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ABSTRACT

Development of an accurate heat transfer model of buildings is of high importance. Such a model can be
used for analyzing energy efficiency of buildings, predicting energy consumption and providing decision
support for energy efficient operation of buildings. In this paper, we propose a PDE-ODE hybrid model
to describe heat transfer through building envelope as well as heat evolution inside building. A inversion
procedure is presented to recover parameters of equations from sensor data and building characteristic so
that the model represents a specific building with current physical condition. By matching the simulated
temperature and thermal energy dynamic profile with EnergyPlus generated data and actual field data,
we validate the model and demonstrate its capability to predict energy demand under various operation
condition.

1 INTRODUCTION

The building sector, which includes commercial and residential buildings in the Unites States, accounts
for 40% of the nation’s total energy consumption (DOE 2006). It has also been responsible for 45% of the
green-house gas (GHG) emissions. The prediction of energy usage in the building is useful for identifying
opportunities for improving energy performance, saving energy consumption and for reducing greenhouse
gases (GHG). However, it is difficult to develop a model that will accurately predict energy consumption
in buildings because the energy consumption is influenced by building characteristics, HVAC systems,
operations, occupants’ behavior, weather condition and many other factors. Therefore, many approaches
for building energy models that estimate building energy consumption in various conditions have been
proposed and used from building design phase to operation and control and to retrofitting.

These approaches can be classified into two major types: forward and inverse modeling. Although the
inverse modeling generally requires high level of mathematical techniques and expertise, it would be more
feasible to predict energy consumption of existing building at a certain circumstance because the method
needs a smaller set of input data comparing with the forward modeling and the key thermal parameters
are deduced from actual building performance data (ASHRAE 2009). Dynamic inverse model as one
of data-driven modeling for building energy performance is a method that allows estimation of thermal
parameters of a building or space by using differential equations that describe the heat transfer phenomena
(Andresen and Brandemuehl 1992).

A number of papers have been published for the dynamic inverse modeling, that aim at estimating key
heat transfer parameters of building using sensor and meter data. Previous studies have applied a simplified
thermal-network model (Wang and Xu 2006; Braun and Chaturvedi 2002; Fraisse et al. 2002) or thermal
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response model (Armstrong, Leeb, and Norford 2006), but many of them used simulated data to recover
the thermal parameters or tested the model under a small laboratory setting (Park et al. 2011). One of the
most common models is the simplified building internal mass model 2R2C (Schultz and Svendsen 1998),
which from our experience, may not produce neither accurate nor robust prediction that are good enough
for real buildings with real sensor data.

In this paper, we develop an integrated PDE-ODE model for describing heat transfer through a building
envelope and thermal energy balance inside a building zone. Multiple terms in these equations are designed
with multipliers used to adjust contribution of these terms. An inversion procedure is proposed to estimate
these multipliers using sensor data from building management system (BMS) by minimizing the misfit
between simulated and measured temperature. So that the tuned model represents a specific building under
a current physical condition and these recovered effective coefficients reflect building current status due to
aging and degrading. The procedure also addresses issues associated with avoiding local minimization and
data over-fitting which often occurs in data mining processes and nonlinear programming. In fact, we are
facing great challenge when dealing with data uncertainty coming from temperature dynamics simulation
in finer time resolution inside a building. Weather (temperature, humidity, sky condition), wall surface
and zone temperature, occupancy status and operation schedule are all sources of uncertainties in hourly
resolution. Nevertheless, by comparing our simulation data with EnergyPlus generated data and actual field
data, we can validate our model and demonstrate its capability to predict thermal energy demand under
various conditions, for instance, for meeting a specified set-point during operation hours.

The paper is organized as follows. Firstly, we present a formulation of PDE-ODE model that describes
heat transfer equations through the building envelope and interior zone. Secondly, we describes our
calibration and simulation procedure with optimization technique. Thirdly, we validate the model by
comparing the simulated result with EnergyPlus data, conduct calibration with field data from a commercial
building and present simulation results with the recovered parameters under different conditions. Lastly,
we provide conclusion and summary of the study.

2 FORWARD PHYSICAL MODEL

The enclosure, which includes wall, windows, floor and roof of a building (or a zone) provides insulation
for the occupied space. Based on thermodynamics principles, heat can transfer through the enclosure
(building envelope) in the form of conduction, convection and solar radiation.

Mathematically, wall temperature Tws for the side s ∈ {N,E,S,W,R} satisfies the following PDE

ρwCwpdws
∂Tws

∂ t
=

∂

∂x

(
λkK

∂Tws

∂x

)
,(x, t) ∈ (0,dws)× (t0, t f ) (1)

with boundary conditions

λkK
∂Tws

∂x
(0, t) =−λehhos (Tamb(t)−Tws(0, t))−λwsQsol(t)+(λeos−1)σ (T0 +Tws(0, t))

4 ,

λkK
∂Tws

∂x
(dws, t) = λihhis

(
T sen

zone(t)−Tws(dws, t)
)
− (λeis−1)σ (T0 +Tws(dws, t))

4 .

(2)

The heat flux at wall surfaces consists of the convection driven by the difference between ambient
air temperature and surface temperature, solar radiation on wall and heat radiated from wall. In Equation
(1), ρw is wall density, Cwp is specific heat of wall, hos,his are convection coefficients which are functions
of surrounding wind speed and temperature difference. K is wall conductivity; Qsols solar radiation; dws
thickness of wall, subscript s means that its value is different for each wall direction; σ is the Stefan-
Boltzmann constant. T0 = 273.15◦K is the absolute temperature corresponds to 0◦C. Tamb,T sen

zone are ambient
and zone temperature respectively. Multipliers λk,λih,λeh are for conductivity and internal and external
convection respectively. Note that no side of wall dependence is assumed here. Multiplier λws are for
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heat absorption coefficient, which is different for different sides, since each wall might be under different
shading effect from nearby buildings or trees and with different color and smoothness. The multipliers
λeos,λeis are used to adjust external and internal wall heat radiation. Assuming we have a good estimation
for the physical parameters, we expect all λ ’s value to be close to 1. In such case, the entire factor for
heat radiation could be negative. As a matter of fact, wall surface temperature reading from sensor is most
likely to be inaccurate, and strongly depend on sensor location. We would like to treat this term as some
kind of artificial term to handle a systematic and consistent error resulting from improper-emplacement of
surface sensors.

Temperature Tzone inside a zone satisfies the following ODE

λacρairCapVzone
dTzone(t)

dt
= λin f ρairCapṀin f (Tamb(t)−Tzone(t))

+λih ∑
s

hisAws (Tws(dws, t)−Tzone(t))+∑
s
(λeis−1)σ (T0 +Tws(dws, t))

4

+λgu ∑
s

UgsAgs (Tamb(t)−Tzone(t))+λshgc ∑
s

λwsQsolAgs +λloadQload

+ρairCapṀsys (Tsys(t)−Tzone(t))

(3)

where ρair is density of air, Cwp is specific heat of air, Vzone is zone volume, Aws and Ags are areas of wall
and window respectively, Ugs is U-value of window, Ṁin f is infiltration rate and Ṁsys is AHU supply air
flow rate. Qload is internal load, including contribution from lighting, electric equipment and occupants,
Tsys is the system supply air temperature. Multipliers λac,λgu,λin f ,λshgc,λload are for air heat capacity, for
U-value of window, for air infiltration rate, for solar heat gain coefficient through window and for internal
load respectively. The first term stands for air infiltration through building enclosure. The second and third
terms in the right hand side represent convection and heat radiation contribution from different walls. The
internal wall temperature Tws and the multipliers λis and λeis were established during calibrating of the
above PDE system. The fourth term stands for heat conduction through windows. The fifth term is for solar
radiation contribution through window. The sixth term is for internal load, including heat contribution from
lighting, equipment as well as occupants’ body. The multiplier λload can vary, depending on time of a day.
A piecewise constant function is chosen with a constant value for every three hours in a day. The seventh
term is for system supplied energy, which is used to maintain the comfort level of zone temperature. Note
that heat contribution through window is modeled differently compared with the heat transfer through wall,
and is modeled directly through the third and fifth terms in Equation (3), because window heat capacity is
much smaller than wall heat capacity. The value of λac will reflect wall partition, furniture and equipment
layout inside the zone. Both λgu and λin f are factors of terms containing Tsmb(t)−Tzone(t) , and would be
correlated in current model.

We implement a numerical PDE solver for the parabolic equation using Crank-Nicolson scheme and
an ODE solver using implicit Euler scheme. Both numerical algorithms for solving our PDE and ODE
equations with given multipliers’ value are unconditionally stable due to implicit nature on time-step
evolution. The multipliers in these equations are used to adjust coefficients of various terms, since some
of the specified values might not be accurate in current situation.

3 INVERSION PROCEDURE

In order to simulate thermal evolution inside a building, we need to establish multipliers’ value. In this
section, we describe our procedure to find out multipliers’ value using real sensor data. Specifically, the
multipliers will be a solution of certain minimization problem. The overall procedure is separated into two
steps to overcome correlations among multipliers.
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3.1 Minimization with PDE Constraint

Inversion procedure for parameters estimation is posed as a minimization the objective function defined by

min
λi

∑
k

∑
s

[
(Tws(0, tk;λ )−T sen

wos(tk))
2+ (Tws(dws, tk;λ )−T sen

wis (tk))
2
]
+η ∑

i
(λi−1)2 (4)

by choosing proper multipliers

{λi}= {λk,λih,λeh,λws,λeos,λeis‖s ∈ N,S,E,W,R}

where Tws(x, t;λ ) is a solution of PDE defined in (1) with boundary conditions (2), T sen
wos(t) is sensor data

of outside wall surface temperature and T sen
wis (t) is sensor data for inside wall surface temperature. The

first term represents the sum of squared differences between simulated outside wall surface temperature
and measured outside wall surface temperature – a misfit measure for outside wall surface temperature.
Similarly, the second term represent the same misfit measure for inside wall surface temperature. Our goal
is to find a set of multipliers so that the misfit defined by first two terms is minimized. In order to avoid
over-fit to the noisy available data, a regularization term, the third term in the objective function (4), is
included. Since those multipliers are multiplying factors of well-defined nominal physical value, they are
expected to be close to one.

There are two major challenges in this optimization problem. First, our objective may not be convex
function and a local minimum may be achieved. To address this, we randomize the initial guesses for
these multipliers and perform the optimization multiple times. We choose the solution that obtained the
minimal objective function value. Second, the solution may result from over-tuning the model from sensor
data for the chosen period, since real sensor data is likely to contain errors and operation condition might
be different from our expected one. The solution corresponding to the least misfit for specific period is
not necessarily good solution for other periods and the misfit could become larger when applying the
recovered multipliers on other periods. The regularization term helps us to address this issue through
choosing a proper regularization coefficient. We first separate the collected data into two parts: training
and validation sets. For each chosen regularization coefficient, a solution corresponding to the least
objective value on the training set is found. Then the misfit value is calculated on the validation set with
the solutions from different regularization coefficients. Finally, the solution corresponding to the least
misfit on the validation set with certain regularization coefficient is chosen. Since it is impossible to test
all different regularization coefficients over a large range, we pick the coefficient η from a discrete set
{0.1,0.01,0.001,0.0001,0.00001} that covers different order of values.

Note that our objective function includes misfits from all walls, but subject to the same multipliers
for conductivity and convection. In this way, we also reduce chance to over-fit certain biased sensor data.
Even doing so, we might not fully resolve the over-tuning issue and will propose better statistical sampling
in the conclusion section.

3.2 Minimization with ODE Constraint

The additional multipliers

{λ ′i }= {λac,λgu,λin f ,λshgc,λload} (5)

are chosen to minimize the following objective function, i.e.

min
λ ′i

∑
k

(
Tzone(tk;λ

′)−T sen
zone(tk)

)2
+η

′
∑

i
(λ ′i −1)2 (6)

where Tzone(t;λ ′) is the ODE solution of Equation (3) and T sen
zone(t) is sensor data of zone temperature. The

first term in the objective (6) represents a misfit of zone temperature between simulated and measured and
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the second term is for regularization term. We use a similar procedure described in the last subsection to
find these additional multipliers defined in (5). Note that, the multiplier λac could be greater than one, since
there are partitioning walls and furniture inside a zone which are not being modeled, and the multiplier
λload is a function of time in a day.

3.3 Stepwise Calibration

The whole calibration procedure is shown in Figure 1. First, the minimization problem with PDE constraint
is solved and a set of multipliers related to building envelope are recovered. Second, the minimization
problem with ODE constraint is solved and additional multipliers are recovered to estimate internal load
impact. The second minimization will use some information coming from the first minimization problem,
like thermal energy consumption related to building envelope.

The left part of Figure 1 shows calibration procedure through minimization with PDE constraint. There
are two loops in the procedure. The inner loop is used to get a solution with the least objective value on
the train data for multiple random initial guesses with a given regularization coefficient in order to achieve
a global minimum. The outer loop is used to get a solution with the least misfit on the validation data with
different regularization coefficients in order to avoid an over-fitting situation. The right part of Figure 1
shows calibration procedure through minimization of the objective with ODE constraint.

Figure 1: Stepwise calibration procedure.

When solving the minimization problem with PDE constraint, we not only estimate multipliers related
to building envelope, but also find out heat-contribution to the internal walls to the zone. Heat gain or loss
through building envelope will be substituted into the ODE model. With measured system contribution from
AHU data, we can actually estimate internal load change in a day. In the other words, the load multiplier
is found as a function of time in a day. In fact, our proposed stepwise calibration reduces impact from
correlation among multipliers. It helps us to discover energy consumption distribution between building
envelope and internal load more accurately.
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4 SIMULATION METHOD

After recovering multipliers through calibration using sensor data, we can use the integrated PDE-ODE
model to simulate zone temperature dynamics and conduct what-if analysis, in addition different control
strategies can be evaluated to meet comfortable level requirement.

There are two approaches for solving the system. The first approach is to solve PDE and ODE together
and to obtain wall surface temperature and zone temperature under a given ambient temperature from
weather forecast. The second approach is to solve PDE and ODE iteratively. First, with an initial guess of
zone temperature, we solve the PDE and obtain internal wall surface temperature. Second, we solve the
ODE with the internal wall surface temperature found from PDE and to obtain a new zone temperature.
Then we solve the PDE again with the new zone temperature coming from solution of ODE. That procedure
will be iterated several times until convergence.

When solving the ODE, we need to know AHU supply air flow rate and supply temperature Ṁsys,Tsys
for these simulations. The purpose of air handling units is to adjust temperature and humidity inside a zone
and maintain a comfortable climate for occupants. For a constant air volume (CAV) system, we only need
to determine supply air temperature, In order to achieve this, we define the following objective function as

Func(Tsys) =Ccp

∫ t2

t1
(1− p(t))Ṁsys(Tsys(t)−Tzone(t;Tsys))

±dt

+Ccp

∫ t2

t1
p(t)Ṁsys (Tsys(t)−Tamb(t))

± dt

+µ

∫ t2

t1
sign

(
Ṁsys

)
|Tzone(t;Tsys)−Tsp(t)|2dt

+µ

∫ t2

t1

(
1− sign(Ṁsys

)
|Tsys|2dt.

(7)

Here Tzone(t;Tsys) stands for zone temperature resulting from the ODE corresponding to a given Tsys. Tsp
is a user specified temperature set point which may vary over time. p is fresh air fraction when both
ventilation and circulation are in operation and can be specified based on ventilation strategy. µ is the
weight for meeting set point requirement. The first two terms represent thermal energy requirement and
it can be either cooling or heating energy depending on either positive or negative part of the difference
in the integrand. The first term represents air circulating, which is driven by the difference between return
air temperature and supply air temperature Tsys; the second term represents air ventilation, which is driven
by the difference between ambient air temperature and supply air temperature Tsys. The third term in the
objective measures the difference between zone temperatures and set point temperature. sign(Ṁsys) is a
indicator function, whose value is 1 if Ṁsys > 0 and 0 otherwise. With this factor in the third term, it implies
that set point temperature is targeted only during system being on. The fourth term is used to force Tsys = 0
during system being off. By choosing an appropriate µ value, we balance between energy saving and
comforting level of the zone. The objective function can be modified to incorporate other considerations,
like humidity requirement, pre-cooling and pre-heating, and entropy control.

5 PERFORMANCE EVALUATION

We apply our forward model on a building model generated from EnergyPlus and validate our model
by comparing the simulated temperature profile with the one from EnergyPlus. The proposed inversion
procedure is applied on a medium size commercial building and the multipliers of equations corresponding
to that building are estimated. The prediction is made based on our simulation method proposed in the
previous section with given weather condition and specified set point.
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5.1 Forward Model Validation with EnergyPlus Data

In the forward model presented in Section 2, we include multipliers for different physical parameters. When
parameters are chosen accurately, the solution from solving these equations with all multipliers being one
should be consistent with the measured data. This is an important validation step through which the model
accurately represents the physical process.

We treat the EnergyPlus model as an accurate simulation tool and create a building model and simulate its
energy consumption with a given weather condition. The same weather condition and building characteristics
are used in our PDE-ODE coupled model. The result coming from solving these equations with all multipliers
being one is compared with the EnergyPlus results. Figure 2 shows the surface temperature of building’s
walls. The left one presents exterior wall temperature from both our model and EnergyPlus. The right
one presents interior wall temperature also from both models. Correlation of wall temperature from both
models reaches 99% and the root-mean-square error (RMSE) for exterior wall and interior walls is equal
to 1.677 and 1.56 respectively.
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Figure 2: Comparison of wall temperature from our model and EnergyPlus.

During validating with EnergyPlus data, we create multiple EnergyPlus models, starting with the
simplest one without window, infiltration, internal load and AHU system, and then adding influence factors
back to the model one by one. The zone temperature obtained from solving the ODE specified in (3) also
matches the zone temperature from EnergyPlus well with RMSE equal to 1.25.

5.2 Calibration with Field Data

When working with field data, the specified physical parameters are not accurate and the calibration
procedure must be applied as described in Section 3. A medium-sized commercial office building was
chosen for our study. This building was fully instrumented with wall surface temperature sensors, zone
temperature sensor, in addition to supply air flow rate and temperature from the HVAC system. The
recovered multipliers and the fitting accuracy are presented.

This building is located in Korea with 7800 squared meters and five stories. Both constant air volume
(CAV) and electric heat pump (EHP) system were installed on each floor to meet the indoor thermal
requirement of its space. Some physical and operational characteristics of the building are listed in Table 1.
In addition to collecting local weather forecast data in 3 hours resolution from an on-line local weather
station in Korea, overall 120 sensor or measurement data of both CAV and EHP systems, wall surfaces’
temperature were collected and stored in a rational database. Note that, solar radiation data is not available
in that weather station. Instead, a typical meteorological year data (TMY) for that location was adjusted
based on the forecasted sky condition. Also, the assumption that the internal sensible load is the same
during working days could be major source for inaccurate estimation. Wall surface temperature sensors
are only deployed at the third floor, but their data are also used for other floors of the building. The supply
air temperature from EHP was not available but was estimated from its return water temperature instead.
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Table 1: Building characteristics of test building.

Exterior wall Gavanium STL plate (0.0012m), Air cavity (0.1m)
Insulation panel (0.1m), Gypsum board (0.012m)

Interior wall Gavanium STL plate (0.0012m), Gypsum board(0.012m)
Insulation panel (0.03m)

Fenestration Gavanium STL plate (0.0012m), Double pane clear glass
U value = 2.670 W/m2K

Infiltration 0.22 ACH
Occupancy density 0.097 person/m2

Lighting density 10 W/m2
Plug load density* 10 W/m2

Operation schedule* 6 a.m. - 10 p.m.

Due to various error factors in the collected data, operation and internal load condition and assumption
that might not be consistent with current situation, it is necessary to re-calibrate the model periodically.
Specifically, the multipliers for internal load need to be re-estimated constantly in order to reflect the
current daily running condition; some multipliers, like for wall thermal resistance, might not change very
frequently unless some major retrofit activities just happened. Following the inversion procedure presented
in Section 3, we conduct calibration of our model with sensor data in 15 minutes resolution that covers
a week period in July, 2012 and the recovered multipliers’ value are shown in the Table 2. It implies
that U-value for window is slightly higher, with multiplication of 1.0539, conductivity of wall is almost
doubled with multiplication of 1.9018, heat capacity of air in the zone is tripled (might be reasonable due to
impact of wall partition and furniture layout inside the zone). It is also notable that solar radiation impact
on different side of wall is different due to certain shading effect from nearby buildings. Eight multiples
(one for each three hours) for internal load are also recovered after balancing with envelope related energy
consumption and supplied thermal energy from HVAC system. Figure 3 shows both specified load and the
adjusted load for a workday. It can be seen that the adjusted load is higher than the specified, and load
during evening hours is lower than the load during daytime from the adjusted load.

Table 2: Recovered multipliers’ value.

mSol
Name mUwin mCond mCair N E S W
Value 1.0539 1.9018 3.6 0.5279 0.1396 0.0311 0.0311

0	  

10000	  

20000	  

30000	  

40000	  

50000	  

60000	  

07
-‐2
7-‐
00
:0
0	  

07
-‐2
7-‐
00
:4
5	  

07
-‐2
7-‐
01
:3
0	  

07
-‐2
7-‐
02
:1
5	  

07
-‐2
7-‐
03
:0
0	  

07
-‐2
7-‐
03
:4
5	  

07
-‐2
7-‐
04
:3
0	  

07
-‐2
7-‐
05
:1
5	  

07
-‐2
7-‐
06
:0
0	  

07
-‐2
7-‐
06
:4
5	  

07
-‐2
7-‐
07
:3
0	  

07
-‐2
7-‐
08
:1
5	  

07
-‐2
7-‐
09
:0
0	  

07
-‐2
7-‐
09
:4
5	  

07
-‐2
7-‐
10
:3
0	  

07
-‐2
7-‐
11
:1
5	  

07
-‐2
7-‐
12
:0
0	  

07
-‐2
7-‐
12
:4
5	  

07
-‐2
7-‐
13
:3
0	  

07
-‐2
7-‐
14
:1
5	  

07
-‐2
7-‐
15
:0
0	  

07
-‐2
7-‐
15
:4
5	  

07
-‐2
7-‐
16
:3
0	  

07
-‐2
7-‐
17
:1
5	  

07
-‐2
7-‐
18
:0
0	  

07
-‐2
7-‐
18
:4
5	  

07
-‐2
7-‐
19
:3
0	  

07
-‐2
7-‐
20
:1
5	  

07
-‐2
7-‐
21
:0
0	  

07
-‐2
7-‐
21
:4
5	  

07
-‐2
7-‐
22
:3
0	  

07
-‐2
7-‐
23
:1
5	  

07
-‐2
8-‐
00
:0
0	  

Adjusted	  Load	   Specified	  Load	  

Figure 3: Comparison between specified and adjusted internal load.
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Figure 4 shows both simulated and measured temperature of the wall on the west side, the left is
for outside wall and the right for insider wall. It can be seen that a reasonable match is achieved with
0.92 correlation and RMSE=3.2 for outside wall temperature and 0.98 correlation and RMSE=1.68 for
inside. Also ambient temperature is included on the left and zone temperature is included on the right. It
seems that the difference between inside wall temperature and zone temperature is too high. Recall the
boundary condition for PDE, the internal heat radiation term with multiplier λeis could used to correct
certain bias. As long as that bias is also properly included in the zone balance equation, the thermal
contribution through envelope can be correctly estimated. Figure 5 shows both simulated and measure
zone temperature. Correlation of both temperature within seven days can reach 0.98 and its corresponding
RMSE is equal to 0.1795.
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Figure 4: Comparison of wall temperature between simulated and measured.
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Figure 5: Comparison of zone temperature between simulated and measured.

5.3 Forecast Under Various Conditions

With the recovered parameters from the calibration, we can forecast demand thermal energy under given
weather condition, zone temperature set-point requirement and operation schedule by using the method
presented in Section 4. When the AHU system is of the CAV type, the supply air temperature (a set-point
for chiller/or heater coil from plant) can be found as a solution of the optimization problem.

We use the recovered parameters in the last subsection, and forecast demand thermal energy on August
1st in the following two ways: since the sensor data of outside air temperature and zone air temperature
are available, the actual smoothed zone temperature (through HP filter) is chosen as set-point temperature
and the actual operational hours is used for AHU operation. Figure 6 shows its simulation result. The
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simulation zone temperature follows the set-point well with 0.91 correlation and 0.44 RMSE. The accuracy
drops near the operation starting point at 6 am in the morning. The predicted chiller supply air temperature
and demand thermal energy also matches well with over 0.96 correlation. The demand thermal energy, as
a ratio scale measure has cv(RMSE)=17.6%. It is within the acceptable tolerance criteria (MBE +/- 10%,
CV(RMSE) 30%) of ASHRAE Guideline 14 (ASHRAE 2002).
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Figure 6: Simulation result with the actual smoothed zone temperature as set-point.

In the second test, we specify an operation schedule from 6 am to 9 pm, during which AHU is operating.
The forecasted temperature from weather station is chosen as outside air temperature, and the set-point is
specified to be 260C. Figure 7 shows its simulation result. It can be seen that the simulated zone temperature
maintains the set-point during the specified operation hours. It is lower than actual zone temperature during
the period, but is far off after operation hours since the AHU is not operating to maintain a comfortable zone
temperature. The corresponding supply air temperature and thermal energy requirement are also shown
in the figure. The required chiller set-point is a little lower compared to the actual Tsys due to the lower
set-point compared to actual measured zone temperature during the operation hours.
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Figure 7: Simulation result with a given set-point and operation hours.

From the above simulation scenarios, we can conduct what-if analysis as well as forecast thermal
energy demand. It is also possible to predict peak demand when a constant set-point is rigorously reached
during operation hours (when less weight is put on saving energy in the objective given by Equation (7)).

6 CONCLUSION

We presented an integrated PDE-ODE model to describe heat transfer through building envelope and
thermal balance inside zones. This model captures heat transfer phenomena in buildings more accurately
than the reduced order models. Multipliers of parameters are introduced to the system and are estimated
through a proposed calibration procedure. By defining an objective function with misfit term from all sides
of walls and a regularization term, we improved the robustness of the procedure and avoided over-fitting
to a certain set of sensor data. By separating calibration and parameters recovery procedure into two step
processes, with first step being wall surface PDE calibration and second step being zone temperature ODE
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calibration, we reduced the probability for parameter correlation. Simulation procedure, that utilizes the
PDE-ODE model with the recovered multipliers and simulated zone temperature control, is also formulated
through optimization. This procedure generates energy demand profile under a given weather condition. We
validated the model with EnergyPlus generated data, applied our inverse modeling approach to a commercial
building in Korea. Thermal energy demand is predicted with calibrated parameters under various operating
conditions. An initial study shows that the inverse modeling approach produces results with reasonable
accuracy.

We plan to extend our work in the following two ways. Firstly, we would like to integrate our model
with statistical tools and to get a distribution of the misfit value and obtain a response surface, based on the
most likelihood calculation. When there are new sensor data becoming available, the respond surface would
be updated using Bayesian updating procedure. In this way we can achieve the robustness of the inversion
procedure. The simulation would not use a point value but use distribution associated with the parameters.
Secondly, we would like to combine the analyses from different scales: thermal energy demand in daily
level, and dynamical behavior in hourly level. Statistical forecast can generate daily level energy demand
with reasonable accuracy. A PDE-ODE model simulates energy consumption profile in finer resolution than
the statistical model. The objective function for the simulation consists of both aligning daily thermal energy
consumption with the predicted one from statistical method and meeting hourly specified temperature set
point.
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