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ABSTRACT

Police patrol district design presents a multi-objective optimization problem with two goals: minimizing
workload variation between patrol districts and minimizing the response time for officers responding to
calls for service. We evaluate three different methods for scoring district designs: a closed form probability
based approach, a discrete-event simulation based on hypercube models for spatial queuing systems, and an
agent-based simulation model. We find that all methods provide similar evaluations when service demand
is low enough that cross-boundary support is infrequent. However, when the demand for service routinely
exceeds the supply available within districts, only the agent-based simulation model accurately represents
the resulting complexities and significantly changes the evaluation scores to reflect the behavior of the
system.

1 INTRODUCTION

Nearly every police department creates geographic patrol districts (also called patrol sectors or car beats)
as a standard management method to enhance the capabilities of the uniformed patrol force (Hale 1980).
Better districting plans lead to lower response times, officer’s familiarization with their assigned area,
more efficient use of personnel, more equal division off workload, a visible police presence, enhanced
officer safety, officer accountability, and balanced police response to calls (Hale 1980). Traditionally, these
geographic patrol boundaries are drawn by hand based on a police department’s knowledge, experience,
and the available police resources (Mitchell 1972; Taylor and Huxley 1989). Most police departments also
lack a method for formally evaluating and comparing the performance of competing district plans, instead
relying on the judgement and intuition of police planners. However, given the complexities of the police
districting plan, it is unlikely that an optimal districting plan will be chosen by chance using this method
(Curtin, Hayslett-McCall, and Qiu 2010).

Police patrol district design presents a multi-objective optimization problem with two goals: minimizing
workload variation between patrol districts and minimizing the response time for officers responding to calls
for service. Fast response to citizen Calls for Service (CFS) improves the chances of arresting offenders,
increases the chances of identifying and locating witnesses, provides immediate gathering of physical
evidence, provides immediate life-saving aid, enhances the reputation of the police department, and increases
citizen satisfaction with police (D’Amico et al. 2002; Hancock and Simpson 2009). Therefore, virtually
every police department seeks to minimize their average response time to CFS. Workload variation between
districts arises because crime (and other CFS) tends to cluster in “hot-spots” rather than being uniformly
distributed in the city. Workload variation between districts is often high, with some officers/districts
experiencing much higher CFS volume than others. When small districts are created around very “hot”
zones, the remaining districts can be quite large, resulting in slow response times for many citizens. Thus,
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minimizing workload and reducing response times are often competing objectives, requiring police to select
a comfortable trade-off point between the competing objectives.

In this paper, we compare three different methods for evaluating the performance of patrol district
designs in this trade-off space: a closed form probability based approach, a discrete-event simulation based
on hypercube models for spatial queuing systems, and an agent-based simulation model. We use the
selection of a new patrol districting plan for the City of Charlottesville, Virginia, as a motivating example
to compare and contrast the different methods for choosing a districting plan. We find that although all
three methods provide similar evaluations of the districting plans when the emergency response system is
not stressed, the agent-based simulation model more accurately represents the system dynamics when the
system is highly stressed and also yields important insights into the system dynamics that the other two
methods do not provide.

2 POLICE PATROL DISTRICT DESIGN

Police patrol district design is one of the most important resource allocation problems police departments
must consider. As previously noted, this problem is usually solved based on officer experience, judgement,
and intuition. However, researchers have proposed several different approaches for optimizing police patrol
boundaries in a city. In the first proposed approach, Mitchell (1972) proposed using p-Median clustering
to minimize the total weighted travel distance to service expected calls. The problem can also be specified
as a classic problem in mathematics. The districting problem can be defined as the aggregation of smaller
units (that must be specified) into larger geographic units that form districts. This problem reduces to a
classic graph-partition problem with the constraints of contiguity and compactness and has been shown to be
NP-hard (Altman 1997; Johnson 1985). Researchers have also proposed heuristic methods for identifying
“good” (locally optimal) districting plans including simulated annealing (D’Amico et al. 2002), maximal
covering models (Curtin, Hayslett-McCall, and Qiu 2010), genetic algorithms, and stochastic gradient
ascent (Zhang and Brown 2013).

Unfortunately, all of the methods specified above require solving optimization problems, some of which
are NP-hard. These approaches are well beyond the capabilities of the vast majority of police departments.
Instead, we propose that a more reasonable approach would be to provide police departments with the
ability to evaluate the performance of districting plans they produce themselves and/or automated methods
to generate a large number of possible districting plans. This approach would allow police departments the
ability to find the optimal plans within any defined set. While these plans might not be globally optimal, they
are likely to provide good performance, especially when compared to plans drawn by hand that consider
the resulting performance trade-offs only in the minds of the planners. In this paper, we use an automated
method to generate a set of districting plans for a case study and compare methods for evaluating the utility
of these plans for department use.

3 CASE STUDY DATA

The Charlottesville Police Department provided the data used as the case study for this analysis. The City
of Charlottesville is a mid-size city centrally located in the state of Virginia, USA. The city has a diameter
of about 7 miles and a year-round population of about 40,000, which swells to about 66,000 during the
academic year due to the presence of a major university. The current districting plan used by the CPD is
about 20 years old. The city uses eight city patrol districts, with one car routinely assigned to each patrol
district during each patrol shift. The police department operates three shifts a day: morning, evening, and
overnight. As is the policy in many police departments, the CPD always dispatches the nearest available
car to the scene of a CFS in an effort to minimize response time, rather than relying on each police car to
respond to all calls within its’ district.

Figure 1 provides an illustration of how the demand for police assets varies over the 24 hour period.
This graph references 330,000 CFS incidents observed over a four year period. During the night shift, the
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inter-arrival time for Calls-For-Service (CFS) is high, meaning that the CFS intensity is low. During the
day and evening hours, CFS intensity is high, placing greater demands on the police patrols. As Figure 1
illustrates, the response time for police responding to CFS is highly correlated with traffic volume in the
city. At night, police can respond relatively quickly to CFS because there is little traffic. During the
morning and evening rush hour periods, it takes much longer for police to navigate traffic to the scene of
calls for service. The time on the scene for a CFS remains relatively stable over the 24 hour period. The
dashed lines in Figure 1 correspond to the three modeling scenarios used to study the performance of the
police patrol district designs:

1. Low-Intensity Demand: 5 AM (Night Shift)
2. Medium-Intensity Demand: 7 PM (Evening Shift)
3. High-Intensity Demand: 9 AM (Day Shift)

The low-intensity scenario represents when the system is most idle. The medium-intensity demand
scenario represents a time period when all system parameters are near their average values. The high-intensity
demand scenario represents the time period when the system is most stressed - during the morning rush
hour. Examining these scenarios allows us to evaluate patrol district designs under minimum, maximum,
and average conditions.
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Figure 1: A plot showing how the service call inter-arrival time, response time, and time on service model
parameters vary over time in the Charlottesville Police Department (CPD) data set. The dashed lines
represent time periods selected for study in the simulation models: a low intensity (idle) period, a high
intensity (busy) period, and a period representing the median situation.

Figure 2 provides one of the considered patrol district designs plotted over a map of the city of
Charlottesville. As can be seen in Figure 2, we organized the city into 323 atoms (locations) for assignment.
Each of these atoms must be assigned to one of the eight police districts. We generated 150 possible police
district designs for consideration by the CPD using the procedure outline by (Zhang and Brown 2013).
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This procedure develops districting plans that are both contiguous and compact. By definition, the patrol
district must be contiguous so that one patrol car can patrol that area without departing. Police desire
compact districts to provide shorter travel times within the patrol district. This procedure converts the
NP-hard graph partitioning problem into a much more tractable problem: choosing the best of a defined set
of options. The limitation of this approach is that the generated choice set is not guaranteed to contain the
optimal solution. Rather, the approach we have taken provides a set of reasonable solutions from which
we would like to choose the best available.

Figure 2: Visualization of District Plan 21 under evaluation in the agent-based simulation. The eight
districts are color-coded. In-use patrol cars are labeled as stars while patrolling cars are labeled with circles.
Note that the green and red patrol cars are responding to incidents out of sector because they were the
closest available car to the incident at the time of the CFS.

4 COMPARISON OF POLICE PATROL DISTRICT EVALUATION METHODS

Given a patrol district design, there are several different approaches available for assessing the utility of
that design. One approach would be to try the different districting plans by asking police patrols to change
their patrol sectors every few weeks and assess how well the various districting plans worked. However,
the number of possible districting plans that a police agency could try would be very limited and it would
take a long time to test even a limited few competing plans. Efficient methods for evaluating patrol district
designs without actually testing them in practice are therefore in high demand.
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In this paper, we compare three different methods for scoring district designs: a closed form probability
based approach, a discrete-event simulation based on hypercube models for spatial queuing systems, and an
agent-based simulation model. The closed form probability-based approach greatly simplifies the modeling
problem and requires only geographic data in order to make an estimate. It is very simple, fast, and can
be applied by virtually any police analyst with access to a GIS system. The discrete-event model takes
longer to develop and makes some simplifying assumptions about the problem. However, once developed,
it can evaluate districting plans quickly and it is relatively simple to adapt the model to different cities
and scenarios. The agent-based approach takes the most development time, is harder to adapt to different
cities and environments, and takes longer to evaluate competing plans. However, the agent-based modeling
approach provides the most high-fidelity representation of the system and the most flexible modeling
framework. We expound on each the three evaluation methods in greater detail below.

4.1 Closed Form Evaluation Method

The closed-form evaluation method relies on the relationship between location event CFS probability and
the observed CFS counts over a geographic area. (Huddleston and Brown 2013) demonstrate that criminal
hot-spot (probability) maps can be used to accurately forecast future crime counts within police patrol
districts. These criminal hot-spot maps are two dimensional probability density functions that can be
estimated using kernel density estimation (Harris 1999), predictive crime models (Smith and Brown 2007;
Huddleston and Brown 2009), or by binning historical crime counts by atom (Zhang and Brown 2013). We
use the binning approach in this paper. These criminal hot-spot maps provide estimates for the probability of
crime occurrence within each atom, with the notation πi. For district k, the workload score Wk is estimated
as the sum of atom event probabilities πi within the district.

Wk = ∑
i∈k

πi (1)

The district workload score Wk represents the proportion of work each district patrol is expected to
perform. Since the objective is to provide equal workloads across the districts, district plans are scored
using the sample standard deviation of the district workload scores σWk . Lower workload standard deviation
scores equate to better performance.

Criminal hot-spot maps can also be used to estimate the response time for officers to service calls within
their districts. The response time score R is calculated as the sum of the probability weighted distances
between each district centroid Ck and each atom location i.

R =
K

∑
k=1

[
∑
i∈k

(πi||Ck− i||)

]
(2)

In the formula above, the notation ||Ck− i|| denotes the norm (distance) between the district centroid
and atom i. Depending on the situation, Euclidean, Manhattan, or travel (road) distance can be used to
estimate the travel cost. In this application, we used the Euclidean distance because it offers a simple and
fast approximation for the travel distance, especially given that the road structure within Charlottesville is
not blocked as in Manhattan. Lower response time scores equate to better district plan performance. This
method assumes that there will be very limited cross-boundary service by the patrols within the sectors.

4.2 Discrete-Event Simulation Model Method

The discrete event simulation model is based on the Hypercube Queuing Model (HQM), a well-known
descriptive model used to analyze emergency response systems as spatially distributed queueing systems
(Larson 1974). In the HQM model, each server (patrol car, fire engine, ambulance, etc.) has two states:
idle (0) and busy (1). The state of the whole system is represented as a binary sequence of server statuses.
When the number of servers exceeds three, all possible system states form a hypercube.
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Historical CFS incidents data and traffic information provide estimates for the arrival rates of the servers
into each geographical atom. As long as the aggregate service rate of the system exceeds the total arrival
rates of CFS incidents (i.e., supply exceeds the demand), calculating the steady-state probability of the
resulting Markov chain provides the probability of being in each possible system state in the hypercube.
System performance metrics such as average response time and workload variation are calculated from the
hypercube probabilities. While the basic HQM provides a very flexible framework for modeling emergency
response systems, the size of the problem grows exponentially with the number of servers. Solving each
instance requires solving a linear system with an exponential number of variables (Boyaci and Geroliminis
2011).

Boyaci and Geroliminis (2011) demonstrate that Monte Carlo discrete-event simulations based on
HQM converge to the steady-state probabilities estimated by HQM very quickly. Therefore, discrete
event simulations provide an alternative method for solving for the HQM steady-state probabilities. The
discrete-event model can more easily be extended to simulate complex situations, such as multiple cars
responding, different priorities of CFS incidents, different CFS arrival rate at different times of day, as well
as various patrol and dispatch rules. We developed the simulation model for the CPD districts in Java 1.6
SE using pseudocode provided by Boyaci and Geroliminis (2011). Sacks (2003) provides the method we
used to calculate the expected locations of CFS and patrol cars in the city using the Charlottesville data.

The inputs for the discrete event simulation model are:

• CFS Inter-Arrival Time
• Service Time (Time on Scene)
• CFS Probability for Each Atom
• Geographical Information (District Plan, District Plan Centroids, and Atom Centroids)
• Responding Speed

The simulation model generates CFS using the exponential distribution model defined by the inter-arrival
rate parameter. The CFS incidents are spatially distributed within the city according to the geographic
probability model generated from historical data as previously discussed (i.e., the CFS probabilities for
each atom are the same as those used for the closed form evaluation method). CFS service times are
randomly selected from the exponential model defined by the service time parameter. The parameters of
the discrete event simulation model are then calibrated such that the queuing parameters (total arrival rate
and total service rate) of the system match the historical data set. The discrete-event simulation model
tracks the occurrence of four types of events:

• Calls For Service (CFS)
• Patrol Car Arrival at CFS
• Patrol Car Departure from CFS
• Patrol Car Arrival at Base (Idle Position)

When a CFS occurs in the simulation model, the nearest idle patrol car is “dispatched” by changing the
server availability status from idle (0) to busy (1). The patrol car (server) status returns to idle once the car
returns to its base location within the patrol sector after each event. As for the closed form approach, we
use Euclidean distance to approximate travel distance. To simplify the problem, the discrete-event model
assumes zero line capacity; if all servers are busy when an incident happens, the incident is “dropped”
or considered as being responded to by units outside the modeled system. This mimics the actual police
practice; when all cars are busy the CPD requests support from the neighboring Albemarle County Police
Department. Dropped incidents do not occur in the lowest intensity setting, rarely occur in the medium
intensity setting, and occur less than 4% of the time in the high intensity setting.

The historical Charlottesville Police Department data illustrated in Figure 1 provides estimates for
the travel time, service time, and CFS inter-arrival time for the simulation model for each of the three
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considered scenarios. The simulation model dynamically tracks the average response time and workload
standard deviation measures and stops when these measures converge.

4.3 Agent-Based Simulation Model Method

Agent-based simulation models are increasingly used to model the complex dynamics of resource allocation
problems in security applications. Examples include optimizing the location of combat outposts in counter-
insurgency (Huddleston, Learmonth, and Fox 2008), examining the use of unmanned surface vehicles for
securing Navy ships (Cioppa, Lucas, and Sanchez 2004), and emergency management in disaster response
(Wu, Shuman, and Bidanda 2008). Agent-based modeling provides the ability to accurately represent the
behaviors of these complex systems by modeling the interactions of the agents of the system.

Zhang and Brown (2013) provide an agent-based model that captures the behaviors of police patrols in
a city through the use of use of model parameters and decision rules. A dynamic view of the agent-based
simulation can be seen by clicking the following web address: agent-based police patrol simulation. This
model is based on RepastCity from Malleson (2010), which implements agent movement along roads in an
urban GIS environment (and provides a flexible framework for changing adapting simulation by changing
the associated GIS layers). The simulation model operates by having the agents and environment interact
through the use of simple rules. The rules for this agent-based simulation model are:

1. The simulation model generates CFS using the exponential distribution model defined by the
inter-arrival rate parameter.

2. CFS incidents are spatially distributed within the city according to the geographic probability model
generated from historical data as previously discussed.

3. CFS service times are randomly selected from the exponential model defined by the service time
parameter.

4. Police cars randomly patrol the road network within their defined district when not in service.
5. The nearest available patrol car (regardless of district) responds to a CFS at emergency speed.
6. The responding car takes the shortest (road network) path to the location of the CFS.
7. Upon completion of the CFS, if the patrol car is out of its’ district, it returns to its district moving

at the speed limit and begins patrolling.
8. Upon completion of the CFS, if the patrol car is within its’ district, it begins randomly patrolling

from its current location.

The input parameters for the agent-based simulation include the CFS inter-arrival time, CFS service
time, the emergency speed, and geographic information (the road network, road network speed limits, and
the district plan). The agent-based simulation employs the same “dropped call” policy as the discrete event
simulation, with similar rates of occurrence. We calibrate the agent-based simulation model by tuning
the model until simulating the currently employed districting plan with the simulation model produces
the historically observed average response time in all three modeled scenarios. The simulation model
dynamically tracks the average response time for all cars and the workload (time in service) proportion for
all cars. We run the simulation for a district plan until the average response time and workload proportion
for all cars converge to a steady state for the scenario (low-intensity setting, medium intensity setting, or
high-intensity setting).

5 DISTRICT PLAN SELECTION

The three district plan evaluation methods above each provide an approach for scoring district plan
response time and workload variation performance. The goal is to identify the district plans that provide
good performance in both objectives. For multi-objective problems such as this one, there usually does
not exist a single solution that simultaneously optimizes both objectives. Instead, there exists a (possibly
infinite) set of Pareto-efficient solutions. A solution is Pareto-efficient (also called non-dominated or
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Pareto-optimal) for two objectives if one cannot improve performance in one performance measure by
selecting a different alternative without sacrificing performance in another. Graphing the performance of
the solutions provides a simple way to identify the Pareto-efficient frontier (Gass and Saaty 1955). Figure 3
illustrates the trade-off space and resulting Pareto-efficient solutions identified by the agent-based model
in both the low-intensity and high-intensity settings. The agent-based model identifies five non-dominated
solutions for the low-intensity scenario and two non-dominated solutions for the high-intensity setting. We
used the same approach to identify the non-dominated solution set in each scenario for the closed-form
and discrete-event simulations. Figure 3 also identifies these solutions as well as the current district plan
used by the CPD.
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Figure 3: Pareto analysis using the scores from the agent-based simulation in the low-intensity scenario
(left panel) and the high-intensity scenario (right panel). Black circles represent non-dominated solutions
identified by the agent-based model while colored points represent the non-dominated solutions identified
by the other approaches. The dashed lines provide a visual reference for average performance in each
evaluation measure as defined by the agent-based model. Note that all three methods provide highly scored
non-dominated solutions in the low-intensity scenario but that solutions recommended by the CF and DE
methods are rated as relatively average by the agent-based method in the high-intensity scenario. Also note
that the average response times on these graphs for the current district plan correlate closely to the observed
historical response times for the two scenarios in Figure 1, indicating a well-calibrated simulation model.

6 RESULTS

As Figure 3 illustrates, there is some disagreement between the three different methodologies about which
plans are best. Note that in the low-intensity scenario, the agent-based simulation model scores all of the
non-dominated solutions by the other two methods relatively highly (they are all clustered in the lower-left
hand corner). There is also some agreement on plans that are Pareto-optimal, with some districting plans
on the Pareto frontiers of all three methods in the low-intensity scenario. However, in the high-intensity
scenario, the Pareto-efficient plans identified by the closed-form and discrete-event methods tend to be
rated as relatively average in at least one measure by the agent-based simulation.
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Table 1 and Figure 4 provide an explanation for these differences. Table 1 provides the coefficient of
determination (R2) statistic comparing Closed Form (CF), Discrete Event (DE) and Agent-Based (AB) scores
for workload variation and response time under low, medium, and high event intensity conditions. Figure 4
provides a pair-wise scatterplot for the most correlated (workload variation in the low-intensity scenario)
and least correlated (workload variation in the high-intensity scenario) situations in this table for a visual
reference. All methods provide highly correlated workload variation scores in the low intensity scenario
but highly uncorrelated scores for workload variation in the high-intensity scenario. The response time
scores are less correlated than workload variation scores in the low-intensity scenario but more correlated
than workload variation in the high-intensity scenario. For both performance measures, correlation between
methods decreases as event intensity increases.
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Figure 4: Pairs plots showing pairwise correlation between workload variation scores when event intensity
is low (left panel) and when event intensity is high (right panel). All three methods score district plans
similarly when event intensity is low but differently when event intensity is high.

Table 1: Table of pairwise R2 statistics comparing Closed Form (CF), Discrete Event (DE) and Agent-
Based (AB) scores for Workload Variation and Response Time under low, medium, and high event intensity
conditions.

Event Workload Variation Response Time
Intensity CF- AB CF - DE DE - AB CF - AB CF - DE DE - AB

Low 0.65 0.70 0.81 0.45 0.51 0.74
Medium 0.33 0.44 0.47 0.30 0.44 0.72

High 0.13 0.35 0.19 0.21 0.43 0.52

Table 2 further explains the results observed in Table 1. Table 2 provides the within-method coefficient
of determination (R2) across the three scenarios. As can be seen, the closed form method provides the
exact same scores for every scenario, the discrete event scenarios are highly correlated across scenarios,
but the agent-based scores change significantly.
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Table 2: Table of within-method pairwise R2 statistics showing how the Workload Variation and Response
Time evaluation scores correlate within methods across the three scenarios.

Pairwise Workload Variation Response Time
Comparison CF DE AB CF DE AB
Low-Med 1 0.69 0.45 1 0.92 0.55

Low - High 1 0.60 0.24 1 0.91 0.41
Med - High 1 0.91 0.11 1 0.98 0.46

These results prompted further analysis to understand why the agent-based simulation model scores
change so significantly in the high-intensity scenario. We identified two dynamics within the system that
cause the agent-based simulation model to significantly alter the scores as CFS intensity increases. The
first insight the agent-based model provides concerns the effect of the patrolling behavior of the police
cars. When the police cars randomly patrol within their districts, they are often far from the patrol district
centroid (as can be seen in the snapshot of the agent-based simulation model in Figure 2). The CPD
always dispatches the nearest available police car to the scene of a CFS. Thus, cross-boundary support
is quite frequent. In the low-intensity scenario, cross-boundary response averages about 42%. However,
this cross-boundary support rises to 70% in the medium intensity scenario and 75% in the high-intensity
scenario. These rates roughly correspond to the rates observed in a 1971 New York City study that found
that cross-boundary support accounted for more than half of police dispatches (Larson 1971).

The second significant system dynamic is the effect CFS intensity and slow response times due to traffic
have on the workload variation during the busy periods of the day. The difference in workload variation
(standard deviation of the workload proportion) among districting plans during the high-intensity period
around the morning rush hour is very low (note the difference in scales on the horizontal axis in Figure 3).
During the high-demand period, all police cars experience a high workload due to the high CFS intensity
and slow response speeds due to traffic. Thus, the districting plan has little to do with the workload officers
experience during this busy time; for the most part, the police cars are all responding to CFS.

This observation yields an important insight for the CPD. Counter-intuitively, the districting plan
becomes most relevant when CFS intensity is low and less important when CFS intensity is high. This is
because when CFS intensity is low, the officers spend most of their time patrolling, but when CFS intensity
is high, all officers are responding to calls rather than patrolling (on average, 80% of available officer
man-hours are employed responding to calls during this period). During the peak rush-hour periods, it may
be possible to significantly reduce the average CFS response time by positioning police cars throughout the
city near those locations most likely to need CFS during this busy time instead of having officers attempt
to both patrol throughout the districts and respond to calls, especially since officers spend relatively little
time patrolling the districts they are assigned. In discussions with the CPD, they verified this effect and
commented that the system dynamics observed in the agent-based model seemed to correspond closely to
that experienced by their officers. In this case, the agent-based simulation model reveals complexities in
behavior and applicable insights that the other two evaluation methods do not provide.

7 CONCLUSIONS

Our results indicate that all three evaluation methods produce very similar scores for workload variation
when CFS intensity is low enough that the car patrols can meet the demand in their own sectors. However,
when the in-district demand exceeds in-district supply, police patrols begin crossing boundaries to meet
demand in other police sectors at a very high frequency. This scenario produces a level of complexity
that the closed form and discrete event approaches are not well-equipped to handle. Only the agent-based
simulation model accurately represents the resulting complexities and significantly changes the workload
variation scores to reflect the behavior of the system. The significant insight the agent-based model provides
is that, because call volume is so high, officers rarely patrol their sectors in this period, instead spending
most (on average about 80%) of their time responding to calls both in and out of sector. The visualization
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of the system’s complexities the agent-based model provides was also helpful in validating the performance
of the simulation with the CPD client.

The scores the three methods provide for response time were less correlated with each other in the
low intensity setting than they were for workload variation (ranging between 0.45 and 0.74). However, the
correlations between response time scores for the three methods were less sensitive to changes in intensity
than the workload variation scores, and the discrete event and agent-based simulations maintained relatively
high correlation with each other throughout all three scenarios. The closed form approach did not seem
to provide good estimates as it did not have high correlation with either of the other two methods in any
of the scenarios. This is probably due to the fact that this method does not account for cross boundary
support, and therefore underestimates the effect out of sector CFS have on the average response time.

Future work for this study includes extending the discrete event and agent-based simulation models
to dynamically change the modeling parameters for response speed, service time, and inter-arrival time
over the 24 hour cycle to correspond with the rates seen in Figure 1. Using this approach will provide
an estimate for how well the various districting plans perform over a 24 hour period in actual practice.
Planned extensions to the current simulation models include more complex response rules such as call
prioritization and multiple car response for certain types of calls. Planned extensions to the closed form
approach include performance comparisons using other distance measures (i.e., road-network distance,
Manhattan distance, etc.) and development of methods for estimating the effect of cross-boundary support
on the average response time performance measure.
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