation of a flow item.
Typically involves a known delay and thus includes a duration
symbol.
name = identifier
cap = capacity of the resource; maximum number of items that
can be contained within the object. If capacity is not an issue, de-
note (inf) for infinite.

Transport

Transportation or movement of a flow item.
Typically involves a known delay and thus includes a duration
symbol. However, if associated with a shared (mobile) resource,
the duration may be determined by the speed of the mobile re-
source and distance traveled. Also, distance transported may be
annotated on the symbol.
name = identifier
qty/cap = the quantity of items moved at a time and/or the total
capacity of the resource (maximum number of items that can be
contained within the object). If capacity is not an issue, capacity
denoted as (inf) for infinite.

Storage

Temporary holding area for flow items.
name = identifier
cap = total capacity of the resource (maximum number of items
that can be contained within the object). If capacity is not an is-
sue, capacity denoted as (inf) for infinite.

Group/Ungroup

Combining items into a single unit, or conversely, splitting a unit
into multiple items.
qty = number of items grouped or number of items ungrouped or
split (copied)
basis = criterion for grouping or ungrouping, e.g. combine based
on product type.
May involve a known delay before or after grouping; thus it may
include a duration symbol.
Oftentimes the symbols are associated with another operation and
thus if the symbol on the left is placed on the left or input side of
an object, it denotes a combine operation. Similarly, if the symbol
on the right is placed on the right or output side of the object, it
denotes a split or separation operation.

Duration

Activity or task performed by a basic operation object. Therefore,
oftentimes used in conjunction with another symbol. There may
be multiple processes conducted sequentially, such as a setup and
then a basic process activity.
time – time to complete an activity

 Note, for all operations symbols:

1. They usually represent a fixed-location physical resource.
2. For all, except the Duration symbol, the sides are significant. They use IDEF0’s ICOM (Input-

Control-Output-Mechanism) notation.

name
(cap)

name
(qty/cap)

name
(cap)

basis

qty qty

basis

time

1296

Greenwood, Pawlewski, and Bocewicz

• Left-side is for inputs to the resource; the primary item(s) that are transformed or consumed
by the object.

• Right-side is for outputs from the resource; the primary item(s) that are produced by the ob-
ject.

• Bottom-side is for “mechanisms,” other resources used to support operations of the object.
• Top-side is for “controls,” those things that constrain operations or are conditions for func-

tions of the object

Table 2 contains symbols that are flow related. This includes the flow of items (often referred to as

routing) and the flow of resources (mobile or shared). Since routing implies alternative paths, decision
points and criteria need to be specified. This is done through the Decision symbol. Flow items need to be
created and destroyed beyond the system boundaries. Therefore, there must be a source to create the flow
items and a sink to remove them from the model at the appropriate time. These are denoted by the Source
and Sink symbols in an OFD. Mobile resources travel or flow through the system as well and their paths
need to be identified and specified. Usually, processing objects need more than just physical flow items;
they often need information, and other forms of communication, from other objects.

Table 3 contains the remaining OFD symbols – they support the operation- and flow-oriented sym-
bols. Resources – both fixed and mobile – are not always available; therefore, there is a Downtime sym-
bol that indicates the time between breakdowns and the duration of the breakdown. Performance meas-
ures are used to decide which of the alternatives being considered is better. Simulation can collect
information on any measure of performance and most software automatically collect statistics on many
common measures. However, it important to identify early in the modeling process what measures are the
most important. Those measures are noted on the OFD through a special symbol. The OFD is intended to
be used more like a sketch than a final drawing. Therefore, annotation is encouraged. A Note symbol is
used for clarification; a Questions symbol is used to call out a point of uncertainty that needs further defi-
nition or specification.

4 APPLYING OBJECT FLOW DIAGRAMS

Since the methodology is intended to be used to help modelers identify and understand the key compo-
nents of a system and their interactions, and to convey that information to project stakeholders, there is
considerable latitude in how it is applied. After all, it is a model itself, albeit a conceptual model, and just
like the resulting simulation model, it should only be as complex as it needs to be to be in order to address
the problem at hand. Therefore, the OFD symbols should be used sparingly, it should only be as detailed
as needed to adequately represent the system so that it can be modeled appropriately.

1297

Greenwood, Pawlewski, and Bocewicz

Table 2: Symbols denoting flows between operations.

OFD Symbol Functional Description
Flow/Route (item)

Link between operations; route that items flowing through the
models take. The following two parameters are optional - it de-
pends on if clarification is needed. For example, if a single type
of item is flowing through the model, then this can be stated as a
note on the diagram and not on each link.
item = name of the item(s) following the route
qty = quantity of items that flow together
Flows usually require time for items to move between objects;
therefore, a duration symbol may be included. However, if the
flow is made through a shared (mobile) resource, the duration
may be determined by the speed of the mobile resource and dis-
tance traveled. Also, distance transported may be annotated on
the symbol.

Decision

Decision rule typically used to either route an item out or “pull”
an item into an operation.
criterion = rule used to make the selection
Typically added to an operations symbol. If placed on the left or
input side of the object, it denotes a pull operation; if placed on
the right or output side of the object, it denotes a routing decision.

Source

Creates items that flow in the model. Defines the input system
boundary.
freq = time between arrivals
qty = quantity of items that enter the system at each arrival event

Sink

Destroys items that flow through the model; output system
boundary.

Shared (mobile) resource

Performs activities at multiple operations. Typically involves
processing or moving items, repairing equipment.
name = identifier
qty = number of resources needed to perform an operation

Travel (resource)

Path followed by shared (mobile) resource to perform activities
at, or between, various objects.

Communication

Link between objects that involves information, messages, etc.
These links do not represent the flow of an item.

(item/qty)

criterion

(freq,qty)

name
(qty)

1298

Greenwood, Pawlewski, and Bocewicz

Table 3: Supporting symbols

OFD Symbol Functional Description
Downtime

Denotes resources, both fixed and shared(mobile), may become
unavailable, or down. Downtimes can occur for a variety of rea-
sons, e.g. breakdowns, preventative maintenance, operator
breaks, shift schedules.
TBD = time between downtimes
duration = how long the resource is down
Objects may undergo several types of downtime (e.g., planned
and unplanned breakdowns). Multiple downtimes can be repre-
sented with multiple symbols or with a single symbol and a note
describing the downtimes.

Performance Measure

System variable that is of particular interest. An output of a simu-
lation model; sometimes referred to as a response variable or de-
pendent variable.
name = identifier
Attached to the object of interest; e.g. “average content” might be
associated with a Storage symbol or “utilization” might be asso-
ciated with an operation or a shared (mobile) resource.

Note/Comment

Annotation that provides information about the system, an object,
a flow, etc.

Question

Annotation that raises one or more questions that need to be ad-
dressed. It identifies the need for additional information, or de-
notes issues that need to be discussed.

While an OFD can be created in many ways, the following are the typical and suggested ordered steps

for initially creating an OFD. Since the conceptual design process is iterative, the construction of an OFD
is also quite iterative. It is constantly being modified and updated as more is understood about the system
and as more detail is needed. Detail is oftentimes added hierarchically in order to enhance readability and
meet the needs of various stakeholders.

1. Denote input and output system boundaries. This is based on where flow items enter and leave
the system being considered and modeled. Thus, indicate the items’ source(s) and sink(s). Typi-
cally, a source includes the specification of the frequency and quantity of arrivals.

2. Indicate all key physical fixed resources (e.g. machines, workstations, conveyors, storage areas)
using the appropriate OFD symbol.

3. Connect the resources with directional arrows denoting the flow of items through the system us-
ing the Flow/Route (item) symbol.

4. Identify points in the flow where choices in the flow need to be made. These points are noted us-
ing the decision symbol. The criterion for the decision is also specified.

 TBD duration

name

Note

Question

1299

Greenwood, Pawlewski, and Bocewicz

5. Identify points in the flow where items are grouped or ungrouped (e.g. for transport or through
assembly) and denote in the diagram using the OFD symbols. Specify the quantity of items that
are combined.

6. Identify where known delays occur (e.g. for processing or transport) and denote in the diagram
using the OFD Duration symbol. Specify the time duration (for processes, this is typically a prob-
ability distribution).

7. Associate shared resources (also referred to as mobile or dynamic resources) with processing and
transport operations.

8. Identify any flows between objects other than item flows, e.g. communication and information
flows.

9. Link shared resource associations to form resources paths using the Travel (resource) symbol.
This step identifies missing shared resource paths since most shared resources operate in cycles or
travel in “loops.”

10. Identify and note on the diagram any planned or unplanned resource downtimes that need to be
addressed in the model.

11. Identify and note on the diagram the key performance measures that should be captured by the
model. These are usually the factors that are considered when deciding among competing alterna-
tives.

12. Annotate the diagram with comments, notes, and questions.

5 ILLUSTRATIVE EXAMPLE

A simple manufacturing cell is used to illustrate the application of the OFD methodology. Of course,
OFDs can and have been applied to a variety of operations systems, such logistics, healthcare, and other
service industries.

Figure 2 provides an OFD representation of the example system; a plan view of the system is shown
in the insert. The cell contains five pieces of processing equipment (labeled SR1-SR5), two fixed trans-
porters (conveyors labeled SR6 and SR7), six storage locations (labeled I1 through I5 and Q-SR4), and
two operators (labeled A and B). Component items (i1 through i4) go through several processing and as-
sembly operations. In order to illustrate hierarchy, the turntable (SR3) is broken down into its main com-
ponents and thus is represented as SR3.1, SR3.2, and SR3.3. These are its processing positions; TT repre-
sents the turntable resource.

1300

Greenwood, Pawlewski, and Bocewicz

Figure 2: OFD of example system (shown in insert).

The cell operation begins with the assembly of two items, i1 and i2, at workstation SR1 by operator
A. The assembly is then moved to SR2 by Operator A. Operator A also sets up the turntable machine at
position SR3.1. In addition, Operator A repairs machine SR1 when it breaks down.

Concurrently to the above operations, component items i3 and i4 are processed at the turntable (op-
erations at SR3.1, SR3.2, and SR3.3) using fixture i5. When complete, the subassembly is automatically
transferred to SR4. Operator B moves the subassembly from SR2 and combines it, at SR4, with the sub-
assembly produced by the turntable. Once the assembly is complete, operator B moves the product to SR5
for final processing. After processing, operator B separates the fixture and assembly and move the assem-
bly to the outgoing conveyor, SR6. The fixture is automatically returned to its storage location via con-
veyor SR7.

The Note symbol is used to indicate that a breakdown of SR1 will preempt Operator A so that SR1
will be repaired as quickly as possible. Similarly, the Performance Measure symbols are used to indicate
that the throughput of the cell and the utilization of operators A and B are important measures.

The shared or mobile resource paths are constructed from the locations of the calls for service from
the fixed resources. It is important to note that if only the items’ flows are considered, then some of the
shared (mobile) resource travel segments would not be identified. It is only by connecting the activities
for operators A and B and turntable TT that resource paths or cycles are completed. Those “missing” flow
segments are shown with dot-dashed flow lines, rather than the dashed flow lines that are created by the
items’ flows. This notion is an important extension of the methodology. Approaches that are only process
driven, i.e. processes cause the demands on resources(e.g. a part moves to a machine) will overlook situa-
tions where the resources have tasks to complete which are not flow related, e.g. return to a previous posi-
tion to await a call from another resource to perform another task.

1301

Greenwood, Pawlewski, and Bocewicz

6 CONCLUSIONS

The Object Flow Diagram provides an effective means to represent systems being modeled using dis-
crete-event simulation. OFDs are succinct, comprehensive, software-neutral diagrams that provide a solid
foundation for conceptual model development and an effective means for communication with
stakeholders that are not simulation experts. While based on concepts from other diagramming method-
ologies in process, enterprise, and computer system modeling, OFDs focus on the aspects of systems that
are the most relevant to discrete-event simulation modelers.

REFERENCES

Beaverstock, M., A. Greenwood, E. Lavery, and W. Nordgren. 2012. Applied Simulation Modeling and
Analysis using FlexSim. 3rd ed. Orem, Utah: FlexSim Software Products, Inc.

Briol, P. The Business Process Modeling Notation BPMN 2.0 Distilled. Ingenierie des Processus.net.
Fowler, M., and K. Scott. 2000. Design of Enterprise Systems. Boca Raton, Florida: CRC Press.
Friedenthal, Sanford. 2008. A Practical Guide to SysML: The Systems Modeling Language. Morgan

Kaufmann / The OMG Press.
Giachetti, R. E. 2010. UML Distilled. 2nd edition. Reading, Massachusetts: Addison-Wesley.
Hwang, M. H. and Zeigler, B. P. 2006. "A Modular Verification Framework using Finite and Determinis-

tic DEVS." In Proceedings of 2006 DEVS Symposium, pp. 57–65, Huntsville, Alabama.
Jones, D., and J. Womack. 2002. Seeing the Whole: Mapping the Extended Value Stream. Brookline,

Massachusetts: The Lean Enterprise Institute.
Holt, Jon. 2008. SysML for Systems Engineering. The Institution of Engineering and Technology.
Kosslyn, S. M. 1980. Image and Mind. Harvard University Press. Cambridge, MA.
Larkin, J. and Simon, H. 1987. “Why a Diagram is (Sometimes) Worth Ten Thousand Words,” Cognitive

Science, 11, pp. 65-99.
OMG (Object Management Group). 2010. “BPMN 2.0 by Example.” Version 1. June 2010.

http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf
OMG (Object Management Group) 2013. “Business Process Model and Notation.” http://www.bpmn.org

Accessed Jul 12, 2013.
Onggo, B. S. S. “Towards a Unified Conceptual Model Representation: A Case Study in Healthcare.”

Journal of Simulation, 3, pp. 40-49.
Onggo, B S.S. and Karpat, O. 2011. “Agent-Based Conceptual Model Representation Using BPMN.” In

Proceedings of the 2011 Winter Simulation Conference, Edited by S. Jain, R. R. Creasey, J. Himmel-
spach, K. P. White, and M. Fu. Piscataway, New Jersey: Institute of Electrical and Electronics Engi-
neers, Inc.

Petrie, C. J. (Editor). 1992. Enterprise Integration Modeling: Proceedings of the First International Con-
ference. Cambridge, Massachusetts: MIT Press.

Robinson, S. 2006. “Conceptual Modeling for Simulation: Issues and Research Requirements.” In Pro-
ceedings of the 2006 Winter Simulation Conference, Edited by L. F. Perrone, F. P. Wieland, J. Liu, B.
G. Larson, D. M. Nicol, and R. M. Fujimoto. Piscataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc.

Robinson, S. 2008. “Conceptual Modelling for Simulation Part I: Definition and Requirements.” Journal
of the Operational Research Society 59 (3): 278-290.

Robinson, S. 2012. “Tutorial: Choosing What to Model – Conceptual Modeling for Simulation.” In Pro-
ceedings of the 2012 Winter Simulation Conference, Edited by C. Laroque, J. Himmelspach, R. Pasu-
pathy, O. Rose, and A.M. Uhrmacher. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

1302

Greenwood, Pawlewski, and Bocewicz

Zeigler, B., Praehofer, H., and Kim., T. G. 2000. Theory of Modeling and Simulation, 2nd Ed. Academic

Press, San Diego, CA

AUTHOR BIOGRAPHIES

ALLEN G GREENWOOD is Professor of Industrial and Systems Engineering at Mississippi State Uni-
versity, USA where he teaches systems simulation, enterprise systems engineering, and project manage-
ment. His research interests/expertise include the design and analysis of production and project systems;
simulation modeling, analysis, and optimization; and the design and application of decision-support sys-
tems. He is coauthor of Applied Simulation Modeling and Analysis using Flexsim. His email address is
greenwood@ise.msstate.edu.

PAWEL PAWLEWSKI is an associate professor at the Department of Computing and Management at
Poznan University of Technology. His research interests include organization of manufacturing systems,
monitoring of operations management, reengineering and IT application for logistics, process modeling,
simulation and optimization. He is author or co-author over 100 manuscripts including books, journals
and conference proceedings. He is managing director of SOCILAPP Simulation and Optimization Center
in Logistics and Production Processes. His email address is pawel.pawlewski@put.poznan.pl.

GRZEGORZ BOCEWICZ is an assistant professor at the Department of Electronics and Computer Sci-
ence of Koszalin University of Technology in Poland. He obtained a Ph.D. degree in Computer Sciences
from the Wrocław University of Technology, Poland. His research interests are in the areas of the opera-
tional research, decision support systems, constraints programming techniques. He is the author and co-
author over 100 manuscripts including two books, international journals, and conference proceedings. His
email address is bocewicz@ie.tu.koszalin.pl.

1303

