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ABSTRACT

The analysis of production systems using discrete, event-based simulation is wide spread and generally
accepted as a decision support technology. It aims either at the comparison of competitive system designs
or the identification of a best possible parameter configuration of a simulation model. Here, combinatorial
techniques of simulation and optimization methods support the user in finding optimal solutions, but
typically result in long computation times, which often prohibits a practical application in industry. To
close this gap, this paper presents a fast converging procedure combining a Genetic Algorithm with a
material flow simulation including an interactive analysis of simulation runs. An early termination of
simulation runs is used for unpromising parameter configurations. The integrated implementation allows
automated, distributed simulation runs for practical, complex production systems. A use-case shows the
proof of concept with a reference model and demonstrates the resulting speed-up of this approach.

1 MOTIVATION

Modern business computing, especially in the area of operations research, offers a wide variety of methods
for complex problem solving for planning, scheduling and control of production and logistic processes.
Those processes, which are to be either designed or improved, are typically projected to models and
then optimized by the use of simulation and/or optimization technologies in order to improve decision
variables and resulting key performance indicators under a given set of restrictions. In simulation, this
improvement is usually achieved by the iterative evaluation of multiple scenarios and their subsequent
simulation results (Law and Kelton 2000). In the case of optimization, the optimal configuration is achieved
by mathematical optimization algorithms or (meta-) heuristic approaches (Rardin 1998). Due to the high
computational demand of both iterative evaluation and mathematical optimization, specific procedures as
a combination of both simulation and optimization were derived. They combine both advantages: an
optimization algorithm can be used to automatically generate a specific model configuration, which can
be evaluated by simulation runs (Fu 2002). Especially for simulation models with stochastic influence
factors, which need a high amount of simulation runs, these procedures can lead to faster identification
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of improving model configurations than standard methods for the design of simulation experiments (Fu
2002). It remains a challenge to further improve the performance of finding a good solution with a high
global quality, especially in the area of production. The given complexity of the underlying systems, and
thereby the simulation model, is very high, so that the application of standard combinatorial approaches of
mathematical optimization and material flow simulation is infeasible for industrial applications due to high
computation costs. Our approach applies a simulation-based optimization approach of a Genetic Algorithm
and a material flow simulation, that are employed in a distributed matter. We speed up computation through
distributed processing and achieve fast convergence by stepping-out from worse parameter configurations
as early as possible during the execution of the simulation run. Our implementation is integrated with
the material flow simulator d3fact and manages initiation of nodes and data exchange between them. By
using generic interfaces to d3fact, we are able to apply our method in a practical, industrial environment.
The paper presents in short the necessary state of the art in simulation based optimization and design of
experiments in the following section. The conceptual approach of the procedure is presented in section 3,
followed by the implementation. The first evaluation results of the procedure are shown in section 4. The
paper closes with an outlook on future work in this area.

2 STATE OF THE ART

2.1 Design of Experiments

Design of experiments (DOE) refers to the use of statistical techniques to create an efficient, systematic
set of controlled experiments for collecting data in order to estimate relationships between independent
and dependent variables through measurement. In the area of simulation, DOE is used for the systematic
evaluation of simulation models in order to identify a set of model parameters, which leads to the desired
simulation results. Each simulation run hereby evaluates a concrete set of parameters. Typically, the
simulation models include stochastic influence factors, so that a single simulation run is not sufficient for
the evaluation of the parameter set, and multiple simulation runs for each of the configuration sets are to be
performed. Efficient procedures like 2k-factorial-Design (Banks 2001), Plackett-Burman-experiments as
well as response-surface method (RSM) or evolutionary optimization (EVOP) (Fu 2002) are used to reduce
the number of required simulation runs by determining parameter sets that will likely lead to a good result.

2.2 Simulation-based Optimization

Simulation-based optimization is an iterative process to determine a solution to a given problem. Each
iteration consist of three basic steps: the generation of a candidate-solution, simulation of the proposed
solution, and finally the evaluation of the simulation (see Figure 1). Feedback gained from simulation
and evaluation is used to steer the process of generating new candidate-solutions. With this approach
the proposed solutions improve iteratively until the optimization terminates. Typical termination criteria
depend on the attained solution quality, the recent optimization progress, or the passing of a given amount
of time or iterations.

Simulation-based optimization can be seen as a movement through the search space of simulation
parameters, where the simulation maps a point in that space to a point in the space of performance
indicators. The optimization therefore needs to ensure that the found solution is not just a local optimum,
and it needs to find a good solution (optimality is generally not guaranteed) in a small number of simulation
runs, i.e. converge quickly (Kabirian and Olafsson 2007). Many different types of optimization strategies
exist (see Hachicha et al. (2010) for a classification approach) and have also partially been implemented in
commercially available tools (Fu 2002, Law and Kelton 2000). We focus on meta-heuristics, specifically
Genetic Algorithms (Russell and Norvig 2010). They work generically without knowledge of the concrete
problem, making them universally applicable using standard implementations. GAs have been successfully
applied to simulation based optimization (Paul and Chanev 1998; Krug 2002; Krug et al. 2002), and
Laroque et al. (2012) shows the applicability of meta-heuristics to design or configure manufacturing
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Figure 1: The basic optimization cycle using simulation to evaluate solutions generated by the optimizer.

plants. General implementations of these meta-heuristics are available in various open software libraries
(e. g. ECJ (Luke 2011)), providing an efficient implementation of the optimization component.

However the typical bottle-neck of simulation-based optimization is simulation speed. Evaluation of
complex model can be quite time consuming, while the generation of new candidate solutions usually
requires little calculation time. To operate effectively we need to complete as many iterations as possible
for optimization. Fast simulation is therefore of great benefit. In section 3 we will discuss an approach to
reduce the time spend for simulation.

2.3 Optimization using a Genetic Algorithm

To optimize the model from section 4.1 we use a genetic algorithm. As an evolutionary algorithm it is
a population based meta heuristic, using variation and selection to iteratively generate better solutions.
Variation is used to derive new candidate-solutions from already existing ones, relying typically on operations
like recombination and mutation. Selection steers the evolutionary process by propagating better solutions
and eliminating the bad ones. The selection process has a bias, favoring fitter individuals. The fitness
measures the adequateness of a candidate solution, in our case the quality of a parameter set determined by
simulation. Each population consists of many individuals representing possible solutions to the problem
and with each passing generation on can expect an increase in average fitness. Eventually this should lead
to a satisfying solution.

We use a modified (µ,λ )-evolution strategy with truncation and tournament selection, 2-point-crossover
and Gaussian convolution. Figure 2 shows the scheme of the used GA. Every model configuration is one
individual in the GA. Meaning the genome of an individual corresponds to the set of input parameters for
the model.

old
generation

truncation
selection

tournament 
selection

2-point crossover

gaussian 
convolution

new 
generation

gaussian 
convolution

breed some child individuals 

create mutate

Figure 2: Scheme of the genetic algorithm.

We use µ = 120 individuals in a population, evaluated by simulation. For breeding the next generation,
truncation and tournament selection each select ten individuals (λ = 2 ·10). The tournament selection uses
a tournament size of 15. Each pair of parent individuals produces 6 children using a 2-point-crossover.
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The new individuals are mutated using Gaussian convolution. The mutation probability is 0.3333 for each
gene. The (µ,λ )-evolution strategy produces for every generation a completely new population. We do
not preserve good individuals to avoid getting trapped in a local extrema.

The parameters and operators of the Genetic Algorithm were obtained by optimizing the Rastrigin
function (Törn and Zilinskas 1989; Mühlenbein et al. 1991 see (2)) with the same number of parameters
as the model. We assume this will result in a good configuration to optimize the model. While this
strategy does not guarantee to find the optimal Genetic Algorithm and parameters, we attained at least an
useful configuration. There probably is a better set of parameters and evolutionary operators, i.e. selection,
cross over or mutation. With regard to the high computational complexity, it is however infeasible to
experimentally analyze a huge number of potential parameter stes. A more detailed introduction to Genetic
Algorithms is given in Luke (2009).

2.4 Discrete Event Simulation with d3fact

d3fact is a discrete, event based material flow simulation framework, designed and implemented at the
Heinz Nixdorf Institute of the University of Paderborn, Germany. Designed as a multi-user environment,
it allows simultaneous, collaborative modeling and simulation of a model by multiple simulation experts.
d3fact consists of a modeling tool, a simulation server, that runs the simulation and few visualization
options from 2D to 3D. The open source software is based on the Eclipse Rich Client Platform (RCP) and
is implemented in Java (Dangelmaier et al. 2005, Laroque (2007)). The project provides a Java API to
program material flow simulation models independently from the modeling interface.

3 CONCEPT: REDUCING COMPUTATION TIME BY EARLY EXITS AND SIMULATION
PROFILES

Typically a parameter set is evaluated using multiple replications and long runs to get accurate simulation
results. The genetic algorithm, especially the truncation selection compares the fitness of different individuals,
selecting the good ones and discarding the bad individuals. As long as we guarantee comparability of
individuals the genetic algorithm operates effectively. Therefore an accurate fitness value is not required
as long as the individuals are still comparable. The presented approach, model and experiments are based
on Frank (2013).
Presumption 1 The further away the genetic algorithm is from finding an acceptable solution, the greater
the tolerable inaccuracy when evaluating individuals.

Typically, the diversity of the population at the beginning of an optimization process is significantly
higher than at the end. Using this assumption we can initially tolerate bigger inaccuracies, since the huge
differences in fitness values outweigh the inaccuracies, when we compare individuals. At the end of an
optimization the population contains a lot of possible solutions with similar fitness scores. Accordingly
the evaluation has to be more accurate to reliably identify the fitter individual.

In this work we implement this proposition 1 by using simulations profiles, defining a run length and
number of replications for every phase of the algorithm (see Figure 3). These profiles (see Table 1) are
experimentally adjusted to the model’s stochastic system behavior.

During the exploration phase the diversity should be high enough to find improved candidate-solutions
very often. Since large improvements are expected a single simulation replication should suffice to identify
promising new candidates. Therefore we use the fast profile for the initial phase. The simulations profile
for the exploitation phase is similar to profile fast. Because of the typically smaller diversity, compared to
exploration phase, a few more replications and longer runs are necessary. In the end of the optimization
the Genetic Algorithm finds acceptable solutions. The individuals should be evaluated accurately to choose
reliably identify the best solution. Therefore multiple simulation replications with adequate runs lengths
are essential.
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Figure 3: Different phases on a logarithmic fitness scale.

Table 1: Simulation profiles.

phase simulation
profile

accuracy replications length of replication

exploration fast raw evaluation of an
individual

1 250 min

exploitation medium small imprecise-
ness tolerable

3 625 min

accurate simulation accurate multi replications
and longer runs for
required accuracy

10 1000 min

In this work, we switch between the simulations profiles depending on the slope of the fitness graph.
Let f (g) the best fitness of generation g and h a step size. The resulting slope is:

α = arctan
(

f (g−h)− f (g)
h

)
.

The angle α is defined in the half open interval [0◦,90◦) where α = 0 stands for no optimization
progress within the last h iterations. An angle with near 90◦ represent a fast convergence (see Figure 4).

Although it is possible to use the actual value of the slope, we prefere the use of angles, since they are
more intuitive and illustrative.

We use the threshold of 87◦ to switch between simulation profile fast and medium, and 25◦ to switch
between profile medium and accurate. Defining the step size h should be done carefully. If for some
reason the genetic algorithm does not generate an improved solution for some generations the angle α gets
smaller eventually. A slower simulation profile might be chosen prematurely, causing an unnecessary high
accuracy and accordingly a waste of computation time. On the other hand, if the step size h is too large
the switching of the simulation profiles will occur too late. Here we use an empirically determined step
size of h = 7.
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Figure 4: Angle α over the whole optimization progress.

4 EXPERIMENTS

Here we describe the optimization of the employed production model in section 4.1. Due to the limited
computation time the experiments for this model were performed only once. Therefore we implemented
additionally theoretical experiments to validate the results.

4.1 Model

We use a model of a manufacturing plant to demonstrate the optimization approach. It consists of five
independent types of sources and nine different kinds of processors with their respective buffers. Certain
kinds of processors are dedicated to the respective production steps. Using a three staged production process
five input tokens are stepwise assembled to a single output token. The stages are connected by conveyors,
that have a given speed. Each source releases one specific kind of token. Interarrival times of tokens are
drawn from a Gaussian distribution with mean and variance set for each type of source. Processing times
for the processors are also normally distributed. Processors have their own buffers with a given capacity
to store waiting tokens. The input parameters of the model, adapted during optimization, are

• Number of available sources for each type.
• Number of available processors for each type.
• Capacity of buffers.
• Speed of conveyors.

The tokens are transported via a point-to-point conveyor network to the next process stage. Depending
on the number of sources or processors, the conveyors intersect each other. The intersection point routes
the incoming token in a probabilistic way to one of the target buffers. The position of these intersection
points co-determine the length of the conveyors. Under the assumption, that the length of the conveyors
don’t change the (stationary) system behavior, the intersection points can be chosen with a hill climbing
algorithm.

The model is evaluated using the discrete event simulator d3fact and the resulting performance indicators
are mapped to a cost function. For a fully automated run, we need an automatic criteria to remove the
initial bias of each simulation run. In Hoad et al. (2009) an overview about warm-up length estimation
criterion is given. We use the MSER-5 criteria (Spratt 1998; White Jr et al. 2000), which is commonly
accepted as a best practice (White Jr et al. 2000; Hoad et al. 2008; Hoad et al. 2009).

4.1.1 Optimization Objective

The challenge is to find a configuration leading to minimal costs for a desired production rate. To evaluate
a certain configuration we map the costs c and the production rate p to a fitness value using a fitness
function f (p,c). Let pd be the desired production rate.
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Figure 5: Scheme of the used model.

The fitness function should have a minimum for the desired production rate and minimal costs, so the
parabola (1) seems to be well-suited therefore.

f (p,c) = (p− pd)
2 + c. (1)

The first term of (1) has its minimum with p = pd . Minor differences of p and pd are less punished
then major differences through the quadratic term. Adding up the costs of a model instance should lead to
minimal costs by minimizing of (1). This fitness function f (p,c) could also expressed as a multi criteria
optimization using two separate functions f1(p) and f2(c). By adding up the production term and the cost
term the problem can be easily handled as a single criterion problem.

4.2 Optimization of the Model

To implement the genetic algorithm, we use the Java framework ECJ (Luke 2011). To evaluate the
individuals, the grid middleware JPPF (Cohen 2013) generates a task for each individual and ships it
via one or more drivers to the according nodes. The node launches d3fact with the model and starts the
simulation. During the simulation the MSER-5 criteria looks for the end of the initial bias. According
to the simulation profile the node simulates the required replications with the required run length. After
completing the task, the node calculates the fitness of the individual and returns the result.

JPPF is a self managed peer-to-peer grid middleware for pc clusters, desktop grids or cloud environments.
The build-in fault tolerance mechanisms allow also a geographical distribution over large distances. In this
work, we use JPPF nodes, placed in Amazon EC2 instances in North Virginia, USA together with some
small business servers and workstations in Dresden, Germany.

As a starting point, we search for a model instance capable of producing pd = 10,000 tokens a day.
So the fitness function (1) has a minimum at f (pd ,c) with minimal costs.

We start the optimization with 120 randomly created individuals. During the exploration phase the
GA found better individuals in nearly every generation. As it was expected, the diversity is big enough
to evaluate with profile fast. At generation 30 the slope of the fitness flattens and our heuristics switches
to simulation profile medium. In the exploitation phase, the GA finds some slightly better individuals
but not as fast as in the exploration phase, accordingly the simulation profile is switched to accurate at
Generation 45. To save computation time, we cancel the GA after one accurate evaluated generation. The
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Figure 7: Progress of the fitness with simulation profiles.

best solution we found has a production rate of 10189 tokens a day. This small difference of desired and
found production rate is quite acceptable. However the GA can not guarantee whether the found solution
is the best solution. Neither can we prove optimality or portability with regard to the chosen operators and
parameters. Nevertheless experience shows that GAs are working fine for many problems.

The experiment consumed 3296 CPU hours, most of the time was required for simulation. On average
one simulation with profile fast needed 14.7 min, with profile medium 50.3 min and with profile accurate
6.7 h. So a repetition without simulation profiles would need approximately 38000 CPU hours, which is to
much for our study. Therefore we designed some experiments to validate the simulation profile approach.

4.3 Additional Validating Experiments

In section 4.2 we showed, that our approach with reduced computation time worked. But we did not explain
why it works. In this section we perform some theoretical experiments to provide a deeper understanding.

For these experiments we use the same GA and parameters as in section 2.3. To evaluate the individuals
we replace simulation with the generalized multidimensional Rastrigin function fRa to save computation
time and to get reasonable fitness values. The Rastrigin function has a lot of local extrema and one global
minimum with fRa(~0) = 0.

To model the inaccuracy in simulation, we add an error to the Rastrigin function (Frank 2013).

fRa(~x) = An+
n

∑
i=1

[
x2

i −Acos(2πxi)
]

with A = 10 and n size of ~x. (2)

f e
Ra(~x) = fRa(~x)+ fRa(~x) · e ·N(0,1). (3)

This error is a product of a normal distributed random number with mean of 0 and standard deviation of
1 and a proportional part of fRa The parameter e adjusts the magnitude of the error.
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To show the influence of an error containing fitness function, we compare first the selection of individuals
using fitness functions fRa and f e

Ra. Secondly, we compare the behavior of these fitness functions within
the GA.

4.3.1 Selection Operators

In the GA of section 2.3 we use a truncation selection and a tournament selection. To show how the
selection operators works with f e

Ra, we randomly generate a 120 individual population and evaluate them
with fRa and f e

Ra. Now we can determine if a selection operator selects the same individuals for the fitness
function with an error in comparison to the unbiased fitness function. If a selection operator selects an
individual, evaluated with f e

Ra, which also is correctly selected using fRa, we call this a hit.
The individuals are generated in a range of [−10.0,10.0]d in a d-dimensional search space. For every

combination of (d,e) with e ∈ [0.005,0.2] (step size 0.005) and d ∈ [2,30] we perform 2000 tests and count
for each test the number of its hits.

Dimension d Error e

Hit

Dimension d Error e

Hit
Truncation Selection Tournament Selection

Figure 8: Number of hits for truncation and tournament selection (Frank 2013).

The selection operator selects 20 of 120 individuals. So the aim is to select all individuals correctly in
spite of an error containing fitness function. The left chart shows the hits of the truncation selection depend
on d and e, the right chart shows the results of the tournament selection with tournament size of 15. Both
charts in Figure 8 show quite similar behavior. With increasing d and e more and more individuals are
wrongly selected. But if the error is small, independent of d nearly all individuals are correctly selected.
So a small error is tolerable for these selection operators (Frank 2013).

4.3.2 Tests with the Genetic Algorithm

In section 4.3.1 we have seen, that a small error is tolerable for truncation and tournament selection. Here,
we examine the whole genetic algorithm from section 2.3 with an error containing fitness function. To
model the simulation profiles, we change e for each profile. For the profile accurate, the error must be
e = 0 to find unbiased solutions in the end of the optimization. Table 2 shows some values for e to play
around with some values.

Experiment 1 is used as reference, no error is used. In Experiments 2 to 5 we have tried some error
values. For each experiments we perform 10 runs. In Table 2 are the results with smallest, biggest and
average fitness. The global minimum of the Rastrigin function is zero. So no experiments hit is exactly,
but approximately. Within the scope of the available precision, experiment 1 to 4 reaches the same results.
Only experiment 5, which uses the same error for profile fast and medium does not reach that values. These
experiments show that also a genetic algorithm can tolerate an error containing fitness function.

Figure 9 shows the best fitness of each generation of the unbiased experiment 1 and for experiment
3. We observe the effect that the error containing fitness of experiment 3 seems to converge faster than
unbiased fitness. But it converges not really faster. The error is modeled as a random value (see (3)), so it
can be smaller or greater than zero. If a good, maybe not the best, individual gets a negative error, so the
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Table 2: Experiments with an error containing fitness function within a genetic algorithm (Frank 2013).

Error e Simulation Profile Results
Experiment fast medium accurate smallest fitness mean biggest fitness

1 0 0 0 1.06 2.69 6.10
2 0.08 0.03 0 1.06 2.00 4.11
3 0.2 0.1 0 1.06 3.14 5.08
4 0.5 0.3 0 1.08 2.52 5.09
5 0.2 0.2 0 1.81 5.08 11.05

0 20 40 60 80 100 120
1

10

100

1000

10000

Generation

Fitness, logarithmic

Fitness 1

Fitness 3

Figure 9: Comparison of fitness with and with an error.

fitness gets smaller and it seems better than an individual with nearly the same fitness but, with positive
error. In the end of the optimization, when the error gets small, this effect disappear.

5 CONCLUSION & OUTLOOK

This work presents a concept to reduce the required computation time of simulation-based optimization
with a Genetic Algorithm. This is accomplished by reducing the run length and number of replications of
a simulation depending on the slope of the fitness. The accuracy of the simulation is adapted during the
optimization progress. To demonstrate the concept, a model of a manufacturing plant is configured using
a genetic algorithm. To validate the approach, we employed experiments with an error containing fitness
function.

The current approach relies on simulation profiles adjusted to a specific model. Future works could
determine the required accuracy depending on the diversity. Instead of defining a certain number of runs
in advance, the simulation profiles adapt automatically to the desired level of accuracy. An automatic
replication estimator could determine the number of replications for the required accuracy (Hoad et al.
2007).

We consider only one Genetic Algorithm and one configuration. The main focus is to reduce computation
time with short simulations runs and fewer replications whenever the fitness of individuals is easily
distinguished. Presumably this approach is not limited to the presented Genetic Algorithm. Other selection
operators must be evaluated, especially fitness proportional selection operators might behave differently in
comparison to the employed truncation or tournament selection. Furthermore other error models should be
considered. Finally this approach should be examined using other optimization algorithms, e.g., covariance
matrix adaptation evolution strategy, particle swarm optimization or variance reduction.
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